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Abstract

The alternately directional implicit (ADI) scheme is usually used in 3D depth migration.
It splits the 3D square-root operator along crossline and inline directions alternately. In
this paper, based on the ideal of data line, the four-way splitting schemes and their splitting
errors for the finite-difference (FD) method and the hybrid method are investigated. The
wavefield extrapolation of four-way splitting scheme is accomplished on a data line and is
stable unconditionally. Numerical analysis of splitting errors show that the two-way FD
migration have visible numerical anisotropic errors, and that four-way FD migration has
much less splitting errors than two-way FD migration has. For the hybrid method, the
differences of numerical anisotropic errors between two-way scheme and four-way scheme
are small in the case of lower lateral velocity variations. The schemes presented in this paper
can be used in 3D post-stack or prestack depth migration. Two numerical calculations of
3D depth migration are completed. One is the four-way FD and hybrid 3D post-stack
depth migration for an impulse response, which shows that the anisotropic errors can be
eliminated effectively in the cases of constant and variable velocity variations. The other is
the 3D shot-profile prestack depth migration for SEG/EAEG benchmark model with two-
way hybrid splitting scheme, which presents good imaging results. The Message Passing
Interface (MPI) programme based on shot number is adopted.

Mathematics subject classification: 65M06.
Key words: 3D depth migration, Multiway splitting, Data line, Wavefield computation,
Finite-difference, Hybrid method.

1. Introduction

Migration is a data processing for oil prospecting in seismic exploration. It gives the images
of complex structures by numerical computation of wave propagation. The main step is the
downward extrapolation or backward propagation in the subground of wavefield known at
surface.

3D prestack depth migration is an important tool for complex structure imaging. There
are two kinds of 3D prestack depth migration methods. One is the Kirchhoff integral method
which based on ray tracing. The other is the non-Kirchhoff integral method which based on
wavefield extrapolation. Kirchhoff integral method is a high-frequency approximation method,
which has difficulties in imaging complex structures. However, it can adapt sources and receivers
configuration easily and has the advantage of less computational cost. So it is still the dominant
method for 3D prestack migration in oil industry. Non-Kirchhoff integral method, such as the
finite-difference method, the phase-shift method (Gazdag, 1978), the split-step Fourier (SSF)
method (Stoffa et al., 1990) and the Fourier finite-difference (FFD) method (Ristow and Rühl,
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1995), all carry out the wavefield extrapolation based on the 3D one-way wave equation. The
main step is the downward extrapolation in the subground of a wavefield recorded by receivers
at the surface.

For 3D one-way wave equation, a direct solution with stable implicit finite-difference scheme
may lead to a non tri-diagonal system, which is computationally expensive. In order to decrease
computational cost, the alternatively directional implicit (ADI) scheme is usually used. It splits
the finite-difference equation along two directions which are perpendicular to each other, i.e. the
0◦ and 90◦ directions, and then implements wavefield extrapolation by solving two tri-diagonal
equations successively. By doing so, it saves large computational cost. However, the ADI scheme
will lead to azimuthal errors or numerical anisotropic errors with maximum at 45◦ and 135◦.
In order to eliminate these errors, Li (1991) derived an error-correction equation to correct
the azimuthal anisotropy. Collino and Joly (1995) discussed the operator splitting calculation
with the help of power series expansions (Taylor expansion), and they gave a very thorough
mathematical derivation of multiway splitting. In 1994, Ristow and Rühl (1994) proposed
the ideal of multiway splitting method which splits the migration operator or the square-root
operator along three, four and six ways, in order to reduce splitting errors. The commonly used
splitting method is a four-way splitting scheme which approximates the square-root operator
along 45◦ and 135◦ two directions in addition to the original 0◦ and 90◦ two directions. However,
they all concentrated on the multiway schemes whereas the schemes of wavefield extrapolation
in migration are not given. Claerbout (1998) proposed the ideal of helix. Rickett (1998)
implemented the implicit 3D wavefield extrapolation with helical boundary conditions. The
application of helical conditions simplifies the structure of a finite-difference representation of
the Laplacian, reducing the 2D convolution to an equivalent problem in one dimension. The
one dimensional filter can be factored into a causal and an anti-causal parts, and the matrix
inverse can be computed by recursive polynominal division. Zhang (2000) proposed an explicit
four-way scheme in helix but is not unconditionally stable.

