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Abstract

A T-mesh is basically a rectangular grid that allows T-junctions. Recently, Deng etal

introduced splines over T-meshes, which are generalizations of T-splines invented by Seder-
berg etal, and proposed a dimension formula based on the B-net method. In this paper,
we derive an equivalent dimension formula in a different form with the smoothing cofactor
method.
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1. Introduction

T-meshes are formed by a set of horizontal line segments and a set of vertical line segments,
where T-junctions are allowed. See Figure 1 for examples.

Traditional tensor-product B-spline functions, which are a basic tool in the design of free-
form surfaces, are defined over special T-meshes, where no T-junctions appear. B-spline surfaces
have the drawback that arises from the mathematical properties of the tensor-product B-spline
basis functions. Two global knot vectors which are shared by all basis functions, do not allow
local modification of the domain partition. Thus, if we want to construct a surface which
is flat in the most part of the domain, but sharp in a small region, we have to use more
control points not only in the sharp region, but also in the regions propagating from the sharp
region along horizontal and vertical directions to maintain the tensor-product mesh structure.
The superfluous control points are a big burden to modelling systems. In [5], Sederberg etal
explained the troubles made by these superfluous control points in details.

To overcome this limitation, we need the local refinement of B-spline surfaces, i.e. to insert
a single control point without propagating an entire row or column of control points. In [4]
hierarchical B-splines were introduced, and two concepts were defined: local refinement using
an efficient representation and multi-resolution editing. In principle, Hierarchical B-splines are
the accumulation of tensor-product surfaces with different resolutions and domains. Weller and
Hagen [8] discussed tensor-product splines with knot segments. In fact, they defined a spline
space over a more general T-mesh, where crossing, T-junctional, and L-junctional vertices are
allowed. But its dimensions are estimated and its basis functions are given over the mesh
induced by some semi-regular basis functions.

In 2003, Sederberg etal [5] invented T-spline. It is a point-based spline, i.e., for every
vertex, a blending function of the spline space is defined. Each of the blending functions
comes from some tensor-product spline space. Though this type of splines supports many
valuable operations within a consistent framework, but some of them, say, local refinement, are
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not simple. In the T-spline theory, the local refinement is dependent on the structure of the
mesh, and its complexity is uncertain. Whether T-spline blending functions are always linearly
independent is an open question [6]. The reason leading to these problems is that the spline
over every cell of the mesh is not a polynomial, but a piecewise polynomial.

In [2], Deng etal formulated the concept of T-meshes, and studied the spline space over
T-meshes. They forced the spline on every cell to be a tensor-product polynomial and achieve
the specified smoothness across common edges, and derived a dimension formula when the
smoothness is less than half of the degree of polynomials with a method based on B-nets.

In the theory of multivariate spline, smoothing cofactor method [7] is another dominant
approach to calculate the dimension of some specified spline space. In this paper, we derive a
dimension formula equivalent to Deng’s formula with the smoothing cofactor method. The proof
is longer than the B-net version, but it is revelatory. Based on some results in this paper, we
have implemented a quasi-real-time algorithm, which will be explored in another forthcoming
paper, to calculate the dimension of a general spline space over T-meshes. And we expect that
we can generalize Deng’s formula based on the smoothing cofactor method in the future.

The paper is organized as follows. Section 2 presents a brief review of the spline spaces over
T-meshes. In Section 3, by introducing the concepts of vertex cofactor and in-line, we derive a
dimension formula for the spline space S(m, n, α, β, T ) when m > 2α + 1 and n > 2β + 1 with
the smoothing cofactor method, and prove that it is equivalent to Deng’s formula. In the final
section, we conclude the paper with some further research problems.

2. Spline Spaces over T-meshes

In this section, we first present some concepts related with T-meshes, and then review spline
function spaces over T-meshes.

