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Abstract

We review some of our recent efforts in developing upscaling methods for simulating
the flow transport through heterogeneous porous media. In particular, the steady flow
transport through highly heterogeneous porous media driven by extraction wells and the
flow transport through unsaturated porous media will be considered.
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1. Introduction

The central difficulty in the modeling of subsurface flow and transport is the accounting for
the spatial variability in the parameters used to characterize the relevant physical properties
of the natural porous media. In realistic situations, the precise spatial distribution of the
parameters required to characterize the problem is never available due to the lack of enough
data. Thus sophisticated geological and geostatistical modeling tools are used in practice to
generate highly detailed medium parameters based on some site-specific measurements and
experience from other sites. There exists a vast literature on the upscaling or homogenization
techniques that lump the small-scale details of the medium into a few representative macroscopic
parameters on a coarse scale which preserve the large-scale behavior of the medium and are
more appropriate for reservoir simulations. We refer to the book of Christakos [7] for more
information on the random field modeling of the natural porous medium parameters and the
recent review paper [24] on the existent upscaling techniques in the engineering literature.

The recently introduced multiscale finite element method [15, 16] for solving elliptic equa-
tions with oscillating coefficients provides an effective way to capture the large scale structures
of the solutions on a coarse mesh without resolving all the fine scale structures. The central
idea of the method is to incorporate the local small scale information of the leading order differ-
ential operator into the finite element bases. It is through these multiscale bases and the finite
element formulation that the effect of small scales on the large scales is correctly captured. We
also refer to the related analysis of the heterogeneous multiscale method (HMM) [19] for solving
the elliptic problem with oscillating coefficients. In section 2 we will describe one engineering
upscaling technique and discuss its relation with the multiscale finite element method.

The study of steady flow through highly heterogeneous porous medium driven by extraction
wells is of great importance in hydrology, petroleum reservoir engineering. It is observed in the
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engineering literature (cf. e.g. [8] and [21] and the references therein) that in the near-well
region, many of the existing upscaling methods do not provide satisfactory results. The reason
may be explained as the standard upscaling methods generally assume the pressure field is
slowly varying, that is clearly not true in the vicinity of the flowing wells [8]. This fact may
also be explained mathematically from the homogenization theory for the second order elliptic
equations with periodic coeflicients. In the homogenization theory, multiscale convergence is
ensured under the assumption that the source should be at least in H ! so that the solution is
bounded in Sobolev space H'. As we will see below, however, well singularities can be modeled
as Dirac sources and thus in the near-well region, the solution behaves like Green function
which is not uniformly bounded in H'. In section 3 we will describe an upscaling technique for
dealing with well singularities.

The nonlinear Richards equation which models the flow transport in unsaturated porous me-
dia is of significant importance in engineering applications. We consider the following nonlinear
partial differential equations

00 0K
ot 6$3

where 6 is volumetric water content, K is the absolute permeability tensor, u is the fluid pres-
sure, 3 denotes the vertical coordinate in the medium, and f stands for possible sources/sinks.
The sources of nonlinearity of Richards equation come from the moisture retention function
O(u) and relative hydraulic conductivity function K (#), respectively. Based on experimental
results, many different functional relations have been proposed in the literature through various
combinations of the dependent variables 8, v and K, and a certain number of fitting parameters
(e.g., [13, 14]). There are several widely known formulations of the constitutive relations such as
the van Genuchten-Mualem model [14], or the Garder model [13]. For example, in the Garder
model, also called exponential model,

O(u) = 0, + (05 — 0,)e Pl K(u) = Ke ol
where 6, and 6, represent the residual water content and saturated water content respectively,
K is the saturated hydraulic conductivity, and «, 3 are parameters of the porous media. In
section 4 we develop an upscaling method for a class of nonlinear parabolic equations which
includes the Richards equation in the parabolic range as a special case.

~V(KVu) =/,

2. Upscaling of the Permeability

The purpose of this section is to show that one of the well-known engineering upscaling
techniques (see e.g. [20]) is equivalent to the multiscale finite element method proposed in
[10, 15]. We remark that multiscale finite element method is shown to be convergent under the
condition that the permeability is locally periodic K.(z) = K (x,x/¢), where K(z,-) is periodic
with respect to the second variable. As a consequence, the convergence of the engineering
approach described in this section is guaranteed.