In this paper, we will discuss another type of error-correction method, namely the multi-way
splitting method on a data line. We implement the computations of wavefield extrapolation
on a data line, which makes four-way computations more easily and has a better generality
and adaptability. The implicit scheme used in wavefield extrapolation is stable unconditionally.
After deriving the relevant formulae and giving the splitting error analysis, numerical analysis
for a impulse response with constant and variable velocity are given. And the computations
show the correctness of algorithm presented in this paper. Moreover, 3D shot-profile prestack
depth migration for SEG/EAEG benchmark model is accomplished and its imaging result
show that the traditional ADI hybrid method can yield good images for complexly geological
structures.

2. Theory

2.1 FD four-way splitting

The 3D wave equation in the whole space can be written as

1
v2

∂2p

∂t2
− ∂2p

∂x2
− ∂2p

∂y2
− ∂2p

∂z2
= 0, (1)

where t denotes time, (x, y, z) are space variables, p(x, y, z, t) is the wavefield, v(x, y, z) is the
medium velocity, z is the privileged direction, (x, y) are the transverse variables. Usually, in
migration, x denotes the inline direction, y denotes the crossline direction, and z is the depth.
In the whole space, the solution of equation (1) can be split into two waves, an upgoing wave
and a downgoing wave. They are governed by the 3D one-way wave equation, which has the
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following form in the frequency-space domain

∂p̂

∂z
= ± iω

v

√
1 +

v2

ω2
(

∂2

∂x2
+

∂2

∂y2
)p̂ (2)

with

p̂(x, y, z, ω) =
∫

p(x, y, z, t)e−iωtdt, (3)

where ω is the angular frequency, the plus and minus signs before the square-root operator
represent the downgoing wave and upcoming wave respectively. For simplicity here follows, we
take the positive sign. We transform equation (2) into the wavenumber kx, ky domain where
velocity v is assumed to be constant

∂P

∂z
=

iω

v

√
1− v2

ω2
(k2

x + k2
y)P (4)

with

P (kx, ky, z, ω) =
∫ ∫ ∫

p(x, y, z, t)ei(kxx+kyy−ωt)dxdydt. (5)

Formulae (5) can be interpreted as writing the downgoing solution as superposition of harmonic
plane waves. A major difficulty with equation (4) is that it corresponds to a non local pseudo-
differential equation and therefore is not very tractable from a computational point of view.
Several ways can be used to approximate the square-root operator, such as one-order Taylor
expansion, rational fraction expansion, Padé approximation and optimal approximation. They
all give a local partical differential equation. High-order Taylor expansions are known to give
rise to ill-posed problems. The basic form of the approximated square-root operator is

√
1− s2 ≈ 1− αs2

1− βs2
, (6)

where α = 0.5, β = 0.25, which yields the so-called 45◦ paraxial approximation of the square-
root operator (Claerbout, 1985).

The square-root operator in equation (4) can be approximated along different directions
√

1− v2

ω2 (k2
x + k2

y)

≈
√

1− v2

ω2 k2
x +

√
1− v2

ω2 k2
y − 1

≈ 1
2 [

√
1− v2

ω2 k2
x +

√
1− v2

ω2 k2
y +

√
1− v2

ω2 k2
x′ +

√
1− v2

ω2 k2
y′ ]− 1,

(7)

where kx and ky are wavenumber along 0◦ and 90◦ directions respectively, whereas kx′ and ky′

are the wavenumber along 45◦ and 135◦ directions. The first approximation expression in (7) is
the two-way splitting approximation, and the second is the four-way splitting approximation.
Substituting the two-way or four-way approximation into equation (4) and transforming it back
to the frequency-space domain, we obtain the following two-way migration equation

∂P

∂z
≈ − iω

v
P +

iω

v
[

√
1 +

v2

ω2

∂2

∂x2
+

√
1 +

v2

ω2

∂2

∂y2
]P (8)

and four-way migration equation

∂P
∂z ≈ − iω

v P + iω
2v [

√
1 + v2

ω2
∂2

∂x2 +
√

1 + v2

ω2
∂2

∂y2 ]P
iω
2v [

√
1 + v2

ω2
∂2

∂x′2 +
√

1 + v2

ω2
∂2

∂y′2 ]P,
(9)
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respectively, where x′ and y′ are the variables along 45◦ and 135◦ directions respectively and
can be expressed in terms of x and y by the following expression

x′ =
√

2
2

(x + y), y′ =
√

2
2

(−x + y). (10)

