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Abstract

This paper investigates various Weber problems including unconstrained Weber prob-
lems and constrained Weber problems under l1, l2 and l∞-norms. First with a trans-
formation technique various Weber problems are turned into a class of monotone linear
variational inequalities. By exploiting the favorable structure of these variational inequal-
ities, we present a new projection-type method for them. Compared with some other
projection-type methods which can solve monotone linear variational inequality, this new
projection-type method is simple in numerical implementations and more efficient for solv-
ing this class of problems; Compared with some popular methods for solving unconstrained
Weber problem and constrained Weber problem, a singularity would not happen in this
new method and it is more reliable by using this new method to solve various Weber
problems.
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1. Introduction

Weber problem (WP) is one of the fundamental models in location theory and has many
applications in practice, see, e.g., [10]. Its objective is to site a new facility in the plane
to minimize a sum of weighted distances from the new facility to a set of customers whose
locations are known. Weber problem has the following formulation:

WP: min
x∈R2

C(x) =
n

∑

j=1

wj‖x − aj‖p, (1.1)

where ai is the known location of the ith customer, i = 1, · · · , n; n is the number of customers;
x is the unknown location of the new facility; wi is the weight associated with the customer
ai, i = 1, · · · , n; ‖ · ‖p is the distance measuring function.

When the new facility x is restricted to be sited in a constrained area X , this model is
named as constrained Weber problem (CWP).

Some efficient methods have been proposed for solving Weber problem and constrained
Weber problem. Weiszfeld procedure [12] is perhaps the most popular and standard method for
Weber problem with Euclidean distances; Recently, a so-called Newton-Bracketing (NB) method
[8] was presented to solve Weber problem. The well-known method for constrained Weber
problem whose constrained area is the union of a finite set of convex polygons was presented
in [3], which consists in a search for the unconstrained solution followed by an exploration of
some of the boundary parts of the polygons defining the feasible region.
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However, a singularity may happen for these popular methods: if an iterate generated by
them is identical with one of customers, the next iterate is undefined. The reason for this
singularity is that a “bad” initial point is chosen for these methods. Chandrasekaran and
Tamir [2] showed that the set of these “bad” initial points may contain a continuum set, and
thus in advance we have no way to clearly know whether one initial point is bad or not.

In this paper, we discuss various Weber problems (VWP) including Weber problems and
constrained Weber problems under l1, l2 and l∞-norms,

VWP: min
x∈X

C(x) =

n
∑

j=1

wj‖x − aj‖p, (1.2)

where X is a constrained area which is closed and convex in R2. Note that VWP reduce to
Weber problem in the case that X = R2. With a transformation technique, various Weber
problems can be reformulated as min-max problems from which a class of monotone linear
variational inequalities (LVIs) may be obtained,

{

(x − x∗)T (AT z∗ + q1) ≥ 0 ∀ x ∈ X,

(z − z∗)T (−Ax∗ + q2) ≥ 0 ∀ z ∈ Z,
(1.3)

where x ∈ Rk, z ∈ Rkn, A = (Ik, · · · , Ik)T ∈ Rkn×k, Ik is the k × k identity matrix and X and
Z are closed convex sets. Thus, solving various Weber problems is equivalent to solving (1.3).

Many computational methods have been established for solving monotone linear variational
inequality. The projection-type methods, e.g., projection-contraction (PC) methods, may be
one class of the simplest methods for solving these problems and they are also applicable for
solving (1.3). Our purpose is to exploit the favorable structure of (1.3) in practice and propose
a more efficient projection-type method for it. Note that for LVI (1.3) AT A = nIk. Based on
this observation, a new projection-type method is proposed. The new method is rather simple
in numerical implementations. The most significance for proposing this new method is that
for an arbitrarily chosen initial point the singularity would not happen for this new method,
which guarantees that using this method we can acquire the optimal solution of various Weber
problems. Numerical results are reported, which shows that the new projection-type method
is meaningful for solving these problems.