Let My be a finite element mesh of 2 with the mesh size H much larger than the ¢, the
characteristic length representing the small scale variability of the media. Usually, ¢ is equal
to the correlation length in the statistical random field modeling of the media. Let Wy be
the standard conforming linear finite element space over My and W = Wy N H}(2). In the
engineering literature, the problem

—div (K (x)Vue)=f inQ, u.=0 onT (2.1)
is approximated by the homogenized or upscaled problem: Find uj; € W}, such that

K*(z)VuyVogde = | fogdr Yog € WY (2.2)
Q Q

with K* being piecewise constant on the coarse mesh M. The so-called effective permeability
matrix K* on each T € My is defined as follows. For any G € R?, let . be the solution of
the problem

—div(K.V0.)=0inT, O.or =G -x.
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Simple integration by parts implies that

1 1 1
V9€:—/V6‘adx=— Gx-l/ds:—/VG:vd:E:G. 2.3
Tl )y T Jor T ) V) 23)

On the other hand, since Q = K.V0. = ‘—Clm fT K_.V0.dx is linear in G, there exists a matrix
K* such that

Q=K"-G < -K.V0.=-K*"V6.. (2.4)
The multiscale finite element method introduced in [10, 15] is based on multiscale finite
element base functions. For any T' € My, let 1;, ¢ = 1,2, 3, be the linear nodal bases. Define
T’ i =1,2,3, as the solution of the local problem
—div(K.Vol) =0 in T, ¢}|or = .
Denote by V(T') = span {¢7,i = 1,2,3} and Vj the finite element space
Vy = {’UH S Hl(Q) : 'UHlT S V(T)}
Then the multiscale finite element approximation to (2.1) is: Find uy € Vjy = Vg N H} ()
such that

/KEVUHVde:v:/vad:v Yoy € Vo (2.5)
Q Q

It is easy to show that the stiffness matrices corresponding to the discrete problems (2.2)
and (2.5) are identical.

3. Upscaling of the Well Singularity

Let Q € R? be a bounded domain with Lipschitz boundary T'. B(zg,r) will be denoted as
the disk centered at xp with radius r > 0. Let B; = B(Z;,6),1 < j < N, be mutually disjoint
subdomains inside €2 that are occupied by the wells. Denote by Q5 = Q\(Uévlej). We consider
the following single phase pressure equation which is formed by combining Darcy’s law with
the conservation of mass

—div (K (z)Vus) =0 in Qs, (3.1)
where ug is pressure, K is the permeability which is typically highly variable in space. We will
impose homogeneous Dirichlet boundary condition us|r = 0 on the exterior boundary. The
other types of boundary conditions can be treated similarly without any essential difficulties.
On the well boundary I'; = 0B;, two quantities are of particular importance in practical

0
applications: the well bore pressure us|pr, and the well flow rate / K %ds, where v is the
r; v

unit outer normal to d€2s. The boundary condition to be imposed on I'; is either the Dirichlet
boundary condition which fixes the well bore pressure «; (assume to be constant)

uslr, = oy, (3.2)
or the following mixed boundary condition which fixes the well flow rate q;
0
us|r, = ¢j = const, /Fj K%ds:qj. (3.3)

The constant ¢; in (3.3) is unknown.

The purpose of this section is to develop a complete coarse grid algorithm for solving steady
flow problem involving well singularities in heterogeneous porous medium based on the upscaling
method in the last section. The additional well singularities of the problem are resolved locally
by adding finite element base functions. The final coarse grid model is based on a variational
formulation which is different from the heuristic techniques in [8, 21]. We emphasize that as
pointed out in [9], the spatial periodicity assumption does not a priori restrict the applicability
of the results only to media which do exhibit such strict repetitive spatial ordering in the
properties of interest. The numerical experiments carried out for random log-normal relative
permeabilities in [6] using the over-sampling multiscale finite element method demonstrate
clearly the applicability of our method beyond the periodic structures.
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Since the size of the wells § is negligible in practical situations, the first approximation to
be made is to replace (3.1)-(3.3) by the following problem

—div (K qu z, nQ (3.4)

with the boundary condition u|r = 0. Here 5@. is the Dirac measure at Z;, 1 < j < N. Denote

by K; = K(Zj), ¢; = —

1
oK, Injz —z;|and U = u—Zj-v:l q;¢;j. Note that the flow rates q; for
1 € Ip in (3.4) are unknown. They are determined through the following additional conditions
which are obtained by requiring u|r, & «; as the approximation of the boundary conditions

(3.2):

ln5+qu¢J (Z)+U(z;) =, 1€ Ip. (3.5)
J#i

The following error estimate is proved in [6] between the solution wus of the original problem
(3.1)-(3.3) and the solution u of (3.4)-(3.5)

27TK

max |u — us| < Cd|Ind| Z |a; |-

z€Qs =

To introduce our multiscale algorithm, we first introduce an equivalent variational formu-
lation for (3.4) which is suitable for our multiscale approximation. Let €;,1 < j < N, be
mutually disjoint subdomains inside  such that B; CC Q;. Let G; be the Green function
associated with the domain ;

—div (K(,T)VGJ) = 6jj in Qj, Gj|Ej = 0, (36)
where ¥; = 0Q;. Now for any v € C§°(£2) we have
u(z;) = / —div (K (z)VG;)vdz
2

K(z)VG;Vvdx — / K—vds
Q;

On the other hand, from (3.4) we know that

N
j; q;0(Z;) = /Q K(z)VuVudz.