Wavefield extrapolation with equation (9) is called four-way splitting scheme. Here, we im-
plement wavefield extrapolation on a data line. Such implementation is suitable to either the
conventional finite-difference (FD) or the so-called hybrid method. For the FD method, at each
extrapolating depth step, wavefield extrapolation contributes to the following five equations
successively in the frequency-space domain

∂P

∂z
= −i

ω

v
P, (11)

∂P
∂z = i ω

2v

√
1 + v2

ω2
∂2

∂x2 P, ∂P
∂z = i ω

2v

√
1 + v2

ω2
∂2

∂y2 P,

∂P
∂z = i ω

2v

√
1 + v2

ω2
∂2

∂x′2 P, ∂P
∂z = i ω

2v

√
1 + v2

ω2
∂2

∂y′2 P.

(12)

With the help of equation (6), the equations (11) and (12) forms the following wavefield ex-
trapolation system

∂P
∂z = iω

v P,

∂P
∂z = − iω

2v

α v2

ω2
∂2

∂x2

1−β ∂2

∂x2
P, ∂P

∂z = − iω
2v

α v2

ω2
∂2

∂y2

1−β ∂2

∂y2
P,

∂P
∂z = − iω

2v

α v2

ω2
∂2

∂x′2
1−β ∂2

∂x′2
P, ∂P

∂z = − iω
2v

α v2

ω2
∂2

∂y′2

1−β ∂2

∂y′2
P.

(13)

The numerical examples below show that wavefield extrapolation based on equations (13)
can eliminate azimuthal anisotropic errors and thus improve migration precision.

Generally, for wavefield extrapolation of the following equation

∂P

∂z
= LP, (14)

where L is a bounded operator in a given Hilbert space with the form of L =
N∑

i=1

Li, and n is

the splitting number. The exact solution satisfies

P (z + ∆z) = exp(−iA∆z)P (z). (15)

Thanks to the expression

exp(−iA∆z) = exp(−iA1∆z)exp(−iA2∆z) · · · exp(−iAN∆z) + O(∆z2), (16)

which suggests the approximation

Pn+1 = exp(−iA1∆z)exp(−iA2∆z) · · · exp(−iAN∆z)Pn, (17)

or equivalently
Pn

1 = exp(−iA1∆z)Pn,
Pn

2 = exp(−iA2∆z)Pn
1 ,

· · · · · ·
Pn

i = exp(−iAi∆z)Pn
i−1,

· · · · · ·
Pn+1

n = exp(−iAn∆z)Pn
n−1.

(18)
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This leads to the following partial differential system
∂P

∂z
= LiP, i = 1, · · · , n. (19)

where Pn
i (i = 1, 2, · · · , n− 1) are the intermediate results.

2.2 Hybrid four-way splitting
Like the derivation of FD four-war splitting scheme, we outline the derivation of hybrid

four-way splitting scheme as follows. Introducing a reference velocity v0(z) and basing on the
integral-differential expression of the square-root (Zhang G., 1993)

√
1− s2 = 1− 1

π

∫ +1

−1

√
1− ξ2

s2

1− ξ2s2
dξ = 1− 2

π

∫ 1

0

√
1− ξ2

s2

1− ξ2s2
dξ. (20)

Then, in the frequency domain, one-way downgoing wave equation (4) can be decomposed in
the following precise form

∂P

∂z
= (A1 + A2 + A3)P (21)

with

A1 = iω
v0

√
1 + v2

0
ω2

[
∂2

∂x2 + ∂2

∂y2

]
, A2 = iω( 1

v − 1
v0

),

A3 = iω
π

∫ +1

−1
[

v( ∂2

∂x2 + ∂2

∂y2 )

ω2+(sv)2( ∂2

∂x2 + ∂2

∂y2 )
− v0(

∂2

∂x2 + ∂2

∂y2 )

