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Abstract

Based on two-grid discretizations, in this paper, some new local and parallel finite
element algorithms are proposed and analyzed for the stationary incompressible Navier-
Stokes problem. These algorithms are motivated by the observation that for a solution
to the Navier-Stokes problem, low frequency components can be approximated well by a
relatively coarse grid and high frequency components can be computed on a fine grid by
some local and parallel procedure. One major technical tool for the analysis is some local
a priori error estimates that are also obtained in this paper for the finite element solutions
on general shape-regular grids.
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1. Introduction

In this paper, we will propose some new parallel techniques for finite element computations
of the stationary incompressible Navier-Stokes problem. These techniques are based on our
understanding of the local and global properties of a finite element solution to the Navier-Stokes
problem. Simply speaking, the global behavior of a solution is mostly governed by low frequency
components while the local behavior is mostly governed by high frequency components. The
main idea of our new algorithms is to use a coarse grid to approximate the low frequencies and
then to use a fine grid to correct the resulted residual (which contains mostly high frequencies)
by some local and parallel procedures. One technical tool for motivating this idea is the local
error estimate for finite element approximations. Let (wh, rh) be a finite element approximation
to the linearized Navier-Stokes problem on a quasi-uniform grid T h(Ω), then the following kind
of local estimate holds (see Lemma 3.2):

‖wh‖1,D + ‖rh‖0,D ≤ c(‖wh‖0,Ω0
+ ‖rh‖−1,Ω0

+ ‖f‖−1,Ω0
), (1.1)
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where D ⊂⊂ Ω0 ⊂ Ω, here D ⊂⊂ Ω0 means dist(∂D \ ∂Ω, ∂Ω0 \ ∂Ω) > 0.
This paper may be considered as a sequel of papers [7,23,24,25] on designing local and

parallel finite element algorithms. In [7,23,24,25], local and parallel algorithms for a class of
elliptic problems and the Stokes problem are studied, based on the local behaviors of finite
element approximations on sharp-regular grids.

The rest of the paper is organized as follows. In the coming section, some preliminary
materials and assumptions of mixed finite element spaces are provided. In section 3, a num-
ber of local a priori error estimates are obtained for the finite element discretization of the
Navier-Stokes problem. Based upon these local error estimates, several new local and parallel
algorithms are devised and analyzed in section 4.

2. Preliminaries

In this section, we shall describe some basic notations and assumptions on the mixed finite
element spaces and then study some properties of the mixed finite element approximation to
the Navier-Stokes problem.

Let Ω be a bounded domain in Rd(d = 2, 3) assumed to have a Lipschitz-continuous bound-
ary ∂Ω. We shall use the standard notation for Sobolev spaces W s,p(Ω),W s,p(Ω)d and their as-
sociated norms and seminorms, see e.g. [1,4]. For p = 2, we denoteHs(Ω) = W s,2(Ω), Hs(Ω)d =
W s,2(Ω)d and H1

0 (Ω) = {v ∈ H1(Ω); v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of trace,
‖ · ‖s,Ω = ‖s,2,Ω and | · |s,Ω = | · |s,2,Ω. In some places of this paper, ‖ · ‖2,Ω should be viewed as
piecewise defined if it is necessary. The space H−1(Ω)n, the dual of H1

0 (Ω)d, d = 1, 2, 3, will also
be used. ForD ⊂ G ⊂ Ω, we use the notationD ⊂⊂ G to mean that dist(∂D\∂Ω, ∂G\∂Ω) > 0.

Throughout this paper, we shall use the letter c ( with or without subscripts) to denote a
generic positive constant which may stand for different values at its different occurrences.

2.1. Mixed Finite Element Spaces

For generality, we will not concentrate on any specific mixed finite element space, rather we
shall study a class of mixed finite element spaces that satisfy certain assumptions. We shall
now describe such assumptions.

Assume that T h(Ω) = {τ} is a mesh of Ω with mesh-size function h(x) whose value is the
diameter hτ of the element τ containing x. One basic assumption on the mesh is that it is not
exceedingly over-refined locally, namely

A0. There exists γ ≥ 1 such that

h
γ
Ω ≤ ch(x) ∀x ∈ Ω, (2.1)

where hΩ = maxx∈Ω h(x) is the largest mesh size of T h(Ω).
This is apparently a very mild assumption and most practical meshes should satisfy this

assumption. Sometimes, we will drop the subscript in hΩ to h for the mesh size on a domain
that is clear from the context.

Associated with a mesh T h(Ω), let Xh(Ω) ⊂ H1(Ω)d,Mh(Ω) ⊂ L2(Ω) be two finite element
subspaces on Ω and set

X0
h(Ω) = Xh(Ω) ∩H1

0 (Ω)d, M0
h(Ω) = Mh(Ω) ∩ L2

0(Ω),

where

L2
0(Ω) = {q ∈ L2(Ω);

∫

Ω

qdx = 0}.

GivenG ⊂ Ω0 ⊂ Ω, we define (Xh(G),Mh(G)) and T h(G) to be the restriction of (Xh(Ω),Mh(Ω))
and T h(Ω) to G, and

Xh
0 (G) = {v ∈ X0

h(Ω); supp v ⊂⊂ G}, Mh
0 (G) = {q ∈Mh(Ω); supp q ⊂⊂ G}.

