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Abstract

In this paper we consider mixed finite element methods for second order elliptic prob-
lems. In the case of the lowest order Brezzi-Douglas-Marini elements (if d = 2) or Brezzi-
Douglas-Durán-Fortin elements (if d = 3) on rectangular parallelepipeds, we show that
the mixed method system, by incorporating certain quadrature rules, can be written as a
simple, cell-centered finite difference method. This leads to the solution of a sparse, pos-
itive semidefinite linear system for the scalar unknown. For a diagonal tensor coefficient,
the sparsity pattern for the scalar unknown is a five point stencil if d = 2, and seven if
d = 3. For a general tensor coefficient, it is a nine point stencil, and nineteen, respectively.
Applications of the mixed method implementation as finite differences to nonisothermal
multiphase, multicomponent flow in porous media are presented.
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Key words: Finite difference, Implementation, Mixed method, Error estimates, Super-
convergence, Tensor coefficient, Nonisothermal multiphase, Multicomponent flow, Porous
media.

1. Introduction

We consider mixed finite element approximations of the model elliptic problem

−∇ · (K∇p) = f in Ω,

K∇p · ν = 0 on ∂Ω,
(1.1)

where Ω is a domain in IRd, d = 2 or 3, K is a symmetric, positive definite tensor with
components in L∞(Ω), ν is the outer unit normal to the domain, and f satisfies the compatibility
condition (f, 1) = 0 (let ( · , · )S denote the L2(S) inner product; we omit S if S = Ω). In
applications to flow in porous media, p is the pressure, u = −K∇p is the velocity field, and K
is the permeability tensor.

∗ Received March 1, 2006.
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Problem (1.1) is recast in mixed form as follows: Let

H(div; Ω) =
{

v ∈
(

L2(Ω)
)d

: ∇ · v ∈ L2(Ω)
}

,

V = {v ∈ H(div; Ω) : v · ν = 0 on ∂Ω},
W = L2(Ω).

Then the mixed form of (1.1) for the pair (u, p) ∈ V × W is

(∇ · u, q) = (f, q), ∀q ∈ W,

(K−1u, v) − (p,∇ · v) = 0, ∀v ∈ V.
(1.2)

To define a finite element method, we need a partition Eh of Ω into elements E, say, simplexes,
rectangular parallelepipeds, and/or prisms, where adjacent elements completely share their
common edge or face. Let Vh ×Wh ⊂ V ×W denote some standard mixed finite element space
for second order elliptic problems defined over Eh (see, e.g., [5, 6, 7, 13, 16, 18]). Then the
mixed finite element solution of (1.2) is (uh, ph) ∈ Vh × Wh satisfying

(∇ · uh, q) = (f, q), ∀q ∈ Wh,

(K−1uh, v) − (ph,∇ · v) = 0, ∀v ∈ Vh.
(1.3)

The mixed method (1.3) requires the solution of a linear system in the form of a saddle point
problem, which can be expensive to solve. An alternate approach was suggested by means of a
nonmixed formulation. Namely, it is shown that the mixed finite element method is equivalent
to a modification of the nonconforming Galerkin method [1, 3, 8, 12, 15]. The nonconforming
method yields a symmetric and positive definite problem (i.e., a minimization problem). In the
case that K is a diagonal tensor and one uses the lowest order Raviart-Thomas-Nédélec [16, 18]
spaces over a rectangular grid, it is shown [19] that the linear system arising from the mixed
formulation can be simplified by use of certain quadrature rules. That is, the mixed method
system can be written as a cell-centered finite difference method.

An analogous simplification of the mixed method system as a finite difference method for
another widely used space, the lowest order Brezzi-Douglas-Marini space [7] if d = 2 or the
lowest order Brezzi-Douglas-Durán-Fortin [5] space if d = 3 has not been known. The objec-
tive of this paper is to derive a finite difference method for this space, without any loss in the
rate of convergence, and retaining the superconvergence result. In particular, we show that
for a diagonal tensor coefficient, the lowest order Brezzi-Douglas-Marini mixed method can be
written as a cell-centered finite difference method with a five point stencil, and the Brezzi-
Douglas-Durán-Fortin method can be given with a nine point stencil. For a general tensor coef-
ficient, these two methods can be written with a nine point stencil, and nineteen, respectively.
Our approach illuminates a relationship between the lowest order Raviart-Thomas-Nédélec and
Brezzi-Douglas-Marini (or Brezzi-Douglas-Durán-Fortin) spaces; i.e., they can be written as the
same finite difference method for the pressure by an appropriate use of quadrature rules.