The paper is organized as follows. Some popular methods for solving Weber problem are
provided in Section 2. In Section 3 various Weber problems under l1, l2 and l∞-norms are
transformed into this class of variational inequalities (1.3). Some preliminaries required in
coming analysis are given in Section 4. The new projection-type method for solving this class
of variational inequalities is presented in Section 5. In Section 6 the convergence of the new
method is provided and preliminary numerical results are reported in Section 7. Finally, some
concluding remarks are drawn in the last section.

2. Some Existing Algorithms for Solving Weber Problem

In this section we discuss two popular methods for solving Weber problem: Weiszfeld pro-
cedure and Newton-Bracketing method.

2.1 Weiszfeld procedure

Since the distance measuring function is convex, as a sum of convex functions, the objective
function C(x) of Weber problem is convex. It is clear that the set of its optimal solutions is
nonempty and convex. Whereas, the main difficulty for solving Weber problem is that C(x)
is non-differentiable at some locations, e.g., the locations of customers. The gradient of C(x)
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with Euclidean distances exists for all x /∈ {a1, · · · , an}, and it is given by:

∇C(x) =

n
∑

j=1

wj

x − aj

‖x − aj‖2

.

If C is differentiable at x∗, x∗ is an optimal location if and only if

∇C(x∗) =

n
∑

j=1

wj

x∗ − aj

‖x∗ − aj‖2

= 0.

It follows that

x∗ =

∑n

j=1
wj‖x

∗ − aj‖
−1
2 aj

∑n

j=1 wj‖x∗ − aj‖
−1
2

.

The recursion of Weiszfeld procedure is

xk+1 =

∑n

j=1
wj‖x

k − aj‖
−1
2 aj

∑n

j=1
wj‖xk − aj‖

−1
2

. (2.1)

Weiszfeld procedure is perhaps the most popular and standard method for solving Weber prob-
lem with Euclidean distances. Its convergence was studied in [7, 9, 11], etc.

2.2 Newton-Bracketing method

NB method is an iterative method which works by improving bounds on the minimum value
of C(x), rather than by approximating a solution x∗ satisfying ∇C(x) = 0.

Each iteration of NB method generates a bracket [Lk, Uk] and an iterate xk satisfying
Lk ≤ C(xk) ≤ Uk.

Newton-Bracketing method

Given ε > 0, a initial point x0 and a bracket [L0, U0] which satisfies L0 ≤ C(x0) ≤ U0.
For k = 0, 1, · · ·, if Uk − Lk > ε then do:

Mk = αUk + (1 − α)Lk, 0 < α < 1;

xk+1 = xk −
C(xk) − Mk

‖∇C(xk)‖2
∇C(xk); (2.2)

Lk+1 =

{

Lk, if C(xk+1) < C(xk),

Mk, otherwise;

Uk+1 =

{

C(xk+1), if C(xk+1) < C(xk),

Uk, otherwise;

xk+1 =

{

xk+1, if C(xk+1) < C(xk),

xk, otherwise.

Remark 1. According to (2.1) and (2.2), it is obvious that any iterate in the sequence {xk}
generated by Weiszfeld procedure and NB method shouldn’t be identical with any of the cus-
tomers. Otherwise, the methods will stop at a non-optimal solution of Weber problem.

3. LVI Reformulations of VWP

In this section various Weber problems under l1, l2 and l∞-norms are reformulated as linear
variational inequalities with a transformation technique.
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Note that for any d ∈ R2, we have the following properties

w‖d‖1 = max
ξ∈Bw

∞

dT ξ, (3.1)

w‖d‖2 = max
ξ∈Bw

2

dT ξ, (3.2)

w‖d‖∞ = max
ξ∈Bw

1

dT ξ, (3.3)

where

Bw
1 = {ξ ∈ R2 | ‖ξ‖1 ≤ w},

Bw
2 = {ξ ∈ R2 | ‖ξ‖2 ≤ w},

Bw
∞ = {ξ ∈ R2 | ‖ξ‖∞ ≤ w}.