We now state our basic assumptions on the mixed finite element spaces.
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A1. Approximation property. For each (u, p) ∈ (Ht+1(G)d, Ht(G))(t ≥ 1), then there
exists an approximation (πhu, ρhp) ∈ (Xh(G),Mh(G)) such that

{

(div(u − πhu), qh) = 0 ∀qh ∈Mh(G)
‖h−1(u− πhu)‖0,G + ‖u− πhu‖1,G ≤ chs

G‖u‖1+s,G, 0 ≤ s ≤ t,
(2.2)

‖h−1(p− ρhp)‖−1,G + ‖p− ρhp‖0,G) ≤ chs
G‖p‖s,G, 0 ≤ s ≤ t. (2.3)

A2. Inverse estimate property. For all (v, q) ∈ (Xh(G),Mh(G)), there holds

‖v‖1,G ≤ c‖h−1v‖0,G, ‖q‖0,G ≤ c‖h−1q‖−1,G. (2.4)

A3. Superapproximation property. Let ω ∈ C∞

0 (Ω) with supp ω ⊂⊂ G. Then for any
(u, p) ∈ (Xh(G),Mh(G)), there is (v, q) ∈ (Xh

0 (G),Mh
0 (G)) such that

‖h−1(ωu− v)‖1,G ≤ c‖u‖1,G, ‖h−1(ωp− q)‖0,G ≤ c‖p‖0,G. (2.5)

A4. Stability property. For D ⊂⊂ Ω0, there are two positive constants β and h0 such
that for all h ∈ (0, h0], there is a subdomain G(= Gh) : D ⊂⊂ G ⊂ Ω0 for which

β‖q‖0,G ≤ sup
v∈X0

h
(G)

(divv, q)

‖v‖1,G
∀q ∈M0

h(G). (2.6)

The approximation property A1 is referred to [5] and inverse estimate property A2 is referred
to [23-25]. Many finite element spaces are known to have the superapproximation property, cf.
[3, 13-15,18,23-25]. When G = Ω, Assumption A4 is the standard stability condition for the
Stokes finite elements. It will usually hold as long as Gh is chosen to be a union of elements in
T h(Ω).

2.2. The Navier-Stokes Problem

In this subsection, we shall study some basic properties of the Navier-Stokes problem and its
mixed finite element approximation. First, we consider the following generalized Navier-Stokes
problem:

−ν∆u+ (u · ∇)u + ∇p = f in Ω , (2.7)

divu = g in Ω , (2.8)

u = 0 on ∂Ω , (2.9)

where u = (u1, · · · , ud) is the velocity, p is the pressure, ν > 0 is the viscosity, the functions f
and g are given.

In order to introduce a variational formulation, we set

((u, v)) = (∇u,∇v), a(u, v) = ν((u, v)) ∀u, v ∈ H1(Ω)d,

d(v, q) = (divv, q), ∀(v, q) ∈ (H1(Ω)d, L2
0(Ω)),

b(u, v, w) = ((u · ∇)v, w) +
1

2
((divu)v, w)

=
1

2
((u · ∇)v, w) −

1

2
((u · ∇)w, v) ∀u, v, w ∈ H1(Ω)d.

It is well known that a(·, ·), d(·, ·) and b(·, ·, ·) satisfy the following properties (see [5,7,12]):

α‖v‖2
1,Ω ≤ a(v, v) = ν|v|21,Ω, a(u, v) ≤ ν|u|1,Ω|v|1,Ω ∀u, v ∈ H1(Ω)d, (2.10)

d(v, q) ≤ d1‖u‖1,Ω‖q‖0,Ω ∀(v, q) ∈ (H1(Ω)d, L2(Ω)), (2.11)

b(u, v, w) = −b(u,w, v) ∀u, v, w ∈ H1(Ω)d, (2.12)

|b(u, v, w)| ≤ c1‖u‖1,Ω‖v‖1,Ω‖w‖1,Ω ∀u, v, w ∈ H1(Ω)d, (2.13)

here α, d1 are two positive constants. For given f ∈ H−1(Ω)d and g ∈ L2
0(Ω), the variational

formulation of (2.7)-(2.9) reads: find a pair (u, p) ∈ (H1
0 (Ω)d, L2

0(Ω)) such that for all (v, q) ∈
(H1

0 (Ω)d, L2
0(Ω))

a(u, v) + b(u, u, v) − d(v, p) + d(u, q) = (f, v) + (g, q). (2.14)
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Throughout this paper, we will assume that the linearized dual problem to (2.14) is W 2,2-
regular, 0 < h ≤ h0, where h0 is sufficiently small. Also, we assume that Assumptions A0,
A1 −A4 and the sequel A5 hold.

Now, we consider the standard Galerkin finite element method for solving problem (2.14):
Find (uµ, pµ) ∈ (X0

µ(Ω),M0
µ(Ω)) such that

a(uµ, v) + b(uµ, uµ, v) − d(v, pµ) + d(uµ, q) = (f, v) + (g, q), (2.15)

for all (v, q) ∈ (X0
µ(Ω),M0

µ(Ω)), where µ = h,H .

The following results on (uµ, pµ) are classical (see [5,8,16]).

Theorem 2.1. Assume that Ω is Ct+1-smooth bounded domain in Rd for t ≥ 1 or a bounded
convex polygonal domain in Rd for t = 1, (u, p) is a nonsingular solution of problem (2.14).
Then, there exists a small h0 > 0 such that for µ ∈ (0, h0], problem (2.15) has a unique solution
(uµ, pµ). Moreover, if (u, p) ∈ (Ht+1(Ω)d ∩H1

0 (Ω)d, Ht(Ω) ∩ L2
0(Ω)), we have the error bound:

‖u− uµ‖1,Ω + ‖p− pµ‖0,Ω ≤ cµs(‖u‖s+1,Ω + ‖p‖s,Ω), 1 ≤ s ≤ t, (2.16)

and

‖uµ‖1,Ω + ‖pµ‖0,Ω ≤ c. (2.17)

Furthermore, we need the W 2,2-regularity assumptions on the linearized dual problem of
problem (2.14).