ω2+(sv0)2(
∂2

∂x2 + ∂2

∂y2 )
]
√

1− s2ds,

(22)

where v0(z) is only a function of z and usually the minimum velocity at each depth step
is chosen. The integral expression in equation (22) needs to be approximated by numerical
integration. For example, it may be approximated by the Gauss integral formulae (Zhang G.,
1993)

1
π

∫ 0

1

√
1− s2f(s)ds ≈ 1

2

m∑

l=1

cm,lf(sm,l). (23)

For m = 1, s1,1 = 0, c1,1 = 1, it simplifies 15◦ one-way wave equation. For m = 2, s2,1 = −s2,2 =
1
2 , c2,1 = c2,2 = 1

2 , it simplifies 45◦ one-way wave equation.
Therefore, the operator A3 in equation (22) can be approximated as

A3 ≈ iω

m∑

l=1

cm,l

[ v∇
ω2 + (sm,lv)2∇ − v0∇

ω2 + (sm,lv0)2∇
]
≈ i

α v
ω∇

1 + β v2

ω2∇
, (24)

where, e.q., α = 0.5(1− v0
v ), β = 0.25(1+ v2

0
v2 ). ∇ is the Laplacian. In the case of small dip angle,

A3 can be neglected. And for the media with large velocity variations, A3 should be included.
Operators A1, A2 and A3 are termed the phase-shift operator, the time-shift operator and the
difference operator (Stoffa et al., 1990; Ristow and Rühl, 1995). Like the wave extrapolation
system of FD four-way splitting scheme, the wavefield extrapolation of hybrid four-way splitting
scheme can be approximated as

∂P

∂z
≈ (A1 + A2 + A31 + A32 + A41 + A42)P, (25)

where
A1 = iω

v0

√
1 + v2

ω2 [ ∂2

∂x2 + ∂2

∂y2 ], A2 = iω( 1
v − 1

v0
), (26)

A31 = i ω
2v

α v2

ω2
∂2

∂x2

1+β v2

ω2
∂2

∂x2
, A32 = i ω

2v

α v2

ω2
∂2

∂y2

1+β v2

ω2
∂2

∂y2
,

A33 = i ω
2v

αv2

ω2
∂2

∂x
′2

1+β v2

ω2
∂2

∂x
′2

, A34 = i ω
2v

α v2

ω2
∂2

∂y
′2

1+β v2

ω2
∂2

∂y
′2

.

(27)
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One notes that the calculation of A1 may be done after transforming it into the wavenumber
domain because of constant velocity v0(z) at each extrapolation depth step.

2.3 splitting errors
In the following splitting errors of the two-way and four-way splitting schemes are discussed.

The error ε for FD four-way application of the FD square-root is

ε =
√

1− s2 − t2 − 1
2
[
√

1− s2 +
√

1− t2 +
√

1− s′2 +
√

1− t′2] + 1 (28)

with
s =

v

ω
kx, t =

v

ω
ky, s′ =

v

ω
k′x, t′ =

v

ω
k′y (29)

With equation (6), equation (28) can be approximated as

ε ≈
√

1− s2 − t2 − 1
2
[ αs2

1− βs2
+

αt2

1− βt2
+

αs′2

1− βs′2
+

αt′2

1− βt′2
]− 1. (30)

If we replace s′ and t′ by s and t, equations (28) and (30) are those of two-way splitting

ε =
√

1− s2 − t2 − [
√

1− s2 +
√

1− t2] + 1, (31)

ε =
√

1− s2 − t2 − [ αs2

1− βs2
+

αt2

1− βt2
]
+ 1. (32)

For the hybrid method, similarly, the four-way splitting error is

ε = p
√

1− s2 − t2 − [
√

1− p2s2 − p2t2 + (p− 1)

− 1
2

α̃s2

1−β̃s2 − 1
2

α̃t2

1−β̃t2
− 1

2
α̃s′2

1−β̃s′2
− 1

2
α̃t′2

1−β̃t′2
].