Let G; =0 for z € Q\Q; and ( = u — Zjvzl q,;G;, then we know that ¢ € H(f2) satisfies the
following variational form

dG; -
i K (z)V(Vvdr = — Zq]/E Kﬁvd:z: Yo € Co(Q). (3.7)

1
27K, In|z — Z;| in Q;, then the complementary condition (3.5) to deter-
mine q; for ¢ € Ip becomes

Denote by w; = Gj + ——

5 K Ind + qwi(Z;) + (%) = a4, 1€ Ip. (3.8)

We note that for ¢ the singularities of the original solution u are removed and we can use the
upscaling method in Section 2 to discretize it on a coarse grid.

Let My be a finite element mesh of 2 with the mesh size H much larger than the e,
the characteristic length representing the small scale variability of the media. Let Wy be the
standard conforming linear finite element space over My and W9 = Wy N H3 (). Then we
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introduce the following discrete problem: Find (i € W% and {q }ics,, such that

N
0G:
/ K*(2)V{gVxudr = _qu/ K.—2xpyds YxgeWy, (3.9)
Q e % ov
qff
_27Tll{i Ind + quwl(iz) + CH(ji) = q; Vi € Ip, (310)

where K* is defined elementwise as in (2.4), and we set qf = q; for j € Iy to simplify the
notation.

In [6], the problem (3.7)-(3.8) is solved by the over-sampling multiscale finite element method
and the convergence of the physically interested quantities like the well bore pressure for the
wells that prescribe the flow rate and the flow rate for the wells that prescribe the well bore pres-
sure has been established. A similar convergence analysis can also be proved for the upscaling
method in (3.9)-(3.10).

In the practical computation, the following algorithm can be used to the problem (3.1)-(3.3)
which is a good approximation of the original problem (3.4)-(3.5) when the size of the wells is
negligible. The algorithm adapts the corresponding algorithm proposed and studied in [6] in
which the reduced problem (3.7)-(3.8) is solved by the over-sampling multiscale finite element
method.

Algorithm. Given the well bore pressure ; for i € Ip and the well flow rate q; for j € Ips. The

following procedure finds the approximate well bore pressure af for j € Iy, the approximate
well flow rate qff for i € Ip, and the approximate pressure uy = (g + Ejvzl qu?, where
qf =q; for j € In.

e For j = 1,--- N, compute the discrete Green function G? on each subdomain ;, i.e.
G’ € V2(Q;) such that

/ K(z)VG!Vopdr = vp(z;)  Yon € Vi (Q;)). (3.11)
9]

Here V2(Q;) = Vi(Q;) N H (), and V,(Q;) is the standard conforming linear finite
element space over the mesh M(€2;) of ; with the mesh size h resolving the scale of
the permeability field K (z). Compute the associate effective radius 7; from G;? according
to the following relation

1
—— 7= [ (K- K;)VeVGldr — [ KVG'V 3.12
where ¢ = _27r1Kj In|z — z;| and ¥, € V4(£;) whose nodal values are defined by
_ | pz) if € 09y,
Un(zn) = { 0 otherwise,
Thus the approximate value of the Green function G on I'; is
)
h b~ -
P =G (Ty) — In— K; = K(z).
Q; 7 (%5) ok, nfjv j (@)

e Find (i € W5 and {q};e1, such that

N h

0G"!
/K*(:C)VCHVdex: - E qf/ K 8; xuds Vxg € W5,
Q j=1 2

aol +Cu(z;) =a; forielp,
where K* is computed elementwise according to (2.4).

e Compute the approximate well bore pressure oz]H for j € Ip; through the relation

af =(u(z;) + qja?.
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The formula (3.12) defining the effective radius extends the well-known Peaceman method
[22, 23] in the engineering literature for five point finite difference discretization and constant
permeability to the general case and is convergent for any finite element meshes and any het-
erogeneous porous media, as proved in [6].

