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Abstract

In this paper, we provide a theoretical analysis of the partition of unity finite element
method(PUFEM), which belongs to the family of meshfree methods. The usual error
analysis only shows the order of error estimate to the same as the local approximations[12].
Using standard linear finite element base functions as partition of unity and polynomials as
local approximation space, in 1-d case, we derive optimal order error estimates for PUFEM
interpolants. Our analysis show that the error estimate is of one order higher than the
local approximations. The interpolation error estimates yield optimal error estimates for
PUFEM solutions of elliptic boundary value problems.

Mathematics subject classification: 65N30, 65N15, 65N50.
Key words: Meshless methods, Partition of unity finite element method(PUFEM), Error
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1. Introduction

As a new family of numerical methods, in the last few years meshless methods came into
the focus of interest, especially in the engineering community. This is motivated by the often
encountered serious difficulties in generating meshes for problems in complex domains, or in do-
mains evolving with the problem solution. In addition, a need to have flexibility in the selection
of approximating functions (e.g., the flexibility to use non-polynomial approximating functions),
played a significant role in the development of meshless methods. A recent survey of meshless
and generalized finite element methods was given by [2] together with a comprehensive list of
references. It states the development in this new field and provides the available mathematical
theory with proofs. From its list of references, we can learn that more and more interest has
been directed towards an important subclass of methods originating from the partition of Unity
Method(PUM) of Babuška and Melenk [3]. These methods include the hp cloud method of
Oden and Duarte [5], the Generalized Finite Element Method (GFEM) of Strouboulis [14]-[16]
and the particle-partition of unity method (see [6]-[9] and [11]). Applying the partition of unity
Huang and Xu[11] proposed a conforming finite element method for overlapping nonmatching
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grids. Why is the PUFEM so popular? The most prominent reasons are that PUFEM can
include a priori knowledge about the local behavior of the solution in the finite element space
and construct finite element spaces of any desired regularity. In general, we only know that
the function u of interest is in some function space. As [1] points out, the local approximat-
ing spaces of PUFEM have many function spaces including polynomials and non-polynomial
functions to choose for the solutions to a given differential equation. These function spaces
are not unique and the choice of particular space thus depends on practical aspects ( cost of
constructing the functions, ease of evaluation of the functions, i.e. cost of construction of the
stiffness matrix; conditioning number of the resulting stiffness matrix) and theoretical aspects
(optimality of the function space). It is well known the h−, p−, and hp− versions of the finite
element method (FEM) use local polynomial approximating as shape functions. The success of
FEM is due to the fact that a smooth function can be approximated locally by polynomials and
polynomial spaces are big enough to absorb extra constraints of continuity cross interelement
boundaries without loosing the approximation properties. Therefore, for sufficiently smooth
function, polynomial space is preferable for the local approximating spaces in PUFEM. If the
usual piecewise linear hat functions are taken as a (M, C∞, CG) partition of unity and the local
approximation spaces are chosen to be spaces of polynomials, the PUFEM then can be referred
to a generalization of the h− and p − version FEM. And the PUFEM have approximation
properties very similar to the usual h− and p − version FEM [4]. Some general results on
the PUFEM are provided in [3] by using technique of Taylor expansion. Babuška and his
co-workers give main theoretical results about GFEM in [4]. Recently a posteriori estimation
for GFEM similar to that for FEM can be found in [13].

The usual error analysis only shows the order of error estimate to the same as the local
approximations[12]. Using standard linear finite element base functions as partition of unity
and polynomials as local approximation space, in 1-d case, we derive optimal order error esti-
mates for PUFEM interpolants. Our analysis will show that the error estimate is of one order
higher than the local approximations, that is, global error estimate of order p + 1 is achieved
while the local error estimates on patches is only of order p. For this purpose, we construct
a special polynomial local approximation space according to the consistence and local approx-
imation properties of PUFEM at first, and then we derive the interpolation error estimation
of PUFEM by employing the arguments in [10] and applying various techniques of Taylor ex-
pansion and theories of average polynomials interpolation. The interpolation error estimates
are used to obtain optimal order error estimates for PUFEM solutions of Neumann boundary
value problems. We will also show how to derive optimal order error estimates for PUFEM
solutions of Dirichlet boundary value problems (BVPs) in one dimension. The error estimates
we establish in this paper are in the one dimensional setting and under sufficient smoothness
assumption on the functions being approximated. Error analysis for singular problems and the
higher dimensional case will be addressed in the forthcoming papers.