2.1 T-mesh

a b

Figure 1: Examples of T-mesh

A T-mesh is basically a rectangular grid that allows T-junctions [5]. The longest possible
horizontal or vertical line segments to make up a T-mesh are called grid lines. We assume that
the endpoints of each grid line in the T-mesh must be on two other grid lines, and each cell

or facet (the area without any line segment inside it) in the grid must be a rectangle. Figure
1 illustrates two examples of T-meshes, while in Figure 2 two examples of non-T-meshes are
shown.

A grid point in a T-mesh is also called a vertex of the T-mesh. If a vertex is on the
boundary grid line of a T-mesh, then is called a boundary vertex. Otherwise, it is called an
interior vertex. For example, bi, i = 1, . . . , 10 in Figure 3 are boundary vertices, and all the
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a b

Figure 2: Examples of non-T-mesh
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Figure 3: A T-mesh with notations

other vertices vi, i = 1, . . . , 5 are interior vertices. Interior vertices have two types. One is
crossing, for example, v2 in Figure 3; and the other is T-junctional, for example, v1 in Figure
3. We call them crossing vertices and T-vertices respectively.

The line segment connecting two adjacent vertices on a grid line is called an edge of the
T-mesh. If an edge is on the boundary of the T-mesh, then it is called a boundary edge;
otherwise it is called an interior edge. For example, in Figure 3, b11v1 and v1v2 are interior
edges while b1b2 is a boundary edge.

Except the boundary grid lines, there are three types of grid lines. We call a grid line a
cross-cut or a ray, if both or only one of its endpoints lies on the boundaries, respectively. For
example, in Figure 3, b5b10 and b4b11 are cross-cuts, while v5b2 , v4b7 and v7b9 are rays. Now
we define the third type of grid lines. A grid line is called a in-line, if none of its endpoints lie
on the boundaries. For example, in Figure 3, v1v6 is a in-line. For any grid line, it consists of
one or several edges. We define its valence as the number of edges on the grid line.

Two cells are called adjacent if they share a common edge as part of their boundaries. If
one cell is above(below) the other, then they are called adjacent vertically. If one cell is
on the left(right) of the other, then they are called adjacent horizontally. A cell is called
adjacent to a grid line (an edge or composition of several edges) if some boundary line of the
cell is part of the grid line.

As in [2], we consider only T-meshes whose boundary grid lines form a rectangle, see Figure
1(b). We call this type of T-meshes regular T-meshes.

2.2 The spline space

Given a T-mesh T , we use F to denote all the cells in T and Ω to denote the region occupied



504 Z.J. HUANG, J.S. DENG, Y.Y. FENG AND F.L. CHEN

by all the cells in T . Let

S(m, n, α, β, T ) :=
{

s(x, y) ∈ Cα,β(Ω)
∣

∣

∣s(x, y)|φ ∈ Pmn, for any φ ∈ F
}

where Pmn is the space of all polynomials with bi-degree (m, n), and Cα,β(Ω) the space con-
sisting of all bivariate functions which are continuous in Ω with order α along x direction and
with order β along y direction. It is obvious that S(m, n, α, β, T ) is a linear space. We call it
the spline space over the given T-mesh T .

In [2], Deng etal derived the following dimension formula for the spline space S(m, n, α, β, T )
with B-net method.

Theorem 2.1. Given a regular T-mesh and a corresponding spline space S(m, n, α, β, T ),
suppose m > 2α + 1 and n > 2β + 1, then

dimS(m, n, α, β, T ) = F (m+1)(n+1)−Eh(m+1)(β+1)−Ev(α+1)(n+1)+V (α+1)(β+1), (1)

where F is the number of cells in T , Eh and Ev the number of interior horizontal edges and
the number of interior vertical edges respectively, and V the number of interior vertices.

3. The Dimension Formula

In the theory of multivariate splines, in order to calculate the dimension of some specified
spline space, we first need to transfer the smoothness conditions into algebraic forms. There
are many approaches to address this problem. Besides B-net method [3], smoothing cofactor
method [7] is another dominant one. In this paper, we will apply this method to calculate the
dimensions of spline spaces over T-meshes.

