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Abstract

In this paper we further explore and apply our recent anti-diffusive flux corrected high

order finite difference WENO schemes for conservation laws [18] to compute the Saint-
Venant system of shallow water equations with pollutant propagation, which is described
by a transport equation. The motivation is that the high order anti-diffusive WENO
scheme for conservation laws produces sharp resolution of contact discontinuities while
keeping high order accuracy for the approximation in the smooth region of the solution.
The application of the anti-diffusive high order WENO scheme to the Saint-Venant system
of shallow water equations with transport of pollutant achieves high resolution

Mathematics subject classification: 65M06, 76B15.
Key words: Anti-diffusive flux correction, Sharpening contact discontinuity, High order ac-
curacy, Finite difference WENO scheme, Saint-Venant system of shallow water, Transport
of pollutant.

1. Introduction

In this paper, we are interested in computing the transport of a passive pollutant in the
flow modeled by the Saint-Venant system, given in the one dimensional case by

{

ht + (hu)x = S

(hu)t + (hu2 + gh2

2 )x = −ghBx

(1.1)

which is introduced in [16] and regularly used as a simplified model to describe shallow water
flows. Here h is the depth, u is the velocity of water, g is the gravity constant, S is the
pollutant source term, and B(x) is the bottom topography. We are interested in locating the
exact position and the correct concentration of the pollutant which is decided by a transport
equation

(hT )t + (uhT )x = TsS (1.2)

where T is the pollutant concentration, and Ts is the concentration of the pollutant at the
source. This model is used for the computation in [3] with a finite-volume particle (FVP)
method. The FVP method is a hybrid method as a combination of two methods. For the
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shallow water equation (1.1), the finite volume method is used, and for the transport equation
(1.2), the particle method is deployed. In [3], the authors also applied filters on the FVP method
to smooth out the oscillations introduced by a combination of two different mechanisms.

The equation (1.2), which describes the transport of pollutant, is a linear equation for the
variable hT for a given velocity u, thus the solution involving the pollutant will contain a contact
discontinuity when initially hT is discontinuous. To locate the exact location and concentration
of the pollutant, we need to resolve well the contact discontinuity in the solution, which is a
difficult task as contact discontinuities, unlike shocks, are easily smeared by a shock capturing
numerical method. There have been a lot of efforts in the literature to overcome the problem of
the smearing of contact discontinuities. We refer, e.g., to [5, 6, 19] and the references therein.

Recently, Després and Lagoutière [4] proposed a new approach called limited downwind
scheme, much akin to a class of flux limiters by Sweby [17], to prevent the smearing of contact
discontinuities while keeping nonlinear stability. Their scheme is identical with the Superbee
scheme developed by Roe [11] in the case of linear advection. By introducing an anti-diffusive
flux, it gives remarkably sharp profiles of contact discontinuities in both one dimensional scalar
and system cases. More importantly, they observe numerically and prove theoretically that
their scheme adopts a class of moving traveling wave solutions exactly. This has an important
implication that the smearing of contact discontinuities will not be progressively more severe
for longer time, but will be stabilized for all time. A later paper by Bouchut [1] further modifies
this scheme to satisfy entropy conditions and also gives a simple explicit formula for this limited
downwind anti-diffusive flux.

In [18], we generalized the downwind flux correction idea to two dimensions and we de-
veloped a class of anti-diffusive high order finite difference WENO schemes to resolve contact
discontinuities for conservation law equations. By going to high order accuracy, we were able
to remove the unpleasant stairs in smooth regions when a first order anti-diffusive scheme is
used. Ample numerical results in [18] indicate that our scheme can resolve well the contact
discontinuities and at the same time maintains the stability and accuracy of regular high order
WENO schemes for shocks and smooth structures of the solution. In this paper, we would like
to further explore and apply the high order anti-diffusive finite difference WENO schemes in
[18] to solve the equations (1.1) and (1.2) as a system, with the objective of obtaining sharp
resolution of the contact discontinuities of the pollutant propagation.

High order finite difference WENO schemes in [9] were developed based on the successful
ENO schemes [7, 14, 15] and third order finite volume WENO schemes [10], and have been
quite successful in computational fluid dynamics and other applications. They are especially
suitable for problems containing both shocks and complicated smooth flow features. For more
details, we refer to the lecture notes [12] and the survey paper [13], and the references therein.