The paper is organized as follows. In section 2, we provide a precise introduction of PUFEM,
emphasizing mathematical foundation behind the development of the method. A kind of special
local approximation space based on polynomials will be constructed and optimal order error
estimates for PUFEM interpolants are then established in section 3. In section 4, we discuss
error estimates for PUFEM solutions of boundary value problems.

2. Mathematical Foundation of the PUFEM

In this section, we present a method of constructing conforming subspaces of H1(Ω). We
construct finite element spaces which are subspaces of H1(Ω) as an example because of their
importance in applications. We would like to point out that the method leads to the construction
of smoother spaces (subspaces of Hk(Ω), k > 1) or subspaces of Sobolev spaces W k,p in a
straightforward manner. we introduce the main concepts and results concerning the error
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estimation of PUFEM following Babuška and Melenk [12][3].
Definition 2.1. Let Ω ⊂ R

n be a bounded open domain with boundary Γ, {Ωi} be an open
cover of Ω satisfying a pointwise overlap condition

∃M ∈ N, ∀x ∈ Ω, card{i|x ∈ Ωi} ≤ M

Let {ϕi} be a Lipschitz partition of unity subordinate to the cover {Ωi} satisfying

supp ϕi ⊂ closure(Ωi) ∀i, (2.1)
∑

i

ϕi ≡ 1 on Ω, (2.2)

‖ϕi‖L∞(Rn) ≤ C∞, (2.3)

‖∇ϕi‖L∞(Rn) ≤
CG

diamΩi

, (2.4)

where C∞, CG are two constants. Then{ϕi} is called a (M, C∞, CG) partition of unity subor-
dinate to {Ωi}. The partition of unity {ϕi} is said to be of degree m ∈ N if {ϕi} ⊂ Cm(Rn) .
The covering sets {Ωi} are called patches.
The usual piecewise linear hat functions on a regular (triangular) mesh in two dimensions,
satisfy the above conditions of a (M, C∞, CG) partition of unity ; actually, M = 3, C∞ = 1,
and condition (4) is satisfied because of the regularity of the mesh, i.e. the minimum angle
condition satisfied by the triangulation. Similarly, the classical bilinear finite element functions
on quadrilateral meshes form a (M, C∞, CG) partition of unity (M = 4, C∞ = 1).
Definition 2.2. Let {Ωi} be an open cover of Ω ⊂ R

n, and let {ϕi} be a (M, C∞, CG) partition
of unity subordinate to {Ωi}. Let Vi ⊂ H1(Ωi ∩ Ω) be given function spaces. Then we call the
space

V :=
∑

i

ϕiVi = {
∑

i

ϕivi|vi ∈ Vi} ⊂ H1(Ω) (2.5)

the PUFEM space. The PUFEM space is said to be of degree m ∈ N if V ⊂ Cm(Ω). The spaces
Vi are called local approximation spaces.

Theorem 1. Let Ω ⊂ R
n be given. Let {Ωi}, {ϕi} and Vi be as in Definitions 2.1, 2.2. Let

u ∈ H1(Ω) be the function to be approximated. Assume that the local approximation spaces Vi

have the following approximation properties: on each patch Ωi ∩Ω, u can be approximated by a
function vi ∈ Vi such that

‖u − vi‖L2(Ωi∩Ω) ≤ ε1(i),

‖∇(u − vi)‖L2(Ωi∩Ω) ≤ ε2(i).

Then the function
uap =

∑

i

ϕivi ∈ V ⊂ H1(Ω)

satisfies
‖u − uap‖L2(Ω) ≤

√
MC∞(

∑

i

ε2
1(i))

1

2 ,

‖∇(u − uap)‖L2(Ω) ≤
√

2M(
∑

i

(
CG

diamΩi

)2ε2
1(i) + C2

∞
ε2
2(i))

1

2 .