3.1 Smoothing cofactors and vertex cofactors

Suppose two adjacent facets φ1 and φ2 ∈ F , their boundary segments share a common edge
e in T , as shown in Figure 4. The common segment is vertical or horizontal, and hence, has
constant x coordinate or y coordinate, respectively.

φ1

φ2

v1

v2

a

b

b

e

φ1

φ2

v1 v2

b

e
b b

Figure 4: Two adjacent cells

Given a spline s(x, y) ∈ S(m, n, α, β, T ), we assume

s|φ1
= s1(x, y), s|φ2

= s2(x, y).
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According to the smoothing cofactor theory, if the common edge e is on the straight line
x − x0 = 0(see Figure 4(a)), then there exists λ(x, y) ∈ Pm−α−1,n such that

s2(x, y) − s1(x, y) = λ(x, y)(x − x0)
α+1. (2)

If the common edge e is on the straight line y − y0 = 0(see Figure 4(b)), then there exists
µ(x, y) ∈ Pm,n−β−1 such that

s2(x, y) − s1(x, y) = µ(x, y)(y − y0)
β+1. (3)

Here λ(x, y) and µ(x, y) are called the smoothing cofactors of s(x, y) across the corresponding
edges, respectively.

b

vi

λi1

λi2

µi1 µi2

a

b b

vi

λi1

λi2

µi vi

λi1

λi2

µi

b

b

b

viµi1 µi2

λi

viµi1 µi2

λi

c

Figure 5: Conformality conditions

We use λ(x, y) to denote the smoothing cofactor across a vertical interior edge from left
to right, and µ(x, y) to denote the smoothing cofactor across a horizontal interior edge from
bottom to top.

Let
V = {ν1, . . . , νV }, Eh = {εh

1 , . . . , εh
Eh

}, Ev = {εv
1, . . . , ε

v
Ev

}.

be the set of interior vertices, interior horizontal edges and interior vertical edges, respectively.
Hence the set of interior edges E = Eh ∪ Ev.

Suppose νi = (xi, yi) is a interior vertex of T , which is a crossing vertex or a T-vertex(see
Figure 5). The horizontal T-vertex on the left of Figure 5(b) is called a right T-vertex, while
the one on the right of Figure 5(b) is called a left T-vertex. The vertical T-vertex on the top
of Figure 5(c) is called a down T-vertex, while the one on the bottom of Figure 5(c) is called
an up T-vertex.

If νi is a crossing vertex(Figure 5(a)), then the conformality condition of s(x, y) at νi is

(λi1(x, y) − λi2(x, y))(x − xi)
α+1 + (µi1(x, y) − µi2(x, y))(y − yi)

β+1 ≡ 0; (4)

if νi is a horizontal T-vertex (Figure 5(b)), then the conformality condition of s(x, y) at νi is

(λi1(x, y) − λi2(x, y))(x − xi)
α+1 ∓ µi(x, y)(y − yi)

β+1 ≡ 0, (5)

for a right T-vertex, the sign before µi(x, y) is ‘−’, otherwise ‘+’; if νi is a vertical T-vertex
(Figure 5(c)), then the conformality condition of s(x, y) at νi is

∓λi(x, y)(x − xi)
α+1 + (µi1(x, y) − µi2(x, y))(y − yi)

β+1 ≡ 0, (6)
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for a down T-vertex, the sign before λi(x, y) is ‘−’, otherwise ‘+’. Here λi(x, y), λi1(x, y),
λi2(x, y) ∈ Pm−α−1,n, and µi(x, y), µi1(x, y), µi2(x, y) ∈ Pm,n−β−1.

We analysis further the conformality conditions in Equation (4), (5) or (6). For Equation
(4), since (x − xi)

α+1 and (y − yi)
β+1 are prime, we have

λi1(x, y) − λi2(x, y) = vi(x, y)(y − yi)
β+1,

µi1(x, y) − µi2(x, y) = hi(x, y)(x − xi)
α+1

for some hi(x, y), vi(x, y) ∈ Pm−α−1,n−β−1. Putting these back into Equation (4) gives

(vi(x, y) + hi(x, y))(x − xi)
α+1(y − yi)

β+1 ≡ 0.