A5. Regularity property. If µ ∈ (0, h0] and (ϕ, φ) ∈ (L2(Ω0)
d, H1(Ω0) ∩ L

2
0(Ω0)), the

linearized dual problem of (2.14): Find (Φ,Ψ) ∈ (H2(Ω0)
d ∩H1

0 (Ω0)
d, H1(Ω0) ∩ L

2
0(Ω0)) such

that for all (v, q) ∈ (H1
0 (Ω0)

d, L2
0(Ω0)),

a(v,Φ) + b(uµ, v,Φ) + b(v, uµ,Φ) + d(v,Ψ) − d(Φ, q) = (ϕ, v) + (φ, q), (2.18)

admits a unique solution (Φ,Ψ) satisfying (c.f., e.g. [5,8,16])

‖Φ‖2,Ω0
+ ‖Ψ‖1,Ω0

≤ c(‖ϕ‖0,Ω0
+ ‖φ‖1,Ω0

). (2.19)

Moreover, a finite element scheme for solving problem (2.18) reads: Find Φµ ∈ X0
µ(Ω0), Ψµ ∈

M0
µ(Ω0) such that for all (v, q) ∈ (X0

µ(Ω0),M
0
µ(Ω0)),

a(v,Φµ) + b(uµ, v,Φµ) + b(v, uµ,Φµ) + d(v,Ψµ) − d(Φµ, q) = (ϕ, v) + (φ, q), (2.20)

where µ = h,H . It is shown that there is a unique solution (Φµ,Ψµ) satisfying the above
equation and

‖Φ − Φµ‖1,Ω0
+ ‖Ψ − Ψµ‖0,Ω0

≤ cµ(‖ϕ‖0,Ω0
+ ‖φ‖1,Ω0

), (2.21)

‖Φµ‖1,Ω0
+ ‖Ψµ‖0,Ω0

≤ c(‖ϕ‖0,Ω0
+ ‖φ‖1,Ω0

). (2.22)

Throughout this paper, we will assume that h < H ≤ h0 and Assumptions A0 −A5 hold.

Now, by applying the Aubin-Nitsche duality argument in [2,5] one can easily prove the
following error estimates.

Theorem 2.2. Under the assumptions of Theorem 2.1, for all h ∈ (0, h0], there holds

‖u− uh‖0,Ω + ‖p− ph‖−1,Ω ≤ ch(‖u− uh‖1,Ω + ‖p− ph‖0,Ω)

≤ chs+1(‖u‖s+1,Ω + ‖p‖s,Ω), 0 ≤ s ≤ t. (2.23)

Proof. We will apply the Aubin-Nitsche duality argument to prove (2.23). For (ϕ, φ) ∈
(L2(Ω)d, H1(Ω) ∩ L2

0(Ω)), there exists (Φ,Ψ) ∈ (H1
0 (Ω)d, L2

0(Ω)) satisfying (2.18)-(2.19) with
µ = h,Ω0 = Ω. Moreover, let (Φh,Ψh) ∈ (X0

h(Ω),M0
h(Ω)) be the finite element approximation

of (Φ,Ψ), then (2.20)-(2.22) hold with µ = h and Ω0 = Ω.

Now, we obtain from (2.14) and (2.15) that

a(u− uh,Φh) + b(u− uh, uh,Φh) + b(uh, u− uh,Φh) + b(u− uh, u− uh,Φh)

+ d(u− uh,Ψh) − d(Φh, p− ph) = 0, (2.24)
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which together with (2.18) yields

(ϕ, u− uh) + (φ, p− ph) = a(u− uh,Φ − Φh) + b(u− uh, uh,Φ − Φh)

+ b(uh, u− uh,Φ − Φh) + b(u− uh, u− uh,−Φh)

+ d(u− uh,Ψ − Ψh) − d(Φ − Φh, p− ph). (2.25)

Thanks to (2.10)-(2.13), (2.16)-(2.17), (2.21) and (2.22), we have

|a(u− uh,Φ − Φh)| ≤ ν‖u− uh‖1,Ω‖Φ − Φh‖1,Ω ≤ ch‖u− uh‖1,Ω(‖ϕ‖0,Ω + ‖φ‖1,Ω),

|b(u− uh, uh,Φ − Φh)| + |b(uh, u− uh,Φ − Φh)| ≤ ch‖u− uh‖1,Ω(‖ϕ‖0,Ω + ‖φ‖1,Ω),

|b(u− uh, u− uh,Φh)| ≤ c‖u− uh‖
2
1,Ω‖Φh‖1,Ω ≤ ch‖u− uh‖1,Ω(‖ϕ‖0,Ω + ‖φ‖1,Ω),

|d(u− uh,Ψ − Ψh)| + |d(Φ − Φh, p− ph)|

≤ d1(‖Φ − Φh‖1,Ω‖p− ph‖0,Ω + ‖u− uh‖1,Ω‖Ψ − Ψh‖0,Ω)

≤ ch(‖u− uh‖1,Ω + ‖p− ph‖0,Ω)(‖ϕ‖0,Ω + ‖φ‖1,Ω),

which together with (2.24) yields

‖u− uh‖0,Ω + ‖p− ph‖−1,Ω ≤ chΩ(‖u− uh‖1,Ω + ‖p− ph‖0,Ω).