According to (3.1), (3.2) and (3.3), various Weber problems under lp-norms,

min
x∈X

C(x) =

n
∑

j=1

wj‖x − aj‖p, p = 1, 2,∞, (3.4)

are equivalent to the following min-max problems, respectively:

min
x∈X

max
zi∈B

wi
t

n
∑

i=1

zT
i (x − ai), t = ∞, 2, 1, (3.5)

where each zi (i = 1, 2, · · · , n) is a vector in Bwi

t = {ξ ∈ R2 | ‖ξ‖t ≤ wi}. A compact form of
(3.5) is

min
x∈X

max
z∈Bt

zT (Ax − b), (3.6)

where
zT = (zT

1 , zT
2 , · · · , zT

n ), Bt = Bw1

t × Bw2

t × · · · × Bwn

t ,

A = (I2, I2, · · · , I2)
T , bT = (aT

1 , aT
2 , · · · , aT

n ).
(3.7)

Let (x∗, z∗) ∈ X × Bt be any solution of (3.6), then it follows that

zT (Ax∗ − b) ≤ z∗T (Ax∗ − b) ≤ z∗T (Ax − b), ∀ x ∈ X, z ∈ Bt, (3.8)

thus (x∗, z∗) is a solution of the following linear variational inequality:

x∗ ∈ X, z∗ ∈ Bt

{

(x − x∗)T (AT z∗) ≥ 0 ∀ x ∈ X,

(z − z∗)T (−Ax∗ + b) ≥ 0 ∀ z ∈ Bt.
(3.9)

Note that (3.9) has the same structure as (1.3) with Z taken as Bt, thus, various Weber problems
can be transformed into a class of linear variational inequalities (1.3). A compact form of the
obtained LVI is given as:

LVI(Ω, M, q) : u∗ ∈ Ω, (u − u∗)T (Mu∗ + q) ≥ 0, ∀ u ∈ Ω, (3.10)

where

u =

(

x

z

)

, M =

(

0 AT

−A 0

)

, q =

(

0

b

)

, A = (I2, · · · , I2)
T , Ω = X × B. (3.11)
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For various Weber problems under different lp-norms, the different forms of B are

B =







B∞, p = 1;

B2, p = 2;

B1, p = ∞.

(3.12)

4. Preliminaries for Proposed Projection-type Method

In this section, we summarize some basic concepts and known properties which will be used
in coming analysis.

Definition 1. For a given vector v ∈ Rn and a closed convex set Ω, the solution of problem

min{‖ u − v ‖2 | u ∈ Ω} (4.1)

is called as the projection of v on Ω, denoted by PΩ(v). In other words,

PΩ(v) = argmin{‖ u − v ‖2 | u ∈ Ω}. (4.2)

Proposition 1.[6] Let Ω ⊂ Rn be a closed convex set, then

(v − PΩ(v))T (u − PΩ(v)) ≤ 0, ∀ v ∈ Rn, u ∈ Ω. (4.3)

Proposition 2. Given a closed convex set Ω ⊂ Rn, we have

‖PΩ(u) − PΩ(v)‖ ≤ ‖u − v‖ , ∀ u, v ∈ Rn. (4.4)

Theorem 1. [1, 5] Let β > 0, then u∗ is a solution of LVI(Ω, M, q) if and only if

u∗ − PΩ[ u∗ − β(Mu∗ + q) ] = 0. (4.5)

Hence, solving LVI(Ω, M, q) is equivalent to finding a zero point of the residue function

e(u∗, β) := u∗ − PΩ[ u∗ − β(Mu∗ + q) ]. (4.6)

e(u, 1) is commonly abbreviated to e(u) and ‖e(u)‖ is often regarded as some measure of the
discrepancy between the solution and the current iterate.