The rest of the paper is organized as follows. In §2, we rewrite (1.2) using numerical quadra-
ture rules for the evaluation of the integrals on each element E ∈ Eh, and prove solvability. Then,
in §3 we derive the finite difference method for the Brezzi-Douglas-Marini and Brezzi-Douglas-
Durán-Fortin spaces. In §4, we mention some convergence and superconvergence results. In
§5, we address another difficulty that the permeability K can be in practice zero in a subset of
Ω. We consider an expanded mixed formulation in the sense that three variables are explicitly
treated, i.e., the pressure, the velocity field, and the flux field. This new formulation can handle
the difficulty arising from the zero permeability [2, 9, 10, 11]. Finally, applications of the mixed
method implementation as finite differences to nonisothermal multiphase, multicomponent flow
in porous media are presented.
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2. The Mixed Finite Element Method

The space Vh × Wh is finite dimensional and defined locally on each element E ∈ Eh, so let
Vh(E) = Vh|E and Wh(E) = Wh|E . The constraint Vh ⊂ V says that the normal components
of the members of Vh are continuous across the interior boundaries in Eh. Recall that the lowest
order Brezzi-Douglas-Marini space on rectangles is defined as

Vh(E) =
(

P1(E)
)2 ⊕ span

{

curl x2y, curlxy2
}

,

Wh(E) = P0(R).

The Brezzi-Douglas-Durán-Fortin space on rectangular parallelepipeds is given by

Vh(E) =
(

P1(E)
)3 ⊕ span

{

curl(0, 0, x2y), curl(0, xz2, 0), curl(y2z, 0, 0),

curl(0, 0, xy2), curl(0, x2z, 0), curl(yz2, 0, 0)
}

,

Wh(E) = P0(E).

We express approximately uh in terms of ph from the second equation of (1.3); then the first
equation of (1.3) gives an equation for the pressure ph. For this, we use numerical quadrature
rules for the evaluation of the integrals in (1.3) on each element E ∈ Eh. Throughout this paper,
(·, ·)T represents an application of the midpoint rule. For the two-dimensional case, (·, ·)M

denotes the numerical formula of an integral by applying the two-point Gaussian quadrature rule
for the x-component over the vertical edges and for the y-component over the horizontal edges;
for the three-dimensional case, we compute an integral by applying the four-point Gaussian
quadrature rule for each component over its corresponding face. For a subdomain S of Ω,
we use the corresponding notation (u, v)S,T and (u, v)S,M . This choice of quadrature rules is
compatible with the nodal basis functions for Vh. This technique is sometimes called a lumped
mass approximation.

We now introduce the modified method for (uh, ph) ∈ Vh × Wh satisfying

(∇ · uh, q) = (f, q)T , ∀q ∈ Wh,

(K−1uh, v)M − (ph,∇ · v) = 0, ∀v ∈ Vh.
(2.1)

Lemma 1. The system (2.1) has a unique solution.

Proof. Since (2.1) is a finite dimensional, square, linear system, existence follows from
uniqueness. To show uniqueness, let f = 0, q = ph, and v = uh. Then the two equations in
(2.1) imply that

(K−1uh, uh)M = 0.

Since K is symmetric and positive definite, this equation means that uh vanishes at the two
Gaussian points of the edges of each element. Hence uh = 0 everywhere. Since ∇ · Vh = Wh,
the second equation of (2.1) implies that ph = 0.