This paper is organized as follows. In Section 2 we briefly review the anti-diffusive high
order finite difference WENO schemes in [18] with improved non-smoothness indicators. In
Section 3 we apply this anti-diffusive finite difference scheme on the system (1.1) and (1.2) and
give numerical results. In Section 4 we apply the anti-diffusive finite difference scheme on two
dimensional models and show the success of the application through typical numerical tests.
Concluding remarks are given in Section 5.

2. Flux Corrections for High Order Finite Difference WENO

Schemes for Conservation Laws

In this section, we briefly review the techniques developed and applied in [18] for the con-
servation law equation

ut + f(u)x = 0 (2.1)

with the assumption f ′(u) > 0, for simplicity. The scheme for the other case f ′(u) < 0 can be
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designed symmetrically.

2.1. Flux Correction for Finite Difference WENO Schemes

We will present the high order flux correction technique in [18] by third order TVD Runge-
Kutta in time and fifth order finite difference WENO reconstruction in space. The full dis-
cretization has the following form

u(1) = un + ∆tL(un)

u(2) = un +
1

4
∆tL′(un) +

1

4
∆tL(u(1)) (2.2)

un+1 = un +
1

6
∆tL′′(un) +

1

6
∆tL(u(1)) +

2

3
∆tL(u(2))

where, on a uniform grid xi = i∆x (for simplicity of presentation), ui denotes the point value
at xi and the operator L is defined by

L(u)i = −λi

(

f̂a
i+ 1

2
− f̂a

i− 1
2

)

(2.3)

with λi = ∆t
∆xi

(for the uniform mesh case under consideration ∆xi = ∆x) and the anti-diffusive

flux f̂a given by

f̂a
i+ 1

2
= f−

i+ 1
2

+ ϕi minmod

(

ui − ui−1

λi

+ f−
i− 1

2

− f−
i+ 1

2

, f+
i+ 1

2

− f−
i+ 1

2

)

where f−
i+ 1

2

and f+
i+ 1

2

are the fifth order WENO fluxes based on left-biased upwinding and

right-biased upwinding, respectively, see [9] for details. The cost of the computation for the
anti-diffusive flux f̂a is about the same as that for a regular WENO-LF flux, again see [9].
The purpose for the introduction of the operators L′ and L′′ in (2.2) in [18] is to maintain the
moving traveling wave solutions for piecewise constant functions. The operator L′ is defined by

L
′

(u)i = −λi

(

f̄a
i+ 1

2
− f̄a

i− 1
2

)

(2.4)

with the modified anti-diffusive flux f̄a given by

f̄a
i+ 1

2
=







f−
i+ 1

2

+ ϕi minmod
(

4(ui−ui−1)
λi

+ f−
i− 1

2

− f−
i+ 1

2

, f+
i+ 1

2

− f−
i+ 1

2

)

f̂a
i+ 1

2

corresponding to cases
{

b c > 0, |b| < |c|
otherwise

respectively. The operator L′′ is defined by

L′′(u)i = −λi

(

f̃a
i+ 1

2
− f̃a

i− 1
2

)

(2.5)

with the modified anti-diffusive flux f̃a given by

f̃a
i+ 1

2
=







f−
i+ 1

2

+ ϕi minmod
(

6(ui−ui−1)
λi

+ f−
i− 1

2

− f−
i+ 1

2

, f+
i+ 1

2

− f−
i+ 1

2

)

f̂a
i+ 1

2
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corresponding to cases
{

b c > 0, |b| < |c|
otherwise

respectively. Here b, c are defined as b = ui−ui−1

λi

+ f−
i− 1

2

− f−
i+ 1

2

, c = f+
i+ 1

2

− f−
i+ 1

2

and ϕi is a

discontinuity indicator between 0 and 1. Ideally, ϕi should be close to 0 in smooth regions and
close to 1 near a discontinuity. We refer to [18] for our original choice of ϕi and we describe
a somewhat improved choice in Section 2.2. We remark that the scheme (2.2), with L, L′

and L′′ defined by (2.3), (2.4) and (2.5) respectively, is fifth order accurate in space and third
order accurate in time. The correction to the original WENO is no larger in magnitude than
that of f+

i+ 1
2

− f−
i+ 1

2

, which is on the level of truncation errors for the WENO schemes because

both f+
i+ 1

2

and f−
i+ 1

2

are high order approximations to the same flux at the same location. This

ensures that the high order accuracy of the finite difference WENO schemes is maintained. The
purpose of the extra factor 4 in the first argument of the minmod function in the definition
of f̄a and the extra factor 6 in the first argument of the minmod function in the definition of
f̃a is to compensate for the coefficients 1