Hence, vi(x, y) = −hi(x, y) = ci(x, y) ∈ Pm−α−1,n−β−1. We call ci(x, y) the vertex cofactor

of s(x, y) corresponding to an interior vertex νi.
Then the conformality condition at a crossing vertex in Equation (4) can be rewritten as

λi1(x, y) − λi2(x, y) = ci(x, y)(y − yi)
β+1,

µi1(x, y) − µi2(x, y) = −ci(x, y)(x − xi)
α+1.

(7)

Similarly, the conformality condition at a horizontal T-vertex in Equation (5) can be rewrit-
ten as

λi1(x, y) − λi2(x, y) = ci(x, y)(y − yi)
β+1,

∓µi(x, y) = −ci(x, y)(x − xi)
α+1;

(8)

and the conformality condition at a vertical T-vertex in Equation (6) can be rewritten as

∓λi(x, y) = ci(x, y)(y − yi)
β+1,

µi1(x, y) − µi2(x, y) = −ci(x, y)(x − xi)
α+1.

(9)

We note that, even if all the vertex cofactors ci(x, y), i = 1, . . . , V are determined, for each
cross-cut, there is still one interior edge whose smoothing cofactor is completely free.

Let Ec
h and Ec

v be the number of horizontal cross-cuts and the number of vertical cross-cuts
respectively, and σ be the number of independent free coefficients of the vertex cofactors. Then
the number of free coefficients of the smoothing cofactors of all interior edges is

Ec
h(m + 1)(n − β) + Ec

v(m − α)(n + 1) + σ,

hence, we have the following dimension formula of the spline space over a T-mesh:

dimS(m, n, α, β, T ) = (m + 1)(n + 1) + Ec
h(m + 1)(n − β) + Ec

v(m − α)(n + 1) + σ (10)

3.2 In-line conformality conditions

If there are no in-lines in T , namely, T is a simple quasi-cross-cut partition, the vertex
cofactors are relatively independent. Then we have

σ = V (m − α)(n − β),

and the dimension formula (10) becomes

dimS(m, n, α, β, T ) = (m+1)(n+1)+Ec
h(m+1)(n−β)+Ec

v(m−α)(n+1)+V (m−α)(n−β)
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If there exist in-lines in T , the vertex cofactors may need to satisfy some constraints. So in
general,

σ 6 V (m − α)(n − β).

For a horizontal in-line, both the endpoints are horizontal T-vertices. Suppose its valence
is κ(κ > 1), the smoothing cofactors across κ interior edges εkt

are µkt
(x, y), t = 1, . . . , κ, and

the vertex cofactors corresponding to κ + 1 interior vertices νit
= (xit

, yi) are cit
(x, y), t =

0, . . . , κ(see Figure 6). By Equation (7) and (8), we have the following κ + 1 equations

b b b b b b bνi0 νi1

νi2
νiκ−1

νiκ

µk1
µk2

µk3
µkκ−1

µkκ

Figure 6: Horizontal in-line

−µk1
(x, y) = ci0(x, y)(x − xi0 )

α+1

µk1
(x, y) − µk2

(x, y) = ci1(x, y)(x − xi1 )
α+1

. . . . . .

µkκ−1
(x, y) − µkκ

(x, y) = ciκ−1
(x, y)(x − xiκ−1

)α+1

µkκ
(x, y) = ciκ

(x, y)(x − xiκ
)α+1

Sum the above κ + 1 equations together, we obtain the horizontal in-line conformality

condition of the corresponding in-line

κ
∑

t=0

cit
(x, y)(x − xit

)α+1 ≡ 0 (11)

For a vertical in-line of valence ι(ι > 1), suppose ι + 1 interior vertices’ y-coordinates are
yjt

, t = 0, . . . , ι, and corresponding vertex cofactors are cjt
(x, y), t = 0, . . . , ι. Similarly, we have

the following vertical in-line conformality condition

ι
∑

t=0

cjt
(x, y)(y − yjt

)β+1 ≡ 0 (12)

Putting together all the in-line conditions like Equation (11) or (12) of the in-lines of T ,
we get the global in-line conformality condition of s(x, y). The global in-line conformal-
ity condition is a system of homogeneous linear equations with the coefficients of the vertex
cofactors as unknows.