The detailed proof can be found in [12][3].
Theorem 1 shows that the global space V inherits the approximation properties of the local

spaces Vi, i.e. the function u can be approximated on Ω by functions in V as well as the
functions u|Ωi

can be approximated in the local spaces Vi. Moreover, the space V inherits the
smoothness of the partition of unity {ϕi}. In particular, the smoothness of the partition of
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unity enforces the conformity of the global space V . If the local approximation spaces Vi are
chosen to be polynomial spaces, the PUFEM have approximation properties very similar to
the usual h− and p − version FEM. In fact, if the polynomials in local approximation spaces
have fixed degree p and the approximation in Vi is realized by decreasing the size h of the
patch Ωi, the method is referred to the h − version. If the patches are fixed and the local
approximation is achieved by increasing the degree p of the polynomials, the method is referred
to the p − version. In this sense, the PUFEM can be regarded as a generalization of the h−
and p − version FEM. Then the classical FEM can be viewed as the most simply and the
most special case of PUFEM, i.e., the local approximation spaces are taken as polynomials of
degree 0. As [12] pointed out, in the h − version of the FEM, if the approximated function u

is sufficiently smooth ( in Hk, say), an appropriate interpolant uI has error estimate

‖u − uI‖H1 ≤ Ck,phmin(k−1,p)|u|Hk

where Ck,p is independent of u and h. For p=1, the order of error is 1. In the following, we
shall consider whether it is possible that the order of interpolation error can be improved by
choosing local special polynomial approximation spaces in h− version PUFEM, that is, global
error estimate of order p + 1 is achieved while the local error estimates on patches is only of
order p.

3. Interpolation Error Estimates

In this section, we will construct a PUFEM interpolant of degree p of u by a kind of special
local approximation spaces consisting of polynomials of degree p − 1 at first, then derive the
error estimates of the interpolant.

3.1. Formulation of PUFEM Interpolant

In one dimension, we assume (a, b) is the problem domain. We divide the interval (a, b) into

a = x1 < x2 < · · · < xn = b.

set hi = xi − xi−1, h = max
i

hi, ei = (xi−1, xi), i = 2, 3, · · · , n. The usual piecewise linear hat

functions in FEM are chosen to be the partition of unity functions in PUFEM. The supports of
these hat functions can then be taken as the patches Ωi in PUFEM. The local approximation
spaces consisting of the polynomials of degree p are chosen to be

Vi = span{1, x− xi, (x − xi)
2, · · · , (x − xi)

p}. (3.1)

Since the functions {ϕi} form a partition of unity, we have u = (
∑

i ϕi)u =
∑

i ϕiu and thus

(u − uI)
′ = (

∑

i

ϕi(u − vi))
′ =

∑

i

ϕi(u − vi)
′ +

∑

i

ϕ′

i(u − vi).

A direct calculation yields

‖u − uI‖1 = O(hp).

We shall provide a more precise constructive analysis to obtain the optimal interpolation error
of order p + 1. The key ingredient is to select a suitable candidate in each Vi such that

∑

ϕivi

admits higher order accuracy.

3.2. Error Estimates of PUFEM Interpolants for p = 1

We first consider the error estimates for p = 1. In this case Vi = span{1, x− xi}. To obtain
the optimal error estimates we choose

vi = u(xi) +
1

2
u′(xi)(x − xi) ∈ Vi (3.2)

and then

uI(x) =

n
∑

i=1

ϕi(x)(u(xi) +
1

2
u′(xi)(x − xi)). (3.3)
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Since on each element ei, the {ϕi} form the partition of unity and have the form

ϕi−1(x) =
xi − x

hi

, ϕi(x) =
x − xi

hi

,

then by Lagrange theorem, we have

u − uI |ei
= ϕi−1(x)(u(x) − u(xi−1) −

1

2
u′(xi−1)(x − xi−1))

+ϕi(x)(u(x) − u(xi) −
1

2
u′(xi)(x − xi))

= ϕi−1(x)

(

1

2
u′(xi−1)(x − xi−1) +

1

2
u′′(ξi)(x − xi−1)

2

)

+ϕi(x)

(

1

2
u′(xi)(x − xi) +

1

2
u′′(ηi)(x − xi)

2

)

=
(x − xi−1)(x − xi)

2hi

(u′′(ηi) − u′′(ξi))(x − xi)

+
(x − xi−1)(x − xi)

2

(

u′(xi) − u′(xi−1)

hi

− u′′(ξi)

)

=
1

2
(x − xi−1)(x − xi)

(

(θi − ξi)u
′′′(ζi) +

ηi − ξi

hi

(x − xi)u
′′′(δi)

)

(3.4)

where ξi, ηi, ζi, θi and δi belong to (xi−1, xi).
Therefore

‖u − uI‖L∞(ei) ≤ Ch3‖u′′′‖L∞(ei),

and hence we obtain the global estimate over the whole interval (a, b)