4 and 1
6 in front of L′ and L′′ respectively, so that

the final scheme could still maintain exactly traveling wave solutions of a piecewise constant
function. We refer to [18] for more details and numerical experiments for this anti-diffusive
flux-corrected WENO scheme, and to [9] for the details of the fifth order finite difference
WENO reconstruction. For the WENO-Roe scheme in [9], the numerical flux is chosen as
f−

i+ 1
2

when f ′(u) > 0 and as f+
i+ 1

2

when f ′(u) ≤ 0. Therefore, the anti-diffusive flux-corrected

WENO scheme is a flux correction to the WENO-Roe scheme. Because WENO-Roe scheme
may violate entropy conditions without an entropy correction, we only apply the anti-diffusive
flux-correction on linear problems or for linearly degenerate fields in systems.

2.2. The Discontinuity Indicator

The discontinuity indicator ϕi was designed in [18] such that it is close to 0 in smooth
regions and close to 1 near a discontinuity. Out of consideration for symmetry and somewhat
better numerical performance, we improve the definition of ϕi to the following form:

ϕi =
βi

βi + γi

(2.6)

where

αi = |ui−1−ui|2+ε, ξi = |ui−1−ui+1|2+ε, βi =
ξi

αi−1
+

ξi

αi+2
, γi =

|umax − umin|2
αi

.

(2.7)
Here ε is a small positive number taken as 10−6 in our numerical experiments, and umax and
umin are the maximum and minimum values of uj for all cells. Clearly, 0 ≤ ϕi ≤ 1, and
ϕi = O(∆x2) in smooth regions. Near a strong discontinuity, γi ≪ βi, ϕi is close to 1.

2.3. Flux Corrections for the Finite Difference WENO Schemes in Two Dimen-

sions

Two dimensional finite difference WENO schemes are similar to the schemes for one di-
mension, with reconstruction computed in each direction. Thus, after reconstruction of f−

i+ 1
2 ,j

,

f+
i+ 1

2 ,j
, f−

i,j+ 1
2

, f+
i,j+ 1

2

at interfaces between cells from given point values fi,j , for the equation

ut + f(u)x + g(u)y = 0, f ′ > 0, g′ > 0, (2.8)



Anti-diffusive Finite Difference WENO Methods for Shallow Water with Transport of Pollutant 243

we present the anti-diffusive flux by

f̂a
i+ 1

2 ,j
= f−

i+ 1
2 ,j

+ ϕi,j minmod

(

ui,j − ui−1,j

d λx
i,j

+ f−
i− 1

2 ,j
− f−

i+ 1
2 ,j
, f+

i+ 1
2 ,j

− f−
i+ 1

2 ,j

)

where d = 2 is the dimension. For fixed j, ϕi,j has the same definition as in Section 2.2 in one
dimension. Symmetrically, in the y direction, we have

ĝa
i,j+ 1

2
= g−

i,j+ 1
2

+ ψi,j minmod

(

ui,j − ui,j−1

d λ
y
i,j

+ g−
i,j− 1

2

− g−
i,j+ 1

2

, g+
i,j+ 1

2

− g−
i,j+ 1

2

)

with the discontinuity indicator ψi,j defined similarly to the one dimensional case in Section
2.2 in the y direction with fixed xi.

We use the third order TVD Runge-Kutta method for the time discretization. Two dimen-
sional systems are treated dimension by dimension, with anti-diffusive flux in each dimension
defined as above.

3. Computation of Saint-Venant Equations with Transport of

Pollutant in One Dimension

In this section, we apply the algorithm described in the last section to the combined system











ht + (hu)x = S,

(hu)t + (hu2 + gh2

2 )x = −ghBx

(hT )t + (uhT )x = TsS.

(3.1)

3.1. Characteristic Decomposition

A brief computation of (3.1) gives the following Jacobian

J =





0 1 0
gh− u2 2u 0
−uT T u



 .