Let Ei
h, Ei

v be the number of horizontal in-lines and the number of vertical in-lines in T ,
respectively. Then the global in-line conformality condition can be written as the following
matrix form:

MZ = 0, (13)
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where Z is a column vector consisting of the V (m−α)(n−β) coefficients of the vertex cofactors
corresponding to the V interior vertices, and M is a (Ei

h(m + 1)(n− β) + Ei
v(m−α)(n + 1))×

V (m − α)(n − β) matrix. Then σ can be determined as

σ = V (m − α)(n − β) − rankM. (14)

3.3 Dimension formula

Suppose p > q > 1, define Ap,q(x) = (ai,j) as a (p + 1) × (p − q) matrix, where

ai,j =

{

0, i < j or i > j + q + 1;
(

q+1
l

)

xq+1−l, j 6 i 6 j + q + 1, l = i − j.

Nonzero elements in each column of Ap,q are the expanding terms of binomial (x + 1)q+1, that
is,

Ap,q(x) =

























xq+1
(

q+1
1

)

xq xq+1

...
...

. . .

1
(

q+1
q

)

x · · · xq+1

1 . . .
(

q+1
1

)

xq

. . .
...
1

























,

We have the following

Lemma 3.1. Let Ap,q(x, y) =
(

Ap,q(x) Ap,q(y)
)

, suppose p > 2q + 1 and x 6= y ∈ R, then

rankAp,q(x, y) = p + 1.

Proof. Without loss of generality, assume x 6= 0.

When p = 2q + 1,

Ap,q(x, y) =

























xq+1 yq+1
(

q+1
1

)

xq xq+1
(

q+1
1

)

yq yq+1

...
...

. . .
...

...
. . .

1
(

q+1
q

)

x · · · xq+1 1
(

q+1
q

)

y · · · yq+1

1 . . .
(

q+1
1

)

xq 1 . . .
(

q+1
1

)

yq

. . .
...

. . .
...

1 1

























is a (p + 1) × (p + 1) square matrix. In order to calculate detAp,q(x, y), consider f(z) =
(x + z)q+1, g(z) = (y + z)q+1 two polynomials, according to the result about the resultant of
two polynomials in [1, p.73], we have

detAp,q(x, y) = res(f, g, z) = (x − y)(q+1)2 .

Since x 6= y, detAp,q(x, y) 6= 0, namely, rankAp,q(x, y) = p + 1.
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When p > 2q + 1,

Ap,q(x, y) =











































xq+1 yq+1

...
. . .

...
. . .

xq+1 yq+1

...
. . .

...
. . .

...
. . .

...
. . .

1 1
. . .

...
. . .

. . .
. . .

...
. . .

. . .

1 · · · · · · xq+1 1 · · · · · · yq+1

. . .
...

. . .
...

. . .
...

. . .
...

1 1











































.

Delete the first p − 2q − 1 columns of matrix Ap,q(y) and denote the result matrix by Ap,q(y),
then matrix

Ap,q =
(

Ap,q(x) Ap,q(y)
)

=











































xq+1

...
. . .

xq+1 yq+1

...
. . .

...
. . .

...
. . .

1
. . .

...
. . .

. . .
...

. . .
. . .

1 · · · · · · xq+1 1 · · · · · · yq+1

. . .
...

. . .
...

. . .
...

. . .
...