Finally we obtain (2.23) from Theorem 2.1.

3. Local a Priori Error Estimates

In this section, we shall present some local a priori finite element error estimates for the
Navier-Stokes problem on general shape regular grids. The results presented here generalize lo-
cal a priori error estimates for the linear problem known in the literature (c.f. [3,7,13-15,23-25]),
which will play a crucial role in our analysis. Although these general estimates are theoretically
interesting in their own right, our main motivation is to use them to devise and analyze some
new local and parallel algorithms to be presented in the following sections.

First, we need the following technical result, which can be derived from Lemma 3.1 in Xu
and Zhou [24].
Lemma 3.1. Let ω ∈ C∞

0 (Ω) such that suppω ⊂⊂ Ω0. Then

‖ωw‖2
1,Ω ≤ ca(w, ω2w) + c‖w‖2

0,Ω0
∀w ∈ H1

0 (Ω)d, (3.1)

We shall now present a local a priori estimate for finite element approximation for the
Navier-Stokes problem, which will play a crucial role in our analysis. This type of estimates is
an extension of the results in [3,7,23,24].
Lemma 3.2. Suppose that f ∈ H−1(Ω0)

d, 0 < µ ≤ h0. If (w, r) ∈ (X0
h(Ω),M0

h(Ω)) satisfies
that for all (v, q) ∈ (Xh

0 (Ω0),M
h
0 (Ω0)),

a(w, v) + b(uµ, w, v) + b(w, uµ, v) − d(v, r) + d(w, q) = (f, v), (3.2)

then for D ⊂⊂ Ω0 ⊂ Ω,

‖w‖1,D + ‖r‖0,D ≤ c(‖w‖0,Ω0
+ ‖r‖−1,Ω0

+ ‖f‖−1,Ω0
), (3.3)

where µ = h,H.
Proof. Let s be an integral such that s ≥ max{2γ − 1, γ + 1}, Dj and Ωj(j = 1, 2 · · · , s)

satisfy

D1 ⊂⊂ D2 ⊂⊂ · · · ⊂⊂ Di ⊂⊂ · · · ⊂⊂ Ds ⊂⊂ Ωs,

Ωs ⊂⊂ Ωs−1 ⊂⊂ · · · ⊂⊂ Ωj · · · ⊂⊂ Ω1 ⊂⊂ Ω0.

Choose G ⊂ Ω satisfying D ⊂⊂ G ⊂⊂ D1 and ω ∈ C∞

0 (Ω) such that ω ≡ 1 on Ḡ and
supp ω ⊂⊂ D1.

Note that

‖ωr −
1

|D1|

∫

D1

ωrdx‖0,D1
≤ c sup

φ∈X0

h
(D1)

d(φ, ωr)

‖φ‖1,Ω
≤ c sup

φ∈X0

h
(Ω)

d(φ, ωr)

‖φ‖1,Ω
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while for ψ ∈ Xh
0 (Ω0),

d(φ, ωr) = (ωdiv φ, r) = d(ωφ, r) − (φ∇ω, r)

= d(ωφ− ψ, r) + a(w,ψ) + b(uµ, w, ψ) + b(w, uµ, ψ) − (f, ψ) − (φ∇ω, r).

Choose ψ ∈ Xh
0 (D1) such that

‖ωφ− ψ‖1,D1
≤ chΩ0

‖φ‖1,Ω0
,

then

‖ψ‖1,D1
≤ c(hΩ0

‖φ‖1,Ω0
+ ‖ωφ‖1,D1

) ≤ c‖φ‖1,Ω,

|d(ωφ− ψ, r)| ≤ chΩ0
‖r‖0,D1

‖φ‖1,Ω,

|a(w,ψ)| + |(f, ψ)| + |(g, r)| ≤ c(‖w‖1,D1
+ ‖f‖−1,D1

)‖φ‖1,Ω,

|b(uµ, w, ψ)| + |b(w, uµ, ψ)| ≤ c‖w‖1,D1
‖φ‖1,Ω,

|(φ∇ω, r)| ≤ c‖r‖−1,D1
‖φ‖1,Ω,

and

|d(φ, ωr)| ≤ c(hΩ0
‖φ‖1,Ω‖r‖0,D1

+ (‖w‖1,D1
+ ‖r‖−1,D1

+ ‖f‖−1,Ω0
)‖φ‖1,Ω).

Namely,

‖ωr −
1

|D1|

∫

D1

ωrdx‖0,D1
≤ c(hΩ0

‖r‖0,D1
+ ‖w‖1,D1

+ ‖r‖−1,D1
+ ‖f‖−1,Ω0

),

or

‖r‖0,D ≤ c(hΩ0
‖r‖0,D1

+ ‖w‖1,D1
+ ‖r‖−1,D1

+ ‖f‖−1,Ω0
),

where

‖
1

|D1|

∫

D1

ωrdx‖0,D1
≤ c‖r‖−1,D1

,

is used. Similarly, we have

‖r‖0,Di−1
≤ c(hΩ0

‖r‖0,Di
+ ‖w‖1,Di

+ ‖r‖−1,Di
+ ‖f‖−1,Ω0

), i = 1, 2 · · · , s− 1,

where D0 = D. Thus

‖r‖0,D ≤ c(hs−1
Ω0

‖r‖0,Ds−1
+ ‖w‖1,Ds−1

+ ‖r‖−1,Ds−1
+ ‖f‖−1,Ω0

)