3. Derivation of the Finite Difference Method

We present the derivation only for the case where d = 2 and K =diag(K1, K2) is diagonal;
the derivation for the three dimensional and full tensor cases is the same. Let Eh ≡ {xi+1/2}nx

i=0
×
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{yj+1/2}ny

j=0
be a partition of Ω and define

xi =
1

2
(xi+1/2 + xi−1/2), i = 1, . . . , nx,

yj =
1

2
(yj+1/2 + yj−1/2), j = 1, . . . , ny,

∆xi = xi+1/2 − xi−1/2,

∆yj = yj+1/2 − yj−1/2,

Ix
i = (xi−1/2, xi+1/2),

Iy
j = (yj−1/2, yj+1/2).

For any function g(x, y), let gi,j denote g(xi, yj), let gi+1/2,j denote g(xi+1/2, yj), and let gi,j+1/2

denote g(xi, yj+1/2).
From the definition of Vh(E) with E = Ix

i × Iy
j , any element in Vh(E) has the form

v = (a + bx + cy + rx2 + 2sxy, a1 + b1x + c1y − 2rxy − sy2), (3.1)

where a ∈ IR, etc. Choose q = 1 on E and equal to zero elsewhere in the first equation of (2.1)
to obtain

(∇ · uh, 1)E = (f, 1)E,T .

Then, by (3.1), we have
{

ux
i+1/2,j − ux

i−1/2,j

}

∆yj +
{

uy
i,j+1/2

− uy
i,j−1/2

}

∆xi = fi,j∆xi∆yj , (3.2)

where we used ux to denote ux
h, etc. To express uh in terms of ph from the second equation

of (2.1), we now write the basis functions in Vh. To specify the constants in (3.1), we use the
normal components of v at the two quadratic Gauss points on each edge of E. Then the basis

function vi+1/2,j+ at the nodal point (xi+1/2, yj +
∆yj

2
√

3
) is

vi+1/2,j+ = (a + bx + cy + 2sxy, a1 + c1y − sy2), (3.3)

where, restricted to Ix
i × Iy

j ,

a = 2s
(

yj −
∆yj

2
√

3

)

xi−1/2,

b = −2s
(

yj −
∆yj

2
√

3

)

,

c = −2sxi−1/2,

a1 = −syj−1/2yj+1/2,

c1 = 2syj,

s =

√
3

2∆xi∆yj
,

(3.4)

restricted to Ix
i+1 × Iy

j ,

a = 2s
(

yj −
∆yj

2
√

3

)

xi+3/2,

b = −2s
(

yj −
∆yj

2
√

3

)

,

c = −2sxi+3/2,

a1 = −syj−1/2yj+1/2,

c1 = 2syj,

s = −
√

3

2∆xi+1∆yj
,

(3.5)
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and they are zero elsewhere.
Note that, by (3.4) and (3.5),

(

ph,
∂vx

i+1/2,j+

∂x

)

= (ph, b + 2sy)Ix
i
×Iy

j
+ (ph, b + 2sy)Ix

i+1
×Iy

j

=
1

2
(pi,j − pi+1,j)∆yj ,

(3.6a)

and
(

ph,
∂vy

i+1/2,j+

∂y

)

= (ph, c1 − 2sy)Ix
i
×Iy

j
+ (ph, c1 − 2sy)Ix

i+1
×Iy

j
= 0. (3.6b)

Next, exploit the same argument to see that

(K−1

1 ux, vx
i+1/2,j+ )M =

1

2
∆yj(K

−1

1 )i+1/2,j+ux
i+1/2,j+

∆xi + ∆xi+1

2
, (3.7a)

and

(K−1

2 uy, vy
i+1/2,j+)M = 0. (3.7b)

Hence it follows from the second equation of (2.1), (3.6), and (3.7) that

ux
i+1/2,j+ = −(K1)i+1/2,j+

pi+1,j − pi,j

∆xi+1/2

, (3.8)

where ∆xi+1/2 = (∆xi + ∆xi+1)/2. Analogously, we see that

ux
i+1/2,j− = −(K1)i+1/2,j−

pi+1,j − pi,j

∆xi+1/2

, (3.9)

where ux
i+1/2,j− denotes the value of ux at the point (xi+1/2, yj −

∆yj

2
√

3
). Since

ux
i+1/2,j =

1

2

(

ux
i+1/2,j+ + ux

i+1/2,j−

)