1 1











































is a (p + 1) × (p + 1) square matrix, it is easy to know the determinant

detAp,q = x(q+1)(p−2q−1)res(f, g, z) = x(q+1)(p−2q−1)(x − y)(q+1)2 6= 0,

hence, rankAp,q(x, y) = p + 1.
It is impossible for regular T-meshes to have only in-lines, since the number of adjacent

edges of an interior vertex should be 3 or 4, corresponding to T-junctional and crossing vertices
respectively. Furthermore, the endpoints of an in-line can’t be endpoints of other in-lines, but
can be inner vertices of others. Then we have

V > 2(Ei
h + Ei

v),

where V is the number of interior vertices, Ei
h and Ei

v the number of horizontal in-lines and
the number of vertical in-lines, respectively. So when m > 2α + 1, n > 2β + 1, it follows that

V (m − α)(n − β) > Ei
h(m + 1)(n − β) + Ei

v(m − α)(n + 1).

Hence, the coefficient matrix M in Equation(13) has more columns than rows. And when
m > 2α + 1, n > 2β + 1, we have
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Theorem 3.2. Let M be the coefficient matrix of the global in-line conformality condition
MZ = 0, suppose m > 2α + 1, n > 2β + 1, then

rankM = Ei
h(m + 1)(n − β) + Ei

v(m − α)(n + 1),

where Ei
h and Ei

v are the number of horizontal in-lines and the number of vertical in-lines,
respectively.

Proof. According to the property of M, we only need to show M is row full rank.
Suppose the form of the vertex cofactor ci(x, y) ∈ Pm−α−1,n−β−1 be

ci(x, y) =

m−α−1
∑

j=0

n−β−1
∑

k=0

ci
jkxjyk, i = 1, . . . , V.

For a horizontal in-line conformality condition(Equation (11)), let

Ci
k = (ci

0,k, ci
1,k, . . . , ci

m−α−1,k)T , k = 0, 1, . . . , n − β − 1

Ci = (Ci
0, C

i
1, . . . , C

i
n−β−1)

T ,

Ck = (Ci0
k , Ci1

k , . . . , Ciκ

k )T ,

C = (Ci0 , Ci1 , . . . , Ciκ)T .

Given t(t = 0, 1, . . . , κ) and k(k = 0, 1, . . . , n − β − 1), let Am,α(xit
)Cit

k = (b0, b1, . . . , bm)T ,

where for j = 0, . . . , m,

bj =

m−α−1
∑

l=0

aj,lc
it

l,k

=

min(j,m−α−1)
∑

l=max(0,j−α−1)

(

α + 1

j − l

)

x
α+1−(j−l)
it

cit

l,k,

since 0 6 l 6 m − α − 1, and aj,l is nonzero when l 6 j 6 l + α + 1.
Then we have

κ
∑

t=0

cit
(x, y)(x − xit

)α+1 =

κ
∑

t=0

m−α−1
∑

j=0

n−β−1
∑

k=0

cit

jkxjyk(x − xit
)α+1

=
κ
∑

t=0

m−α−1
∑

j=0

n−β−1
∑

k=0

α+1
∑

l=0

(

α + 1

l

)

(−xit
)α+1−lcit

jkxj+lyk

=

n−β−1
∑

k=0

yk

κ
∑

t=0

m−α−1
∑

j=0

α+1
∑

l=0

(

α + 1

l

)

(−xit
)α+1−lcit

jkxj+l

=

n−β−1
∑

k=0

yk

κ
∑

t=0

m
∑

j=0

min(j,m−α−1)
∑

l=max(0,j−α−1)

(

α + 1

j − l

)

(−xit
)α+1−(j−l)cit

l,kxj

=

n−β−1
∑

k=0

yk

(

κ
∑

t=0

Am,α(−xit
)Cit

k

)

· X

=

n−β−1
∑

k=0

yk
((

Am,α(−xi0) Am,α(−xi1) . . . Am,α(−xiκ
)
)

Ck

)

· X,
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where ’·’ is the dot product of vectors, X = (1, x, . . . , xm)T .