‖u − uI‖L∞(a,b) ≤ Ch3‖u′′′‖L∞(a,b). (3.5)

In fact, from (3.4) we see that the partition of unity finite element space can reproduce all the
polynomials of order 2, i.e. on any element ei, for any u ∈ P2(ei), the interpolant uI defined by
(3.3) is identical to u itself. So a direct application of the Bramble-Hilbert’s lemma gives the
following theorem.
Theorem 2. Let {ϕi} be piecewise linear hat function , and let uI be the PUFEM interpolant
defined in (3.3). If u ∈ W 3,q(a, b), then we have the optimal order interpolation error estimates

‖u − uI‖l,q ≤ Ch3−l‖u‖3,q l = 0, 1, 1 ≤ q ≤ ∞. (3.6)

3.3. Error Estimate of PUFEM Interpolants for p > 1

In previous subsections, we have discussed the PUFEM interpolation error for p = 1. Let us
now consider the case of p > 1. The piecewise linear hat functions in FEM are still chosen to be
the partition of unity functions in PUFEM. The local approximation spaces Vi = span{1, x −
xi, · · · , (x − xi)

p}.
On any patch, we construct the local polynomial approximation of u as

vi = u(xi) +
p

p + 1
u′(xi)(x − xi) +

p − 1

2(p + 1)
u′′(xi)(x − xi)

2 + · · · + 1

(p + 1)p!
up(xi)(x − xi)

p

=

p
∑

k=0

p + 1 − k

(p + 1)k!
u(k)(xi)(x − xi)

k. (3.7)

Then the interpolant uI(x) of u in V is

uI(x) =

n
∑

i=1

ϕi(x)vi =

n
∑

i=1

ϕi(x)

p
∑

k=0

p + 1 − k

(p + 1)k!
u(k)(xi)(x − xi)

k. (3.8)

We shall verify that this interpolation reproduces all the polynomials of order p + 1. Since
any element ei can be transferred into a reference element (0, 1), we need only to verify the
reproducing property on the reference interval.
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On (0, 1) the shape functions of the partition of unity have the form

ϕ0 = 1 − x, ϕ1 = x

and the interpolant UI is

UI(x) = (1 − x)

p
∑

k=0

p + 1 − k

(p + 1)k!
U (k)(0)xk + x

p
∑

k=0

p + 1 − k

(p + 1)k!
U (k)(1)(x − 1)k, (3.9)

Lemma 1. For any polynomial U ∈ Pp+1, the interpolation (3.9) reproduces U , i.e., UI = U .
Proof. We need only to verify the results for the polynomials U = xm, m = 0, 1, · · · , p + 1.

It is easy to see that in the case of U = 1,

UI = (1 − x) + x = 1 = U. (3.10)

In the case of U = xm, 1 ≤ m ≤ p, it easy to see that

U (j)(0) = j!δjm,

U(1) = 1, U (j)(1) =
m!

(m − j)!
1 ≤ j ≤ m; U (j)(1) = 0 m + 1 ≤ j ≤ p.

Therefore

UI(x) = (1 − x)
m!(p + 1 − m)

(p + 1)m!
xm + x(

m
∑

j=0

p + 1 − j

(p + 1)j!
· m!

(m − j)!
(x − 1)j)

= (1 − x)
p + 1 − m

p + 1
xm + x(

p + 1 − m

p + 1
xm +

m

p + 1
xm−1) = xm, (3.11)

where we used the identity
m

∑

j=0

p + 1 − j

(p + 1)j!
· m!

(m − j)!
(x − 1)j =

p + 1 − m

p + 1
xm +

m

p + 1
xm−1. (3.12)

Finally, in the case of U = xp+1,

U (j)(0) = 0, j = 0, 1, · · · , p,

U (j)(1) = (p + 1)p · · · (p − j + 2) =
(p + 1)!

(p + 1 − j)!
, j = 0, 1, · · · , p.

Therefore

UI(x) = x

p
∑

j=0

p + 1 − j

(p + 1)j!

(p + 1)!