,

we get

ux
i+1/2,j = −(K1)i+1/2,j

pi+1,j − pi,j

∆xi+1/2

, (3.10)

where (K1)i+1/2,j = ((K1)i+1/2,j+ + (K1)i+1/2,j− )/2. The same argument can be used to show
that

uy
i,j+1/2

= −(K2)i,j+1/2

pi,j+1 − pi,j

∆yj+1/2

. (3.11)

Finally, the boundary conditions also agree. Because of the artifice

(K1)1/2,j = (K1)nx+1/2,j = (K2)i,1/2 = (K2)i,ny+1/2 = 0

in the cell-centered method, (3.10) and (3.11) imply that uh · ν = 0, which is the condition
imposed in the space Vh in the mixed method.

The above results in (3.2), (3.10), and (3.11) can be summarized as follows.
Theorem 2. The mixed method (2.1) can be written as the following cell-centered method:

− 1

∆xi

(

(K1)i+1/2,j
pi+1,j − pi,j

∆xi+1/2

− (K1)i−1/2,j
pi,j − pi−1,j

∆xi−1/2

)

− 1

∆yj

(

(K2)i,j+1/2

pi,j+1 − pi,j

∆yj+1/2

− (K2)i,j−1/2

pi,j − pi,j−1

∆yj−1/2

)

= fij , i = 1, . . . , nx, j = 1, . . . , ny.
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4. Convergence and Superconvergence Results

Since the cell-centered finite difference methods arising from the Brezzi-Douglas-Marini
(or Brezzi-Douglas-Durán-Fortin) and Raviart-Thomas-Nédélec mixed methods have the same
form, the convergence and superconvergence results obtained for the latter method in [20] are
also valid for the former method. Before stating the results, we need the following definition
[2]. An asymptotic family of grids is said to be generated by a C2-map if each grid is an image
by a fixed map of a grid that is uniform in each coordinate direction. Let || · || denote the
L2(Ω)-norm, and || · ||M be the norm induced by the inner product (·, ·)M . Let Ph be the
L2-projection onto Wh, and set h = maxij{∆xi, ∆yj}.
Theorem 3. There is a constant C, independent of h, such that

||∇ · (u − uh)|| ≤ Ch,

and, if p ∈ C3,1(Ω), u ∈
(

C1(Ω) ∩ W 2,∞(Ω)
)d

, and K ∈
(

C1(Ω) ∩ W 2,∞(Ω)
)d×d

, then

||Php − ph|| ≤ Ch2,

||u − uh||TM ≤ Chα,
(4.1)

where α = 2 if the grids are generated by a C2-map or K is diagonal, and α = 1 otherwise.
The result (4.1) implies superconvergence for the computed pressure at the Gauss points

(i.e., the centers of the elements).

5. An Expanded Mixed Formulation

We now consider the case where the permeability K can be zero in a subdomain of Ω. The
standard mixed formulation (1.2) requires inverting K, an impossibility in this degenerate case.
Following [9, 10, 11], we consider the following expanded mixed formulation for (1.1): Find
(u, ũ, p) ∈ V × L2(Ω) × W such that

(∇ · u, q) = (f, q), ∀q ∈ W,

(ũ, v) − (p,∇ · v) = 0, ∀v ∈ V,

(u, ṽ) − (Kũ, ṽ) = 0, ∀v ∈ L2(Ω).