If the sum of polynomials is expanded in ascendant lex order(x < y), then Equation (11)
can be written into

Bm,αC = 0,

where

Bm,α =
(

Bm,α(xi0) Bm,α(xi1 ) . . . Bm,α(xiκ
)
)

and Bm,α(x) is a diagonal block matrix of order n − β as follows:

Bm,α(x) =











Am,α(−x)
Am,α(−x)

. . .

Am,α(−x)











.

Similarly, for a vertical in-line conformality condition(Equation (12)), if the sum of polyno-
mials is expanded in ascendant lex order(x > y) and the coefficients of ci(x, y) are ordered in a
different way, namely, let

C
i

k = (ci
k,0, c

i
k,1, . . . , c

i
k,n−β−1)

T , k = 0, 1, . . . , m − α − 1

C
i

= (C
i

0, C
i

1, . . . , C
i

m−α−1)
T ,

C = (C
i0

, C
i1

, . . . , C
iι

)T .

then Equation (12) can be written into

Bn,βC = 0,

where

Bn,β =
(

Bn,β(yi0) Bn,β(yi1) . . . Bn,β(yiι
)
)

and Bn,β(y) is a diagonal block matrix of order m − α as follows:

Bn,β(y) =











An,β(−y)
An,β(−y)

. . .

An,β(−y)











.

Obviously, the ordering of in-line conformality conditions in the system of linear equations
MZ = 0, the ordering of monomials in the expanded polynomials, the ordering of vertex
cofactors in Z and the ordering of coefficients of a vertex cofactor in Z influence the form of
coefficient matrix M.

We choose these orderings as follows:

1. Ordering of in-line conformality conditions: Since the endpoints of an in-line can’t
be endpoints of other in-lines, but can be inner vertices of others. Then in the global in-
line conformality condition, first put the in-line conformality conditions, associated with
which the in-lines whose endpoints are not in other in-lines; then in the rest, choose the
in-lines whose endpoints are not in other in-lines; repeat the above process until all the
in-lines are ordered.
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2. Ordering of monomials: For a horizontal in-line conformality condition, the sum of
polynomials is expanded in ascendant lex order(x < y); for a vertical in-line conformality
condition, the sum of polynomials is expanded in ascendant lex order(x > y).

3. Ordering of vertex cofactors: In Z, first put the coefficients of two vertex cofactors
associated with the endpoints of all in-lines sequently, then put the coefficients of other
vertex cofactors arbitrarily.

4. Ordering of coefficients of vertex cofactors: In Z, the coefficients of vertex cofactors
associated with the two endpoints are ordered in the way discussed before, the coefficients
of other vertex cofactors can be ordered arbitrarily.

Then the columns corresponding to the endpoints of all the in-lines appear in the first 2(Ei
h +

Ei
v)(m − α)(n − β) columns of M, and the sub-matrix consisting of these columns is with the

form as the following (Ei
h + Ei

v) × (Ei
h + Ei

v) upper triangular block matrix:

M =







B1(t1, t
′

1) ∗
. . .

B1(tEi

h
+Ei

v
, t′

Ei

h
+Ei

v

)






,

where B1(t, t
′) =

(

B(t) B(t′)
)

, B(t) is Bm,α(x) or Bn,β(y), t and t′ are the x-coordinates
or y-coordinates of the two endpoints corresponding to the horizontal in-line and the vertical
in-line respectively. In M, every block row corresponds to an in-line conformality condition,
every block column corresponds to the two vertex cofactors associated with the endpoints of
an in-line.

Rearranging columns, B1(t, t
′) can be transformed into a diagonal block matrix:











A(t, t′)
A(t, t′)

. . .

A(t, t′)











,

where A(t, t′) is Am,α(t, t′) or An,β(t, t′) defined in Lemma 3.1 corresponding to the horizontal
in-line and the vertical in-line respectively. By Lemma 3.1, for a horizontal in-line, we have
rankB1(t, t

′) = (m + 1)(n − β); for a vertical in-line, we have rankB1(t, t
′) = (m − α)(n + 1).

Then rankM = Ei
h(m + 1)(n − β) + Ei

v(m − α)(n + 1), so M is row full rank. This completes
the proof.