The three eigenvalues of this Jacobian are λ(1) = u −
√
gh, λ(2) = u+

√
gh and λ(3) = u. The

matrices composed of the three corresponding right and left eigenvectors are

R =





1 1 0
u−√

gh u+
√
gh 0

T T 1





and

L =







(u+
√
gh) 0.5√

gh
− 0.5√

gh
0

(
√
gh− u) 0.5√

gh

0.5√
gh

0

−T 0 1







respectively. We can easily check that ∂λ(3)

∂u
·R(3) = 0. Here u = (h, hu, hT ) and R(3) is the right

eigenvector corresponding to λ(3). Thus the third characteristic field is a linearly degenerate
filed. We refer to [12] for the details of the procedure for the characteristic decomposition
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Figure 3.1: Example 3.2.1. 200 uniform mesh points. t = 4, CFL = 0.3. Solid lines: reference
solution computed by the regular fifth order WENO scheme with 2000 mesh points; filled
rectangles: numerical solution. Left: regular fifth order WENO; Right: anti-diffusive fifth
order WENO.

with the fifth order finite difference WENO reconstruction. In the first and second genuinely
nonlinear fields, we use the Lax-Friedrichs flux splitting, and in the third field, which is a
linearly degenerate field, we apply the anti-diffusive flux.

3.2. Numerical Tests

In this subsection, we perform numerical experiment on two examples which are used in [3].

Example 3.2.1. Advection of pollutant. The setup is as follows: h(x, 0) + B(x) = 1.0,
h(x, 0)u(x, 0) = −0.1, g = 1, S = 0, and the bottom topography is described by

B(x) =

{

0.25(cos(10π(x− 0.5)) + 1), 0.4 ≤ x ≤ 0.6

0, otherwise
(3.2)

The initial pollutant concentration is

T (x, 0) =

{

1, 0.4 ≤ x ≤ 0.5

0, otherwise
(3.3)

The computational domain is [0, 1] and this problem is run to t = 4. The numerical result in
Figure 3.1 shows excellent resolution of the location and concentration of the pollutant by our
anti-diffusive scheme.

Example 3.2.2. Dam Break. The initial condition is

(h, u, T ) =

{

(1.0, 0, 0.7), x < 0

(0.5, 0, 0.5), otherwise
(3.4)

with the gravitational constant g = 9.8, S = 0. The computational domain is [−1, 1] and the
scheme is run to t = 0.24. Again we observe sharp resolution of the location and concentration
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Figure 3.2: Example 3.2.2. 200 uniform mesh. t = 0.24, CFL = 0.3. Solid lines: reference
solution computed by the regular fifth order WENO scheme with 2000 mesh points; filled
rectangles: numerical solution. Left: regular fifth order WENO; Right: anti-diffusive fifth
order WENO.

of the pollutant in Figure 3.2. Numerical results can be compared to those in [3] (module a
scale by a factor of 1000).

4. Computation of the Saint-Venant Equations with Transport of

Pollutant in Two Dimensions

In this section, we apply the algorithm to the two dimensional system






















ht + (hu)x + (hv)y = S,

(hu)t + (hu2 + gh2

2 )x + (huv)y = −ghBx

(hv)t + (huv)x + (hv2 + gh2

2 )y = −ghBy

(hT )t + (uhT )x + (vhT )y = TsS.

(4.1)

4.1. Characteristic Decomposition

A brief computation of (4.1) gives the following Jacobians

Jx =









0 1 0 0
gh− u2 2u 0 0
−uv v u 0
−uT T 0 u









and

Jy =









0 0 1 0
−uv v u 0

gh− v2 0 2v 0
−vT 0 T v









in the x and y directions respectively.
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The four eigenvalues of the Jacobian Jx are

λ(1) = u−
√

gh, λ(2) = u+
√

gh, λ(3) = u, λ(4) = u.

The matrices composed of the four corresponding right and left eigenvectors are

Rx =









1 1 0 0
u−√

gh u+
√
gh 0 0

v v 1 0
T T 0 1









and

Lx =









(u +
√
gh) 0.5√

gh
− 0.5√

gh
0 0

(
√
gh− u) 0.5√

gh
0.5√
gh

0 0

−v 0 1 0
−T 0 0 1









We can check easily that ∂λ(i)

∂u
· R(i) = 0 for i = 3, 4. Here u = (h, hu, hv, hT ) and R(i) is the

right eigenvector corresponding to λ(i). Thus the third and the fourth characteristic fields are
linearly degenerate fields and we will use the anti-diffusive fluxes on these fields.