(5.1)

Corresponding to (2.1), the mixed finite element approximation of (5.1) is defined as follows:
Find (uh, ũh, ph) ∈ Vh × Vh × Wh such that

(∇ · uh, q) = (f, q)T , ∀q ∈ Wh,

(ũh, v)M − (ph,∇ · v) = 0, ∀v ∈ Vh,

(uh, ṽ)M − (Kũh, ṽ)M = 0, ∀v ∈ Vh,

(5.2)

where Vh × Wh is defined as before. Solvability of (5.2) can be shown as in Lemma 1.
From the second equation of (5.2), we express ũh in terms of ph as in (3.10) and (3.11). This

corresponds to a finite difference approximation of the equation ũ = −∇p. Then, from the third
equation of (5.2), we express uh in terms of ũh. This gives a finite difference approximation for
the equation u = Kũ. Finally, substitute the second and third equations of (5.2) into the first
equation of (5.1) to obtain a finite difference stencil for the pressure, which has the same form
as in Theorem 2. Also, the error estimates in Theorem 3 hold for the expanded mixed finite
element method [2].

6. Applications to Nonisothermal Multiphase Flow

The basic equations for nonisothermal multiphase, multicomponent flow and transport in
a porous medium Ω involve mass conservation, Darcy’s laws, energy conservation, and mole
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fraction, saturation, and capillary pressure constraint equations. These equations are based
on the displacement mechanisms of thermal methods: (a) reduction of crude viscosity with
increasing temperature, (b) change of relative permeabilities for greater oil displacement, (c)
vaporization of connate water and of portion of crudes for a miscible displacement of light
components, and (d) high temperatures of fluids and rock to maintain high reservoir pressure.
They can model the important physical factors and processes:

• viscosity, gravity, and capillary forces,

• heat conduction and convection processes,

• heat losses to overburden and underburden of a reservoir,

• mass transfer between phases,

• effects of temperature on physical property parameters of oil, gas, and water,

• rock compression and expansion.

We assume that the chemical components form at most three phases (e.g., water, oil, and
gas), there are Nc chemical components that may exist in all three phases, and the diffusive
effects are neglected.

Let φ and k denote the porosity and permeability of the porous medium Ω ⊂ IR3, and
Sα, µα, pα, uα, and krα be the saturation, viscosity, pressure, volumetric velocity, and relative
permeability of the α phase, α = w, o, g, respectively. Also, let ξiα represent the molar density
of component i in the α phase, i = 1, 2, . . . , Nc, α = w, o, g. The molar density of phase α is
given by

ξα =

Nc
∑

i=1

ξiα, α = w, o, g. (6.1)

The mole fraction of component i in phase α is then defined by

xiα = ξiα/ξα, 1, 2, . . . , Nc, α = w, o, g. (6.2)

The total mass is conserved for each component [14]:

∂

∂t

g
∑

α=w

xiαξαSα + ∇ ·
g
∑

α=w

xiαξαuα

=

g
∑

α=w

xiαqα, i = 1, . . . , Nc,

(6.3)

where qα stands for the flow rate of phase α at wells. In equation (6.3), the volumetric velocity
uα is given by Darcy’s law:

uα = −krα

µα
k (∇pα − ρα℘∇z) , α = w, o, g, (6.4)

where ρα is the mass density of the α-phase, ℘ is the magnitude of the gravitational acceleration,
and z is the depth. The energy conservation equation takes the form

∂

∂t

(

φ

g
∑

α=w

ραSαUα + (1 − φ)ρsCsT

)

+∇ ·
g
∑

α=w

ραuαHα −∇ · (kT∇T ) = qc − qL,

(6.5)
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reservoir

underburden

overburden

Fig. 1. Reservoir, overburden, and underburden.

where T is temperature, Uα and Hα are the specific internal energy and enthalpy of the α-
phase (per unit mass), ρs and Cs are the density and the specific heat capacity of the solid, kT

represents the total thermal conductivity, qc denotes the heat source item, and qL indicates the
heat loss to overburden and underburden. In (6.5), the specific internal energy Uα and enthalpy
Hα of phase α can be computed as follows:

Uα = CV αT, Hα = CpαT,

where CV α and Cpα represent the heat capacities of phase α at constant volume and pressure,
respectively.