≤ c(‖r‖−1,Ds−1
+ ‖w‖1,Ds−1

+ ‖f‖−1,Ω0
)

and

‖r‖0,D1
≤ c(‖r‖−1,Ωs

+ ‖w‖1,Ωs
+ ‖f‖−1,Ω0

). (3.5)

On the other hand, there exists (v, q) ∈ (Xh
0 (D1),M

h
0 (D1)) such that

‖ω2w − v‖1,D1
≤ chΩ0

‖w‖1,D1
, ‖ω2r − q‖0,D1

≤ chΩ0
‖r‖0,D1

,

which imply

a(w, ω2w − v) ≤ chΩ0
‖w‖2

1,D1
,

|d(v − ω2w, r)| + |d(w, ω2r − q)| ≤ chΩ0
‖w‖1,D1

‖r‖0,D1
,

|(f, v)| ≤ ‖f‖−1,D1
‖v‖1,D1

≤ c‖f‖−1,Ω0
(hΩ0

‖w‖1,D1
+ ‖ωw‖1,Ω),

and for some ε ∈ (0, 1),

|b(uµ, w, v)| = |b(uµ, w, v − ω2w) + b(uµ, w, ω
2w)|

≤ chΩ0
‖w‖2

1,D1
+

1

2

∣

∣

∣

∣

∫

Ω

(uµ · ∇)w · (ω2w)dx −

∫

Ω

(uµ · ∇)(ω2w) · wdx

∣

∣

∣

∣

= chΩ0
‖w‖1,D1

+

∣

∣

∣

∣

∫

Ω

(uµ · ∇)ω · ω|w|2dx

∣

∣

∣

∣

≤ chΩ0
‖w‖2

1,D1
+ c‖uµ‖L4‖ωw‖L4‖w‖0,Ω0

≤ chΩ0
‖uµ‖1,Ω0

‖ωw‖1,Ω‖w‖0,Ω0

≤ chΩ0
‖w‖2

1,D1
+ ε‖ωw‖2

1,Ω + cε−1‖w‖2
0,Ω0

,

|b(w, uµ, v)| ≤ chΩ0
‖w‖2

1,D1
+ ε‖ωw‖2

1,Ω + cε−1‖w‖2
0,Ω0

.
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Note that

d(ω2w, r) = d(w, ω2r) + (2ωw∇ω, r) = d(w, ω2r − q) + (2ωw∇ω, r)

≤ chΩ0
‖w‖1,D1

‖r‖0,D1
+ c‖ωw‖1,D1

‖r‖−1,D1
,

we have, from Lemma 3.1, that

c−1‖ωw‖2
1,Ω ≤ a(w, ω2w) + ‖w‖2

0,Ω0

= a(w, ω2w − v) + d(v, r) + (f, v) + ‖w‖2
0,Ω0

− b(uµ, w, v) − b(w, uµ, v)

= a(w, ω2w − v) + d(ω2w, r) + d(v − ω2w, r) + (f, v) + ‖w‖2
0,Ω0

− b(uµ, w, v) − b(w, uµ, v)

≤ chΩ0
(‖w‖2

1,D1
+ ‖w‖1,D1

‖r‖0,D1
) + c(1 + ε−1)‖w‖2

0,Ω0
) + cε‖ωw‖2

1,Ω

+ c(‖ωw‖1,D1
‖r‖−1,D1

+ c‖f‖−1,Ω0
(hΩ0

‖w‖1,D1
+ ‖ωw‖1,Ω).

Thus

‖ωw‖1,Ω ≤ c(h
1/2
Ω0

(‖w‖1,D1
+ ‖r‖0,D1

) + ‖w‖0,Ω0
+ ‖r‖−1,D1

+ ‖f‖−1,Ω0
),

which together with (3.5) leads to

‖w‖1,D ≤ c(h
1/2
Ω0

‖w‖1,Ωs
+ ‖w‖0,Ω0

+ ‖r‖−1,Ω0
+ ‖f‖−1,Ω0

).

Similarly,

‖w‖1,Ωj
≤ c(h

1/2
Ω0

‖w‖1,Ωj−1
+ ‖w‖0,Ω0

+ ‖r‖−1,Ω0
+ ‖f‖−1,Ω0

), j = 1, 2 · · · , s.

Hence

‖w‖1,D ≤ c(h
(s+1)/2
Ω0

‖w‖1,Ω0
+ ‖w‖0,Ω0

+ ‖r‖−1,Ω0
+ ‖f‖−1,Ω0

),

namely

‖w‖1,D ≤ c(‖w‖0,Ω0
+ ‖r‖−1,Ω0

+ ‖f‖−1,Ω0
). (3.6)

Combining (3.5) and a similar estimate

‖w‖1,Ωs
≤ c(‖w‖0,Ω0

+ ‖r‖−1,Ω0
+ ‖f‖−1,Ω0

),

we obtain

‖r‖0,D ≤ ‖r‖0,D1
≤ c(‖w‖0,Ω0

+ ‖r‖−1,Ω0
+ ‖f‖−1,Ω0

),

which together (3.6) completes the proof.

4. New Local and Parallel Algorithms

In this section we shall present some new local and parallel finite element algorithms for the
Navier-Stokes problem with g = 0. These algorithms are motivated by the local error estimates
studied in the previous section. First, we shall discuss the local algorithms. The generalization
of the local algorithms to parallel algorithms is straightforward.