5. The Proposed Projection-type Method

Note that AT = (Ik, · · · , Ik) and AT A = nIk. Based on this observation a new projection-
type method is proposed to solve the favorable class of linear variational inequalities (1.3). The
general iteration of the proposed projection-type method is described as follows:
The proposed projection-type method.

Step 0. Given a tolerance ε > 0 and u0 = (x0, z0) ∈ Ω. Set k = 0.

Step 1. Calculate ũk = (x̃k, z̃k):

z̃k = PZ [zk + (Axk − q2)], (5.1)

x̃k = PX [
1

n
(nxk − (AT z̃k + q1) − AT (z̃k − zk))]. (5.2)
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Step 2. Compute ‖e(ũk)‖, and
if ‖e(ũk)‖ < ε, ũk = (x̃k, z̃k) is the solution and stop;
else adopt slack technique to calculate uk+1 = (xk+1, zk+1) :

zk+1 = zk + α(z̃k − zk), (5.3)

xk+1 = xk + α(x̃k − xk), (5.4)

and go to Step 1.

Remark 2. In fact, x̃k in (5.2) is a solution of the following linear variational inequality:

x̃k ∈ X, (x′ − x̃k)T ((AT z̃k + q1) + AT (z̃k − zk) + AT A(x̃k − xk)) ≥ 0, ∀ x′ ∈ X. (5.5)

This can be seen by using Theorem 1. According to Theorem 1, (5.5) is equivalent to

x̃k = PX{x̃k − β · [(AT z̃k + q1) + AT (z̃k − zk) + AT A(x̃k − xk)]}, ∀ β > 0. (5.6)

Note that AT A = nIk. If we take β = 1/n, (5.6) will be turned into

x̃k = PX [
1

n
(nxk − (AT z̃k + q1) − AT (z̃k − zk))]. (5.7)

Thus (5.5) is equivalent to (5.2) and x̃k in (5.2) is a solution of (5.5).

Remark 3. α is the slack factor which can be chosen from the interval (0, 2). If α = 1, we
have

uk+1 = ũk = uk + α(ũk − uk), α = 1, (5.8)

i.e., ũk is directly used as the next iterate uk+1. This can be interpreted as follows: start with
uk and move along the direction ũk − uk by a step length α = 1, then we get the next iterate
uk+1. Since α can be chosen from the interval (0, 2), a natural question is whether a bigger step
length could improve the computational efficiency of the proposed method. Numerical results
in Section 6 reveal that α ∈ [1.4, 1.8] is more efficient than α = 1.

It is obvious that given an iterate uk = (xk, zk) the next iterate uk+1 = (xk+1, zk+1) may
be easily acquired by (5.1)–(5.4), and therefore the proposed method is extremely simple in
numerical implementations.

6. Convergence Analysis

This section analyzes the convergence of the new projection-type method. Global conver-
gence of it is proved under mild assumption. It is reasonable to assume that the solution set of
LVI (1.3) is nonempty. In particular, we denote u∗ = (x∗, z∗) a solution of LVI (1.3).

Lemma 1. The sequences {uk} and {ũk} generated by the proposed method satisfy

{(zk − z∗) + A(xk − x∗)}T {(zk − z̃k) + A(xk − x̃k)} ≥ ‖(zk − z̃k) + A(xk − x̃k)‖2. (6.1)

Proof. It follows from Proposition 1 that

(z̃k − z)T {[zk + (Axk − q2)] − z̃k} ≥ 0, ∀ z ∈ Z. (6.2)

Since u∗ = (x∗, z∗) is a solution of LVI (1.3), z∗ ∈ Z, and therefore

(z̃k − z∗)T {[zk + (Axk − q2)] − z̃k} ≥ 0. (6.3)



A Projection-Type Method for Solving Various Weber Problems 533

According to the second inequality of LVI (1.3) and z̃k ∈ Z, we have

(z̃k − z∗)T (−(Ax∗ − q2)) ≥ 0. (6.4)