(33)

where p = v0/v, α̃ = 0.5(1 − p), β̃ = 0.25(1 + p2). And if setting s = s′ and t = t′, it reduces
to the hybrid two-way splitting error

ε = p
√

1− s2 − t2 − [
√

1− p2s2 − p2t2+

(p− 1)− α̃s2

1−β̃s2 − α̃t2

1−β̃t2
]

(34)

The accuracy of four-way splitting compared to the two-way splitting is shown in the numer-
ical calculations below. Figure 1 shows the splitting errors induced by the FD two-way splitting
scheme in which (a) and (b) are those computed by equations (31) and (32) respectively. Both
figure (a) and (b) show the obvious numerical anisotropic errors. Figure 2 shows the splitting
errors by the FD four-way splitting scheme in which (a) and (b) are those computed by equa-
tions (28) and (30) respectively. One will note that the differences between (a) and (b) both in
figure (1) and (2) are very small which shows the good approximation of the square-root of the
paraxial 45◦ approximation, and that in figure 1 the splitting errors of FD two-way splitting
scheme are obvious with its maximum in 45◦ or 135◦ direction and they behave a rhomb. In
figure 2, the FD four-way splitting scheme has removed the splitting errors and the figure shows
a good circle symmetry. For the splitting errors of hybrid scheme, they are shown in figure 3,
figure 4 and figure 5 for three different p values: p = 0.2, p = 0.5 and p = 0.8, respectively.
These three different p values correspond to the three cases of strong, middle and weak lateral
velocity respectively. One will note that the hybrid four-way splitting scheme has very good
circle symmetry in all three cases and that hybrid two-way splitting scheme also has a bit circle
symmetry. One will also note that in hybrid four-way splitting scheme there is an isotropic
Laplacian operator, i.e.,

√
1− v2

ω2 ( ∂2

∂x2 + ∂2

∂y2 ). When there is no lateral velocity variations, the
image of hybrid method behaves a perfect circle symmetry.
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Figure 1. Splitting errors of FD two-way splitting scheme with (a) the precise square-root operator,

(b) its 45◦ paraxial approximation.
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Figure 2. Splitting errors of FD four-way splitting scheme with (a) the precise form of the square-root

operator, (b) its 45◦ paraxial approximation.
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Figure 3. Splitting errors of hybrid method with (a) two-way splitting scheme, (b) four-way splitting

scheme for p = 0.2.
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Figure 4. Splitting errors of hybrid method with (a) two-way splitting scheme, (b) four-way splitting

scheme for p = 0.5.
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Figure 5. Splitting errors of hybrid method (a) two-way splitting scheme, (b) four-way FFD splitting

scheme for p = 0.8.

2.4 Four-way wavefield extrapolation on a data line
With the above extrapolation equations of the four-way FD scheme, i.e., equation (13), and

the four-way hybrid scheme, i.e., equations (25) to (27), the wavefield extrapolation can be
implemented. We implement the four-way wavefield extrapolation on a data line.

We outline the implementation of wavefield extrapolation on a data line with the FD method
and the hybrid method as follows. When wavefield extrapolation is implemented along 45◦ and
135◦ two directions, one notes that the program complexity arises. However, after introducing
an ideal of data line, the difficulty can be overcome. The basic ideal is to transform 2D data
into 1D data along a specific direction to form a data line. The wavefield extrapolation based
on equation (13) on a data line can be implemented according to the following steps. First
of all, the first expression in equation (13) is completed, which is the phase-shift wavefield ex-
trapolation. Then do wavefield extrapolation along 0◦ and 90◦ directions with the second and
third expressions in equation (13) which contributes to the traditional ADI wavefield extrapo-
lation. And then, arrange the resulting data along 45◦ direction and do wavefield extrapolation
with the fourth expression in equation (13). Finally, arrange the newly resulting data along
135◦ direction and then do extrapolate wavefield with the last expression in equation (13). By
now, the wavefield extrapolation of one depth step is completed and the next depth step can
be completed similarly. For wavefield extrapolation of hybrid four-way splitting scheme based



3D Hybrid Depth Migration and Four-way Splitting Schemes 471

on equations (25) to (27), after finishing the wavefield extrapolation for operators A1 and A2,
which are the wavefield extrapolation for the phase-shift operator and time-shift operator re-
spectively, the rest steps of wavefield extrapolation for operators A31, A32, A33 and A34 are
similarly.

In order to improve computational efficiency, one can use the following trick: downward
continuation from z to z+∆z is performed in two orthogonal directions, then done from z+∆z
to z + 2∆z in two diagonal directions. That is to say, the four-way splitting is replaced by
two-fold two-way splitting.