For clarity, let Ω be a polygonal domain or polyhedral domain and Xh(Ω) ⊂ H1(Ω)d,Mh(Ω)
⊂ L2(Ω) be two finite element subspaces satisfying the assumptions A1 − A4 associated with
a grid T h(Ω) satisfying the assumption A0. Let (uh, ph) ∈ (X0

h(Ω),M0
h(Ω)) be the standard

finite element solution of the Navier-Stokes problem:

a(uh, v) + b(uh, uh, v) − d(v, ph) + d(uh, q) = (f, v) ∀(v, q) ∈ (X0
h(Ω),M0

h(Ω)). (4.1)

Either locally or globally, with proper regularity assumption, we have the following error esti-
mate:

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ chs, 1 ≤ s ≤ t. (4.2)

With this type of error estimates in mind, in the rest of this section, we will only compare
the approximate solutions from our new algorithms with (uh, ph) instead of the exact solution
(u, p).
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4.1. Local Algorithms

The local algorithms we shall now present can be used to obtain approximate solution
on a given subdomain mostly by local computation. The main idea is that the more global
component of a finite element solution may be obtained by a relatively coarser grid and, the
rest of the computation can then be localized.

Roughly speaking, our new algorithms will be based on sometimes one coarse grid of size
H and one fine grid of size h ≪ H , and sometimes on a grid that is fine in a subdomain and
coarse on the rest of the domain.

The fine grid may be only defined locally. In our analysis, we shall use an auxiliary fine
grid, say T h(Ω), that is globally defined. One basic assumption for this auxiliary fine grid is
that it should coincide with the local fine grid in the subdomain of interest.

Let TH(Ω) be a shape-regular coarse grid of size H ≫ h which satisfies A0, so that the
highly locally refined mesh T h(Ω0) can be obtained, where Ω0 is a slightly larger subdomain
containing a subdomain D ⊂ Ω (namely D ⊂⊂ Ω0). More precisely, we let TH,h(Ω) denote
a locally refined shape-regular mesh that may be viewed as being obtained by refining TH(Ω)
locally around the subdomain D in such a way that TH,h(Ω0) = T h(Ω0).

We are interested in obtaining the approximation solution in the given subdomain D with
an accuracy comparable to that from T h(Ω). We shall propose two different gridding strategies
for obtaining finite element approximations on the subdomain D. We denote the corresponding
finite element spaces by X0

H,h(Ω) ⊂ H1
0 (Ω)d,M0

H,h(Ω) ⊂ L2
0(Ω), which satisfies assumptions

A1 −A4.

4.1.1. Implicity Approach

The first stragey is simply to solve a standard finite element solution in (X0
H,h(Ω),M0

H,h(Ω)).

Algorithm A.0. Find (uh
H , p

h
H) ∈ (X0

H,h(Ω),M0
H,h(Ω)) such that

a(uh
H , v) + b(uh

H , u
h
H , v) − d(v, ph

H) + d(uh
H , q) = (f, v), (4.3)

for all (v, q) ∈ (X0
H,h(Ω),M0

H,h(Ω)).
Strictly speaking, this algorithm is still a global algorithm as a global problem is solved.

But it is designed to obtain a local approximation in the subdomain D and it makes use of a
mesh that is much coarse away from D.
Theorem 4.1. Assume that (uh

H , p
h
H) ∈ (X0

H,h(Ω),M0
H,h(Ω)) is obtained by Algorithm A.0.

Then

‖uh − uh
H‖1,D + ‖ph − ph

H‖0,D ≤ cHs+1(‖u‖s+1,Ω + ‖p‖s,Ω), 1 ≤ s ≤ t. (4.4)

Proof. By the definition of Algorithm A.0 and our assumption on the auxiliary grid T h(Ω)
that coincide with TH,h(Ω) on Ω0, we deduce from (4.1) and (4.3) that

a(uh
H − uh, v) + b(uh

H − uh, uh, v) + b(uh, u
h
H − uh, v)

− d(v, ph
H − ph) + d(uh

H − uh, q) = −b(uh
H − uh, u

h
H − uh, v).

for all (v, q) ∈ (Xh
0 (Ω0),M

h
0 (Ω0)). By Lemma 3.2 and (2.13), we get

‖uh − uh
H‖1,D + ‖ph − ph

H‖0,D

≤ c(‖uh − uh
H‖0,Ω0

+ ‖ph − ph
H‖−1,Ω0

+ ‖uh − uh
H‖2

1,Ω0
)

≤ c(‖u− uh‖0,Ω + ‖u− uh
H‖0,Ω + ‖u− uh‖

2
1,Ω + ‖u− uh

H‖2
1,Ω)

+ c(‖ph
H − p‖−1,Ω + ‖ph − p‖−1,Ω),

which together with Theorem 2.1 and Theorem 2.2 finishes the proof.

4.1.2. Explicity Approach

Our second strategy is in a way an improvement of the first strategy . In this strategy,
we first solve a global problem only on the given coarse grid TH(Ω) and we then correct the
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residual locally on the fine mesh T h(Ω0). If we correct the residual globally on the fine mesh
T h(Ω), then we deduce the two-level finite element method for the Navier-Stokes equations.
For some details of the two-level finite element, the reader can refer to Xu [21, 22] and Layton
[9, 10, 11, 12]. Moreover, for some details of the two-level finite element for the time-dependent
Navier-Stokes equations, the reader can refer to He [6].