By the above theorem and Equation (10) and (14), we have the following dimension formula:

Theorem 3.3. Given a regular T-mesh and a corresponding spline space S(m, n, α, β, T ),
suppose m > 2α + 1 and n > 2β + 1, then

dimS(m, n, α, β, T ) = (m + 1)(n + 1) + V (m − α)(n − β)

+(Ec
h − Ei

h)(m + 1)(n − β) + (Ec
v − Ei

v)(m − α)(n + 1), (15)

where V is the number of interior vertices, Ec
h and Ec

v the number of horizontal cross-cuts and
the number of vertical cross-cuts respectively, Ei

h and Ei
v the number of horizontal in-lines and

the number of vertical in-lines respectively.

With Euler’s formula, we have

Corollary 3.4. Given a regular T-mesh and a corresponding spline space S(m, n, α, β, T ),
suppose m > 2α + 1 and n > 2β + 1, then dimension formula (1) and (15) are equivalent.
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Proof. Let υ be the number of interior vertices in a grid line(cross-cut, ray or in-line). Then
for a cross-cut of valence p, we have p = υ + 1; for a ray of valence q, we have q = υ; for a
in-line of valence r, we have r = υ − 1.

It is easy to show that

Eh =

Ec

h
∑

i=1

pi +

Er

h
∑

i=1

qi +

Ei

h
∑

i=1

ri

and

V =

Ec

h
∑

i=1

(pi − 1) +

Er

h
∑

i=1

qi +

Ei

h
∑

i=1

(ri + 1),

where V is the number of interior vertices, Eh the number of interior horizontal edges, Ec
h, Er

h

and Ei
h are the number of horizontal cross-cuts, the number of horizontal rays and the number

of horizontal in-lines respectively. From the above two equations, it follows that

Eh − V = Ec
h − Ei

h.

Similarly,

Ev − V = Ec
v − Ei

v,

where Ev is the number of interior vertical edges, Ec
v and Ei

v are the number of vertical cross-
cuts and the number of vertical in-lines respectively.

Putting the above two equations into Equation (15), we have

dimS(m, n, α, β, T ) = (Eh + Ev − V + 1)(m + 1)(n + 1) + V (α + 1)(β + 1)

−Eh(m + 1)(β + 1) − Ev(α + 1)(n + 1).

By Euler’s formula, it follows that F = Eh + Ev − V + 1. This completes the proof.

4. Conclusions and Future Work

In this paper, we investigate the dimension of the spline space S(m, n, α, β, T ) over a given
T-mesh T with the smoothing cofactor method, and derive an explicit dimension formula when
m > 2α+1 and n > 2β+1, which is equivalent to Deng’s. However, since each grid line consists
of one or several interior edges, our formula is more convenient when calculating the dimension.

Compared with the simple cross-cut partition grid in the traditional multivariate spline
theory [7], besides cross-cuts and rays, there are in-lines in a T-mesh. Therefore, it is not
surprising that the dimension formulae of the bivariate spline spaces on a simple cross-cut
partition grid are very similar to those of the spline spaces over a T-mesh proposed here. In
both spline spaces, cross-cuts contribute additional degrees of freedom, while rays do not. And
in the spline spaces over a T-mesh, the existence of the in-lines decreases the degrees of freedom.
We hope that the introduction of the vertex cofactor and the in-line conformality condition may
give some clues to the study of the bivariate spline spaces over a T-mesh.

In our analysis procedure, the constraints m > 2α + 1 and n > 2β + 1 are key to guarantee
the coefficient matrix M to be row full rank. In further research, we will investigate whether a
general dimension formula without the constraints can be derived.

In [2], the construction of basis functions of the spline space over a T-mesh is briefly dis-
cussed. In the future we will work on how to construct more applicable basis functions and
apply them in geometric modelling, for example, in surface approximation and interpolation.
The expectation is that the new splines over T-meshes inherit the attractive properties of T-
spline but will prove more powerful in certain geometric operations.
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