Similar computation in the y direction gives the following eigenvalues for the Jacobian Jy

λ(1) = v −
√

gh, λ(2) = v +
√

gh, λ(3) = v, λ(4) = v.

The matrices composed of the four corresponding right and left eigenvectors are

Ry =









1 1 0 0
u u 1 0

v −√
gh v +

√
gh 0 0

T T 0 1









and

Ly =









(v +
√
gh) 0.5√

gh
0 − 0.5√

gh
0

(
√
gh− v) 0.5√

gh
0 0.5√

gh
0

−u 1 0 0
−T 0 0 1









Once again we can check that ∂λ(i)

∂u
· R(i) = 0 for i = 3, 4. Thus the third and the fourth

characteristic fields are linearly degenerate fields and we will use the anti-diffusive fluxes on
these fields.

4.2. Numerical Tests

In this subsection, we perform numerical experiments using the anti-diffusive high order
WENO schemes on the shallow water models involving the transport of pollutant in two di-
mensions.
Example 4.2.1. Partial dam break. This test case concerns a partial failure of a dam in
a 200 × 200 m2 basin. This problem has been computed by many authors (e.g. [2] and the
references therein). We scale this problem by 100 and the setup is as follows: h(x, y, 0) = 1.0,
b(x, y) = 0, u(x, y, 0) = v(x, y, 0) = 0, T (x, y, 0) = 0.7 when x < 1.0; h(x, y, 0) = 0.3, b(x, y) =
0, u(x, y, 0) = v(x, y, 0) = 0, T (x, y, 0) = 0.2 when x ≥ 1.0; g = 9.8, S = 0. The computational
domain is [0, 2]× [0, 2] and the break is located at x = 1.0, between y = 0.7 and y = 1.3. We run
the computation on this problem to t = 0.2 with CFL = 0.3. The numerical results in Figures
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Figure 4.1: Example 4.2.1. 120 × 120 uniform mesh. From top to bottom: surfaces of h, hT
and T . Left: regular fifth order WENO; Right: anti-diffusive fifth order WENO.
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Figure 4.2: Example 4.2.1. 120 × 120 uniform mesh. Contours of T . Left: regular fifth order
WENO; Right: anti-diffusive fifth order WENO.

Figure 4.3: Example 4.2.2. Topography of the river bed. Red is the obstacle.

4.1 and 4.2 indicate excellent resolution of the location and concentration of the pollutant by
our anti-diffusive scheme.

Example 4.2.2. River with obstacles. This is another test computed in [2], which is
originally a test case in the code TELEMAC developed at EDF [8]. It is a river with obstacles
in it. A simplified and scaled version of this problem we are computing here has the following
setup: the computation domain is (x, y) ∈ [0, 3] × [0, 1] with a bottom topography

b(x, y) =











0.4, 0.75 < x < 0.95, 0 ≤ y ≤ 0.6

0.4, 1.65 < x < 1.85, 0.6 < y < 0.8

−0.2 cos(π(y − 0.5)), otherwise

(4.2)

which is depicted in Figure 4.3; the gravitational constant g = 1.0, S = 0, u(x, y, 0) = 0.5,
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Figure 4.4: Example 4.2.2. 300× 100 uniform mesh. Contours of T . Top: the initial pollutant;
Second: pollutant obtained by the regular fifth order WENO; Third: pollutant obtained by the
anti-diffusive fifth order WENO; Bottom: reference solution obtained by 1500 × 500 uniform
mesh with regular fifth order WENO.
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v(x, y, 0) = 0; the initial pollutant is given as

T (x, y, 0) =

{

0.5, 0.35 < x < 0.55, 0.6 ≤ y ≤ 0.8

0, otherwise
(4.3)

and the scheme is run to t = 2.0. Again we observe sharp resolution of the location and
concentration of the pollutant by our anti-diffusive scheme in Figure 4.4. Comparing with the
reference solution at the bottom of Figure 4.4, which is computed with the regular WENO
scheme with an extremely refined mesh and can be considered as an exact solution, the quality
of the anti-diffusive WENO scheme is much better than that of the regular WENO scheme on
the relatively coarse mesh with 300 × 100 points.

5. Concluding Remarks

The anti-diffusive flux corrections for high order finite difference scheme we explored in
[18] is applied to the Saint-Venant shallow water model with transport of pollutant by a flow
both in one dimension and two dimensions. We achieve high resolution of the location and
concentration of the pollutant.
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