2.5 Wavefield extrapolation with ADI hybrid scheme
For the importance of traditional ADI scheme, we present briefly its difference scheme. The

finite-difference equation of ADI hybrid scheme can be derived from the approximated difference
operator A3 of equation (24). The corresponding one-way wave equation for operator A3 of
equation (24) is

∂P

∂z
= i

α v
ω ( ∂2

∂x2 + ∂2

∂y2 )

1 + β v2

ω2 ( ∂2

∂x2 + ∂2

∂y2 )
. (35)

It is easy to derive that its finite-difference scheme is

[1 + (α1 − iβ1)δ2
x + (α2 − iβ2)δ2

y]Pn+1
k,l = [1 + (α1 + iβ1)δ2

x + (α2 + iβ2)δ2
y]Pn

k,l, (36)

where Pn
k,l represents P (k∆x, l∆y, n∆z, ω), δ2

x and δ2
y are the second-order central difference

operators with respect to x and y respectively. And ∆x, ∆y and ∆z are the spatial steps of x,
y and z respectively. The coefficients α1, α2, β1 and β2 can be written as

α1 =
βv2

ω2∆x2
, α2 =

βv2

ω2∆y2
, β1 =

α∆zv

2ω∆x2
, β2 =

α∆zv

2ω∆y2
. (37)

Equation (36) may be solved by the well-known ADI scheme as follows

[1 + (α1 − iβ1)δ2
x]Pn+1/2

k,l = [1 + (α1 + iβ1)δ2
x]Pn

k,l,

[1 + (α2 − iβ2)δ2
y]Pn+1

k,l = [1 + (α2 + iβ2)δ2
y]Pn+1/2

k,l .
(38)

Our numerical computations show that this traditional ADI hybrid scheme in 3D shot profile
prestack depth migration can yield good images for complex structures.

System (38) is the hybrid two-way splitting scheme. Because the enlarging factor of this
difference scheme is always less than one, it is stable unconditionally. For the hybrid four-way
difference scheme, with the operator A31, A32, A33 and A34 in equation (27), we have

[1 + (α̃1 − iβ1)δ2
x]Pn+1/4

k,l = [1 + (α̃1 + iβ1)δ2
x]Pn

k,l,

[1 + (α̃2 − iβ2)δ2
y]Pn+2/4

k,l = [1 + (α̃2 + iβ2)δ2
y]Pn+1/4

k,l ,

[1 + (α̃1 − iβ1)δ2
x′ ]P

n+3/4
k,l = [1 + (α̃1 + iβ1)δ2

x′ ]P
n+2/4
k,l ,

[1 + (α̃2 − iβ2)δ2
y′ ]P

n+1
k,l = [1 + (α̃2 + iβ2)δ2

y′ ]P
n+3/4
k,l ,

(39)

where α̃1 = α1/2 and α̃2 = α2/2. The extrapolation with equation (39) is also stable uncondi-
tionally. The known boundary conditions is the data P (x, y, z = 0, t) observed or recorded at
surface.

The imaging result M(x, y, z) of prestack migration can be obtained by the summing all
frequency of the product of the upcoming wave P (x, y, z, ω) and downgoing D(x, y, z, ω), i.e,

M(x, y, z) =
∑
ω

P (x, y, z, ω)D̄(x, y, z, ω) (40)

where D̄ represents the complex conjugate of D. For the poststack migration, it reduce to sum
all the frequency of upcoming wavefield.
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3. Numerical Calculations

3.1 Four-way FD and hybrid 3D post-stack depth migration

In order to demonstrate effects of the schemes in this paper, the migration for an impulse
response is presented first. The grid number for x, y and z is 64, the spatial step for x and y is
15m. The extrapolation step is 15m. The time sampling step is 4ms. The medium velocity is
3000m/s. It is well known that the theoretical 3D migration result in homogeneous media is a
half sphere. The impulse is the Ricker wavelet with 20Hz main frequency which located at the
position of (x, y, z, t) = (480m, 480m, 500ms). Figure 6(a) is the horizontal slice of migration
result by the traditional FD two-way splitting scheme, which shows that the migration errors
caused by different azimuthal angles reach maximum along 45◦ and 135◦ directions. Figure 6(b)
is the slice by FD two-way splitting scheme but splitting along 45◦ and 135◦ two directions,
which shows the migration errors reach maximum along 0◦ and 90◦ directions. And figure 6(c)
is that by four-way splitting scheme along 0◦, 90◦, 45◦ and 135◦ four directions, which shows a
perfect circle symmetry like theoretical predication.