Let (XH(Ω),MH(Ω)) ⊂ (H1
0 (Ω)d, L2

0(Ω)) be the finite element space pair on TH(Ω) satis-
fying assumptions A0 −A4. A prototype of our new local algorithms is as follows.
Algorithm B.0. 1. Find a global coarse grid solution (uH , pH) ∈ (X0

H(Ω),M0
H(Ω)):

a(uH , v) + b(uH , uH , v) − d(v, pH) + d(uH , q) = (f, v) ∀(v, q) ∈ (X0
H(Ω),M0

H(Ω)).

2. Find a local fine grid correction (eh, ηh) ∈ (X0
h(Ω0),M

0
h(Ω0)):

a(eh, v) + b(uH , eh, v) + b(eh, uH , v) − d(v, ηh) + d(eh, q)

= (f, v) − a(uH , v) − b(uH , uH , v) + d(v, pH) − d(uH , q) ∀(v, q) ∈ (X0
h(Ω0),M

0
h(Ω0)).

3.Update: uh = uH + eh, p
h = pH + ηh in Ω0.

Theorem 4.2. Assume that (uh, ph) ∈ (Xh(Ω0),Mh(Ω0)) is obtained by Algorithm B.0. Then

‖uh − uh‖1,D + ‖ph − ph‖0,D ≤ c(‖uh − uH‖0,Ω + ‖ph − pH‖−1,Ω)

+ cH(‖uh − uH‖1,Ω + ‖ph − pH‖0,Ω))

≤ cHs+1(‖u‖s+1,Ω + ‖p‖s,Ω), 1 ≤ s ≤ t. (4.5)

Consequently

‖u− uh‖1,D + ‖p− ph‖0,D ≤ c(hs +Hs+1)(‖u‖s+1,Ω + ‖p‖s,Ω), 1 ≤ s ≤ t. (4.6)

Proof. First of all, we derive from Algorithm B.0 and problem (4.1) that

a(uh − uh, v) + b(uh − uh, uH , v) + b(uH , u
h − uH , uH , v)

− d(v, ph − ph) + d(uh − uh, q) + b(uh − uH , uh − uH , v) = 0,

for all (v, q) ∈ (Xh
0 (Ω0),M

h
0 (Ω0)). Thus, Lemma 3.2 and (2.13) imply

‖uh − uh‖1,D + ‖ph − ph‖0,D ≤ c(‖uh − uh‖0,Ω0
+ ‖ph − ph‖−1,Ω0

+ ‖uh − uH‖2
1,Ω0

)

≤ c(‖uh − uH‖0,Ω0
+ ‖ph − pH‖−1,Ω0

+ ‖uh − uH‖2
1,Ω)

+ c(‖eh‖0,Ω0
+ ‖ηh‖−1,Ω0

). (4.7)

From Assumption A5, for (ϕ, φ) ∈ (L2(Ω0)
d, H1(Ω0) ∩ L2

0(Ω0)), there exists (w, r) ∈
(H2

0 (Ω0)
d ∩H1

0 (Ω0)
d, H1(Ω0) ∩ L

2
0(Ω0)) such that

{

a(v, w) + b(uH , v, w) + b(v, uH , w) + d(v, t) − d(w, q)
= (ϕ, v) + (φ, q) ∀(v, q) ∈ (H1

0 (Ω0)
d, L2

0(Ω0)),

and

‖w‖2,Ω0
+ ‖r‖1,Ω0

≤ c(‖ϕ‖0,Ω0
+ ‖φ‖1,Ω0

).

Let (wµ, rµ) ∈ (X0
µ(Ω0),M

0
µ(Ω0)) be the finite element approximation of (w, r):

a(v, w − wµ) + b(uH , v, w − wµ) + b(v, uH , w − wµ)

+ d(v, r − rµ) − d(w − wµ, q) = 0 ∀(v, q) ∈ (X0
µ(Ω0),M

0
µ(Ω0)),

where µ = h or H . Then

‖w − wµ‖1,Ω0
+ ‖r − rµ‖0,Ω0

≤ cµ(‖ϕ‖0,Ω0
+ ‖φ‖1,Ω0

). (4.8)

Note that

a(eh, v) + b(eh, uH , v) + b(uH , eh, v) − d(v, ηh) + d(eh, q)

= a(uh − uH , v) + b(uh − uH , uH , v)

+ b(uH , uh − uH , v) + b(uh − uH , uh − uH , v)

− d(v, ph − pH) + d(uh − uH , q) ∀(v, q) ∈ (X0
h(Ω0),M

0
h(Ω0)),
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and

a(uh − uH , wH) + b(uh − uH , uH , wH) + b(uH , uh − uH , wH)

+ b(uh − uH , uh − uH , wH) − d(wH , ph − pH) + d(uh − uH , rH) = 0,

we have

(ϕ, eh) + (φ, ηh) = a(eh, w) + b(uH , eh, w) + b(eh, uH , w) + d(eh, r) − d(w, ηh)

= a(eh, wh) + b(uH , eh, wh) + b(eh, uH , wh) + d(eh, rh) − d(wh, ηh)

= a(uh − uH , wh) + b(uh − uH , uH , wh) + b(uH , uh − uH , wh)

+ b(uh − uH , uh − uH , wh) − d(wh, ph − pH) + d(uh − uH , rh)

and hence

(ϕ, eh) + (φ, ηh) = a(uh − uH , wh − w) + b(uh − uH , uH , wh − w)

+ b(uH , uh − uH , wh − w) + b(uh − uH , uh − uH , wh − w)

− d(wh − w, ph − pH) + d(uh − uH , rh − r)

+ a(uh − uH , w − wH) + b(uh − uH , uH , w − wH) + b(uH , uh − uH , w − wH)

+ b(uh − uH , uh − uH , w − wH) − d(w − wH , ph − pH) + d(uh − uH , r − rH).