In addition to the differential equations (6.3)–(6.5), there are also algebraic constraints. The
mole fraction balance implies

Nc
∑

i=1

xiα = 1, α = w, o, g. (6.6)

In the transport process, the saturation constraint reads

Sw + So + Sg = 1. (6.7)

Finally, the phase pressures are related by capillary pressures

pcow = po − pw, pcgo = pg − po. (6.8)

The equilibrium relations describing the distribution of hydrocarbon components into the phases
are given by

fiw(pw, T, x1w, x2w, . . . , xNcw) = fio(po, T, x1o, x2o, . . . , xNco),

fio(po, T, x1o, x2o, . . . , xNco) = fig(pg, T, x1g, x2g, . . . , xNcg),
(6.9)

where fiα is the fugacity function of the ith component in the α phase, i = 1, 2, . . . , Nc,
α = w, o, g.

In thermal methods, heat is lost to the adjacent strata of a reservoir or the overburden and
underburden, which is included in qL of (6.5). We assume that the overburden and underburden
extend to infinity along both the positive and negative x3-axis (the vertical direction); see
Fig. 1. If the overburden and underburden are impermeable, heat is entirely transferred through
conduction. With all fluid velocities and convective fluxes being zero, the energy conservation
equation (6.5) reduces to

∂

∂t
(ρobCp,obTob) = ∇ · (kob∇Tob), (6.10)

where the subscript ob indicates that the variables are associated with the overburden and Cp,ob

is the heat capacity at constant pressure. The initial condition is the original temperature Tob,0

of the overburden:
Tob(x, 0) = Tob,0(x).
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The boundary condition at x3 = 0 (the top of the reservoir) is

Tob(x1, x2, 0, t) = T (x1, x2, 0, t).

At infinity, Tob is fixed:
Tob(x1, x2,∞, t) = T∞.

On other boundaries, we can use the impervious boundary condition

kob∇Tob · ν = 0,

where ν represents the outward unit normal to these boundaries. Now, the rate of heat loss to
the overburden can be calculated by kob∇Tob · ν, where ν is the unit normal to the interface
between the overburden and reservoir (pointing to the overburden). For the underburden, the
heat conduction equation is given by

∂

∂t
(ρubCp,ubTub) = ∇ · (kub∇Tub), (6.11)

and similar initial and boundary conditions can be developed as for the overburden.
Equations (6.3)–(6.9) provide 3Nc+10 independent relations, differential or algebraic, for the

3Nc +10 dependent variables: xiα, uα, pα, T , and Sα, α = w, o, g, i = 1, 2, . . . , Nc. If equations
(6.10) and (6.11) are included, two more unknowns Tob and Tub are added. With proper initial
and boundary conditions, there is a closed differential system for these unknowns. The mixed
finite element methods implemented as finite differences are applied for the discretization of the
governing equations. In time, a fully implicit scheme is exploited.

7. Numerical Experiments

The experimental problems are chosen from the benchmark problems of the fourth CSP [4].
Six companies participated in that comparison project. Two related steam injection problems
were numerically studied. The first problem deals with cyclic steam injection in a non-distillable
petroleum reservoir with two-dimensional radial cross-sectional grids, and the second problem
deals with non-distillable oil displacement by steam in an inverted nine-spot pattern by consid-
ering one-eighth of the full pattern (see Fig. 2). Standard conditions for these problems are 14.7
psia and 60◦F. The problems were chosen to exercise features of the models that are important
in practical applications, though they may not represent a real field analysis.

Table 1. Rock properties.

kh starting with the top layer: 2,000, 500, 1,000, and 2,000 md
kv: 50% of kh

Porosity: 0.3 for all layers
Thermal conductivity: 24 BTU/(ft.-day-◦F)
Heat capacity: 35 BTU/(ft3 of rock-◦F)

Effective rock compressibility: 5.0E-4 psi−1

Table 2. Oil properties.

Density at standard conditions: 60.68 lb/ft3

Compressibility: 5.0E-6 psi−1

Molecular weight: 600
Thermal expansion coefficient: 3.8E-4 1/◦R
Specific heat: 0.5 BTU/(lb.-◦R)
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Injector
330ft

14.585ft

29.17ft

Near producer

Far producer

Fig. 2. Element of symmetry in an inverted nine-spot.