For the media with constant velocity, due to equality of the reference velocity with the
constant media velocity, there is only the phase-shift operator in the hybrid method in fact.
That is to say, there are no any actual extrapolations for the rest time-shift operator A2 and
the difference operators A31, A32, A33 and A34. In this case, the migration result is a precise
hemisphere because the Laplacian is an isotropic operator. Thus there is no azimuthal errors
when the four-way scheme is used for the media with constant velocity. Let’s consider the case
of variable velocity. Suppose the velocity is v(x, y, z) = 1600+3x+3y+z(m/s). The parameter
p in hybrid formula varies from 0.46 to 0.57. The spatial steps and the other parameters are
the same with those of the FD example with constant velocity in this subsection. Figure 7 are
the horizontal slices of the 3D migration result at z = 280m, which calculated by the hybrid
method of the two-way splitting scheme and the four-way splitting scheme respectively. Figure
7(a) is the result by the traditional two-way splitting scheme. Figure 7(b) is that by the two-
way splitting scheme but splitting along 45◦ and 135◦ two directions. Figure 7(c) is that by
the four-way splitting scheme. Comparisons between figure 7(a) and figure 7(c) show that the
numerical anisotropic errors of traditional two-way scheme is also eliminated.

3.2 ADI 3D prestack depth migration

The SEG/EAEG salt model is an international 3D benchmark model. The data used here
has the 50 shot lines with 160m line space. Each line has 96 shots with 80m shot space. Each
shot has 68×6 receivers. The grid element is 40m×40m. The record length is 4992ms with
8ms time step. The model amount is about 6.23 Gbytes. In this large scale computation,
the MPI programming is adopted to improve computational efficiency. Here, x denotes the
inline direction and y the crossline direction. The 3D shot-profile prestack depth migration
by ADI hybrid scheme is completed. Figure 8(a) is the vertical slice of 3D velocity model at
x = 5400m and figure 8(b) is the vertical slice of the migration result. Figure 8 shows that the
ADI hybrid method yields good images of the model at the same position. In all calculations,
the MPI parallel algorithm is adopted. And shot number is chosen as parallelization parameter
for single-shot profile migration. The parallel efficiency is very high because the problem itself
has very high parallel feature.
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(a) (b) (c)

Figure 6. Horizontal slices of 3D post-stack depth migration for a impulse response with constant

velocity. FD method with (a) traditional two-way splitting, (b) 45◦ and 135◦ two-way splitting, (c)

Four-way splitting.
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Figure 7. 3D post-stack depth migration for a impulse response with variable velocity. Hybrid method

with (a) traditional two-way splitting, (b) 45◦ and 90◦ two-way splitting, (c) four-way splitting.
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Figure 8. The vertical slices at x = 5400m along crossline direction. (a) a slice of 3D velocity model,

(b) a slice of 3D shot-profile prestack migration with two-way hybrid method.
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4. Conclusions

Based on the ideal of data line, the four-way splitting schemes and extrapolation equations
for FD and hybrid methods are derived. The advantage of wavefield extrapolation on a data line
is unconditionally stable. Numerical calculations show that the four-way FD algorithms can
eliminate numerical anisotropic errors effectively. Moreover, the numerical anisotropic errors
of hybrid method is less than that of FD. The traditional ADI hybrid method is preferred in
3D shot-profile prestack depth migration in order to save computational time for the media
with low lateral velocity variations. And our experience show that the traditional ADI hybrid
method also can yield good images even in middle lateral velocity variations. The 3D shot-profile
prestack depth migration for SEG/EAEG salt model with ADI hybrid method is implemented
and good imaging results are obtained. The Message Passing Interface (MPI) programme based
on shot number is adopted. Each processor has the same shot number to carry out 3D prestack
depth migration. Therefore the parallel speedup ratio is high and the computational efficiency
is improved further. The scheme in this paper has potential practical values.
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