4. Upscaling of Nonlinear Parabolic Equations

Let Q ¢ R% d = 2,3 be a bounded polyhedral domain with boundary 9. We set Q7 =
Q% (0,T7), Sy =00 x (0,T) for 0 <T < oo. Consider the following parabolic equation
Ob(ue) — V- (g°(x, ue) + a®(x,us)Vue) = f(x,t) in Qr,
ue(x,t) =0 on Sr, (4.1)
ue(x,0) = ug(xz) in Q,
where a®(z,u.) = (aj;(v,u:)) is a symmetric, positive definite, bounded tensor:
NEP? < afj(@, )66y < AE)? VEeR, 2 € Qs €R (4.2)

for some positive constants A and A, and g°(z,u.) = (¢5(x, u.)) is a bounded vector. ¢ is the
characterlstlc length representing the small scale variability of the media. We also assume that
Dasi(x,5), £g5(z,s) are uniformly bounded and b(s) satisfies

ds g
0<b <b(s)<by<oo, V(s)<C VseR. (4.3)
Define the space
W= {u:ue L*0,T; Hy(Q)),u € H'(0,T; H1(Q))}.
The variational problem of (4.1) is to seek uc(z,t) € W, for almost every t € (0,7, u(-,t) €
H () such that uc(z,0) = ug(z) in Q, and
(Ob(ue), w) + (8°(w, ue) + a°(z, us ) Vue, V) = (f,w) Yw € HH(Q). (4.4)
Here and henceforth, (-,-) stands for the inner product of L?(£2) or the duality pairing between
H=1(Q) and H(Q).
Instead of solving (4.4) on a fine mesh with a mesh size resolving the small scale variability
e, the basic idea of the upscaling methods is to solve the homogenized or upscaled equation
(Opb(u), w) + (g (z,u) + a*(z,u)Vu, Vw) = (f,w) Yw € H(Q).
The homogenized coeflicients a*(z, s), g*(z, s), for s € R, can be computed analytically from
a®, g° if they are periodic with respect to the second variable, see e.g. [17, 2, 4]. Unfortunately,
for practical natural porous media, such analytical formulae do not exist. In the following we
shall develop a way to compute the nonlinear relations a*(x, -), g*(«, -) numerically.
Let My be a regular triangulation of Q with mesh size H and 7 = T'/N be the time step
length, t" = n7, n = 0,1,--- , N. Further, let WH be the standard conforming linear finite
element space over Mg and W}){ =Wy N H(Q). For any K € My, denote

TR /
as the volume average over K.
Set v =b(u). Forn=1,---, N, our discrete problem is to seek v}; € WIO{7 the approximate
solution of v at time ¢ = ¢™, such that

_ ,n—1
(%,wﬁ+(g(x,an)+s(x,an)vu Vwy) = (" wg) Ywg € W), (45)

where 4" = b~(v},), v9 = b(up) and f" = 771 f;:,l f(x,t)dt. For any s € R, the nonlinear
functions a(z, s) and g(z, s) are piecewise constant over My defined as follows.
For any K € My, s € R, let p5,i =1,2,--- ,d, be the solution of the problem
-V -(a®(z,s)Vp;)=0 inK,

4.
p =x; on K. (46)
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Then, on K, a is a constant tensor determined by the following system

a(Vpi g = (@ (z,8)Vpi )k, i=1,2,---,d. (4.7
It is well-defined since by using Green formula
1
(VPi)k = == | aindo = e, (4.8)
(K| Jox

where e; is the unit vector in the ith direction. Similar to the argument in [3, 25] for the linear
case, we know that a is symmetric, bounded, and positive definite. Moreover,

e; - (ae;) = (Vpj - (a°(z,5)Vpj)) k- (4.9)
Further, g(z, s) is a constant vector in K determined by
gi(I,S) = <gE(IaS)'vp§>K7 1= 1725"' ad' (410)

Recently a number of multiscale numerical methods, such as multiscale finite element
method [11], heterogeneous multiscale method [19], and numerical homogenization method
[12] have been proposed to solve the nonlinear problems. The key idea of our method is
that we upscale the nonlinear constitutive relations such as the relationship between hydraulic
conductivity versus pressure before we solve the nonlinear problems. We stress that the real
significance of the method lies in its ability to solve the problems in coarse meshes. This is par-
ticularly advantageous when multiple simulations or realizations are necessary due to changes
of boundary conditions or source functions for certain given fine micro-structures of the highly
heterogeneous permeability of the porous media. Based on the homogenization theory, a sharp
error estimate of the method can be established under the periodicity assumption in [4]. This
assumption allows us to use the homogenization theory to obtain the asymptotic structure of
the solutions. We emphasize that as pointed out in [9], the spatial periodicity assumption does
not a priori restrict the applicability of the results only to media which do exhibit such strict
repetitive spatial ordering in the properties of interest. The numerical experiments in [4] indi-
cate that our method works fine for the well-accepted random log-normal permeability models
in the engineering literature.

Another new feature of our method is the way by which we deal with the nonlinear convection
term. Our numerical procedure, as we show in the paper, shares a common element with the
other multiscale methods, that is, the local information is coupled in the global formulation. The
difference is the coupling way we use. Our local problem does not involve the convection term
which is different from the multiscale finite element method and the numerical homogenization
approach introduced in [11, 12]. This idea has been introduced in a previous paper for the
solute transport model in [3].
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