7.1. The First Problem

The aim is to simulate cyclic steam injection in a two-dimensional reservoir (closed system)
that has four layers. The rock properties are stated in Table 1, where kh and kv denote
the horizontal and vertical permeabilities, respectively, and the thermal conductivity and heat
capacity are for the reservoir, overburden, and underburden. Water is assumed to be pure water
with standard properties. Oil properties are listed in Table 2, and the viscosity dependence on
temperature is given in Table 3. The capillary pressures are zero. The initial conditions are
presented in Table 4, where the pressure distribution is according to the gravity head.

Table 3. Oil viscosity dependence on temperature.

Temp (◦F) 75 100 150 200 250 300 350 500
Viscosity (cp) 5,780 1,389 187 47 17.4 8.5 5.2 2.5

Table 4. Initial conditions.
Oil saturation: 0.55
Water saturation: 0.45
Reservoir temperature: 125◦F
Pressure at the center of the top layer: 75 psia

The computational grid uses a cylindrical grid with 13 grid points in the radial direction.
The well radius is 0.3 ft, and the exterior radius is 263.0 ft. The block boundaries in the radial
direction are at 0.30, 3.0, 13.0, 23.0, 33.0, 43.0, 53.0, 63.0, 73.0, 83.0, 93.0, 103.0, 143.0, and
263.0 ft, and the block boundaries in the vertical direction are at 0.0 (top of pay), 10.0, 30.0,
55.0, and 80.0 ft. The depth to the top of pay is 1,500 ft subsea.

Finally, the operating conditions are summarized as follows: All layers are open to flow
during injection and production (zero skin factor). The energy content of the injected steam
is based on 0.7 quality and 450◦F. Steam quality at bottom hole conditions is fixed at 0.7.
Three cycles are simulated: Each cycle is of 365 days with injection for 10 days followed by a
7 day soak period, and the cycle is completed with 348 days of production. Steam is injected
at capacity subject to the following conditions: The maximum bottom-hole pressure is 1,000
psia at the center of the top layer, and the maximum injection rate is 1,000 STB/day. The
production capacity is subject to the following constraints: The minimum bottom-hole pressure
is 17 psia at the center of the top layer, and the maximum production rate is 1,000 STB/day
of liquids.
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Fig. 3. Cumulative oil production (MSTB) vs. time (days).

Fig. 4. Oil production rate (STB/day).

Figs. 3 and 4 show the cumulative oil production and oil production rate, respectively.
Compared with the results presented in [4], the two quantities in Figs. 3 and 4 are close to the
respective averaged values of those provided by the six companies for the first problem.

7.2. The Second Problem

The objective is to simulate one-eighth of an inverted nine-spot pattern via symmetry. The
total pattern area is 2.5 acres. The rock and fluid properties, relative permeability data, and
initial conditions are the same as those for the first problem. The grid dimensions are 9× 5× 4
(uniform in the horizontal direction). The radius of all wells is 0.3 ft.

The operating conditions are given as follows: Injection occurs only in the bottom layer, and
production occurs from all four layers. Steam conditions are the same as in the first problem.
Steam is injected at capacity subject to the following conditions: The maximum bottom-hole
pressure is 1,000 psia at the center of the bottom layer, and the maximum injection rate is 1,000
STB/day on a full-well basis. The production capacity is subject to the following constraints:
The minimum bottom-hole pressure is 17 psia at the center of the top layer, the maximum



292 Z.X. CHEN AND X.J. YU

Fig. 5. Cumulative oil production for the full pattern (MSTB vs. days).

Fig. 6. Oil production rate for the far producer (STB/day).

production rate is 1,000 STB/day of liquids, and the maximum steam rate is 10 STB/day. The
simulation time is 10 years of injection and production.

Figs. 5–7 indicate the cumulative oil production for the full pattern, the oil production rate
for the far producer, and the oil production rate for the near producer, respectively. All well
data presented are on a full-well basis, and the pattern results are for the full pattern consisting
of four quarter (far) producers and four half (near) producers. Again, compared with the results
presented in [4], the three quantities are close to the respective averaged values of those provided
by the six companies for the second problem.
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