(p + 1 − j)!
(x − 1)j

= x

p
∑

j=0

p!

j!(p − j)!
(x − 1)j = x(x − 1 + 1)p = xp+1. (3.13)

That completes the proof.
From the above lemma we can derive the error estimates for the interpolation by applying

the Bramble-Hilbert’s lemma.
Theorem 3. Let {ϕi} be piecewise linear hat function , and let uI be the PUFEM interpolant
defined in (3.8). If u ∈ W p+2,q(a, b), then we have optimal interpolation error estimate

‖u − uI‖l,q,(a,b) ≤ Chp+2−l‖u‖p+2,q,(a,b). (3.14)

4. PUFEM and Error Analysis

We consider the error estimates of PUFEM in solving differential equations in this section.
Let’s consider a one dimensional model problem on (0, 1). We divide the interval (0, 1) into

0 = x1 < x2 < · · · < xn = 1,
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and introduce the local approximation space

Vi = span{1, x− xi, · · · , (x − xi)
p}. (4.1)

Taking usual piecewise linear hat functions as the partition of unity functions in PUFEM,
then the PUFEM space is

V = span{ϕi(x)(x − xi)
m| i = 1, · · · , n , m = 0, · · · , p}. (4.2)

Any v ∈ V can be represented as

v =
n

∑

i=1

ϕi

p
∑

j=0

αj(x − xi)
j . (4.3)

Let the weak form of the boundary value problems be: Find u ∈ W ,such that

B(u, v) = (f, v) ∀v ∈ W, (4.4)

where B(u, v) is a continuous bilinear form and positive on W . Using the Galerkin framework,
the PUFEM solution can be defined by

B(upu, v) = (f, v) ∀v ∈ V. (4.5)

Céa’s lemma yields the error estimates of the PUFEM solution upu ∈ V ,

‖u − upu‖1 ≤ C inf
v∈V

‖u − v‖1. (4.6)

If the PUFEM interpolant defined in (3.8) uI ∈ V , then theorem 3 and (4.6) give the optimal
error estimate

‖u − upu‖1 ≤ C‖u − uI‖1 ≤ Chp+1‖u‖p+2. (4.7)

For Neumann boundary conditions, PUFEM interpolant defined in (3.8) uI ∈ V since there
is no constraint on the boundary value of the approximation functions. The meshless methods
are known to be more difficult to deal with the Dirichlet boundary conditions. In general, most
of the meshless interpolants including the PUFEM interpolants do not satisfy the Dirichlet
boundary condition, since the shape functions do not have the Kronecker delta property. Thus
the treatment of Dirichlet boundary value conditions is more difficult than in the FEM. But
fortunately, in 1-d, the special PUFEM interpolant we define in (3.8) satisfies Dirichlet boundary
condition. We check it for homogeneous Dirichlet conditions, i.e., u(0) = u(1) = 0. In fact,
because the partition of unity {ϕi} have Kronecker delta property, then we have ϕj(0) = 0, j =
2, 3, · · · , n and

v1(0) =

p
∑

k=0

p + 1 − k

(p + 1)k!
u(k)(0)xk|x=0 = u(0) = 0.

Hence

uI(0) =

p
∑

j=1

ϕj(0)vj(0) = 0.

Similarly we can prove uI(1) = u(1) = 0.
Remark 1. This result does not hold in higher dimension, since a function from V does not
vanish on a part of the boundary even when it is zero at all the nodes on that part of the
boundary.

Since the functions in V are able to satisfy the Dirichlet condition, we can directly use the
PUFEM space V as trial and test function spaces in the Galerkin procedure. Thus the same
error estimate for the PUFEM solution of Dirichlet BVPs as that for Neumann BVPs can be
achieved.

The Aubin-Nitche’s duality argument can be used to obtain the error estimates of the
PUFEM solutions as like in finite element methods.

In conclusion, we have
Theorem 4. The PUFEM solution upu admits optimal error estimates

‖u − upu‖l ≤ Chp+2−l‖u‖p+2 , l = 0, 1. (4.8)
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5. Conclusion

In this paper, we provide an error analysis for a special PUFEM which choose the usual
piecewise linear hat functions to be the partition of unity and use the polynomials as the local
approximating functions. We derive the optimal error estimates of the PUFEM interpolant
at first, and they then are used to obtain the error estimates for the PUFEM solution of the
elliptic BVPs. The results are for one dimensional case and under the assumption that the
approximated function is sufficiently smooth. For us, this paper is just the starting point of
working on theoretical analysis of PUFEM . In later study, we will give the error analysis
for higher dimensional case and under the assumption of weaker smoothness of approximated
function.
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