Therefore we obtain from (2.10)-(2.13) and (4.8) that

|(ϕ, eh) + (φ, ηh)| ≤ cH(‖uh − uH‖1,Ω + ‖ph − pH‖0,Ω)(‖ϕ‖0,Ω0
+ ‖φ‖1,Ω0

), (4.9)

or

‖eh‖0,Ω0
+ ‖ηh‖−1,Ω0

≤ cH(‖uh − uH‖1,Ω + ‖ph − pH‖0,Ω),

which together with (4.2) and (4.7) finishes the proof.

4.2. New Parallel Algorithms Based on Local Algorithms

The parallel algorithms we shall present here naturally obtained from the local algorithms
that we studied above. Given an initial coarse triangulation TH(Ω), let us first divide Ω into
a number of disjoint subdomains D1, · · · , Dm, then enlarge each Dj to obtain Ωj that align
with TH(Ω). The basic idea of our parallel algorithm is very simple: we just apply the local
algorithms in parallel in all Ωj ’s.

Let us first discuss the parallel version of Algorithm A0. For each j, we use some adaptive
process to obtain a shape-regular mesh Tj(Ω) and the corresponding finite element solution
denoted by (uj, pj). We note that each Tj(Ω) has a substantially finer mesh inside Ωj . We note
that all Tj(Ω) are different triangulations for Ω and they can very arbitrary; but for simplicity of
exposition, we assume each Tj(Ω) has the same size h in Ωj (more precisely, Tj(Ωj) = T h(Ωj))
and has the sizeH away from Ωj . Let Xhj

(Ω) ⊂ H1
0 (Ω)d,Mhj

(Ω) ⊂ L2
0(Ω) be the corresponding

finite element spaces satisfying assumptions A1 −A4.
Algorithm A.1.

1. Find (uj , pj) ∈ (X0
hj

(Ω),M0
hj

(Ω))(j = 1, 2, · · · ,m) in parallel:

a(uj , v) + b(uj, uj , v) − d(v, pj) + d(uj , q) = (f, v) ∀(v, q) ∈ (X0
hj

(Ω),M0
hj

(Ω)).

2. Set (uh, ph) = (uj , pj) in Dj(j = 1, 2, · · · ,m).
Define a piecewise norm

‖|uh − uh‖|1,Ω = (

m
∑

j=1

‖uh − uh‖2
1,Dj

)1/2,

‖|ph − ph‖|0,Ω = (

m
∑

j=1

‖ph − ph‖2
0,Dj

)1/2.

By Theorem 4.1, we have

‖|uh − uh‖|1,Ω + ‖|ph − ph‖|0,Ω ≤ cHs+1(‖u‖s+1,Ω + ‖p‖s,Ω), 1 ≤ s ≤ t.
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Consequently,

‖|u− uh‖|1,Ω + ‖|p− ph‖|0,Ω ≤ c(hs +Hs+1)(‖u‖s+1,Ω + ‖p‖s,Ω), 1 ≤ s ≤ t. (4.10)

We now discuss the parallel versions of Algorithm B.0, although there are many possibilities
for the generalization. For clarity, it appears to be most convenient to discuss these using two
globally defined grids: an initial coarse grid TH(Ω) and a refined (from TH(Ω)) grid T h(Ω)
that satisfies h≪ H .
Algorithm B.1.

1. Find a global coarse grid solution (uH , pH) ∈ (X0
H(Ω),M0

H(Ω)):

a(uH , v) + b(uH , uH , v) − d(v, pH) + d(uH , q) = (f, v) ∀(v, q) ∈ (X0
H(Ω),M0

H(Ω)).

2. Find local fine grid corrections (ej
h, η

j
h) ∈ (X0

h(Ωj),M
0
h(Ωj))(j = 1, · · · ,m) in parallel:

a(ej
h, v) + b(uh, e

j
h, v) + b(ej

h, u
h, v) − d(v, ηj

h) + d(ej
h, q)

= (f, v) − a(uH , v) − b(uH , uH , v) + d(v, pH) − d(uH , q) ∀(v, q) ∈ (X0
h(Ωj),M

0
h(Ωj)).

3. Set (uh, ph) = (uH , pH) + (ej
h, η

j
h), in Dj(j = 1, 2, · · · ,m).

By Theorem 4.2, for this algorithm, we apparently have the following error result.
Theorem 4.3. Assume that (uh, ph) is the solution obtained by Algorithm B.1. Then

‖|uh − uh‖|1,Ω + ‖|ph − ph‖|0,Ω ≤ cH(‖uh − uH‖1,Ω + ‖ph − pH‖0,Ω)

≤ cHs+1(‖u‖s+1,Ω + ‖p‖s,Ω), 1 ≤ s ≤ t, (4.11)

and

‖|u− uh‖|1,Ω + ‖|p− ph‖0,Ω ≤ c(hs +Hs+1)(‖u‖s+1,Ω + ‖p‖s,Ω), 1 ≤ s ≤ t. (4.12)

Proof. Note that

‖uh − uh‖1,Dj
+ ‖ph − ph‖0,Dj

≤ c(‖uh − uH‖0,Ωj
+ ‖ph − pH‖−1,Ωj

+H(‖uh − uH‖1,Ωj
+ ‖ph − pH‖0,Ωj

))

≤ cH(‖uh − uH‖1,Ω + ‖ph − pH‖0,Ω),

the desired result follows.
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