Adding (6.3) and (6.4) we obtain

(z̃k − z∗)T {(zk − z̃k) + A(xk − x∗)} ≥ 0. (6.5)

According to the first inequality of LVI (1.3) and x̃k ∈ X , we know

(x∗ − x̃k)T (−AT z∗ − q1) ≥ 0. (6.6)

Due to (5.5) and x∗ ∈ X , we achive

(x∗ − x̃k)T {(AT z̃k + q1) + AT (z̃k − zk) + AT A(x̃k − xk)} ≥ 0. (6.7)

Adding (6.6) and (6.7), the following inequality is obtained:

(x∗ − x̃k)T {(AT (z̃k − z∗) + AT (z̃k − zk) + AT A(x̃k − xk)} ≥ 0, (6.8)

and consequently

(z̃k − z∗)T A(x∗ − x̃k) + (A(x̃k − x∗))T {(zk − z̃k) + A(xk − x̃k)} ≥ 0. (6.9)

Adding (6.5) and (6.9) we have

{(z̃k − z∗) + A(x̃k − x∗)}T {(zk − z̃k) + A(xk − x̃k)} ≥ 0. (6.10)

Lemma 1 follows from (6.10) directly and the proof is complete.

Lemma 2. Let {uk} and {ũk} be the sequences produced by the proposed method, then the
following inequality is true,

‖(zk+1 − z∗) + A(xk+1 − x∗)‖2

≤ ‖(zk − z∗) + A(xk − x∗)‖2 − α(2 − α)‖(zk − z̃k) + A(xk − x̃k)‖2. (6.11)

Proof. By a simple manipulation, we have

‖(zk+1 − z∗) + A(xk+1 − x∗)‖2

= ‖[(zk − z∗) + A(xk − x∗)] − α[(zk − z̃k) + A(xk − x̃k)]‖2

= ‖(zk − z∗) + A(xk − x∗)‖2 − 2α((zk − z∗) + A(xk − x∗))T ((zk − z̃k) + A(xk − x̃k))

+α2‖(zk − z̃k) + A(xk − x̃k)‖2

≤ ‖(zk − z∗) + A(xk − x∗)‖2 − α(2 − α)‖(zk − z̃k) + A(xk − x̃k)‖2.

The last inequality follows from Lemma 1.
Now we are ready to prove the global convergence of the proposed projection-type method.

Theorem 2. For an arbitrarily chosen initial point u0 and a slack factor α ∈ (0, 2), the
proposed method will generate a sequence {ũk} which converges to a solution of (1.3).

Proof. By using v := z + Ax, (6.11) can be written as:

‖vk+1 − v∗‖2 ≤ ‖vk − v∗‖2 − α(2 − α)‖vk − ṽk‖2. (6.12)
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Since α ∈ (0, 2), (6.12) means the sequence {vk} is Fejér-monotone with respect to v∗. Hence
{vk} is bounded and

lim
k→∞

‖vk − ṽk‖ = 0. (6.13)

Note that

e(ũk) =

(

ex(ũk)

ez(ũ
k)

)

=

(

x̃k − PX [x̃k − (AT z̃k + q1)]

z̃k − PZ [z̃k − (−Ax̃k + q2)]

)

.

Substituting the first x̃k in ex(ũk) and the first z̃k in ez(ũ
k), respectively, by

PX{x̃k − [(AT z̃k + q1) + AT (z̃k − zk) + AT A(x̃k − xk)]}, (6.14)

PZ [zk + (Axk − q2)], (6.15)

according to (5.6) and (5.1), and using the non-expansive proposition (4.4) of the projection
operator, we have

‖e(ũk)‖ ≤

∥

∥

∥

∥

(

AT (zk − z̃k) + AT A(xk − x̃k)

(zk − z̃k) + A(xk − x̃k)

)
∥

∥

∥

∥

≤

∥

∥

∥

∥

(

AT

I

)

(vk − ṽk)

∥

∥

∥

∥

.

It follows that
lim

k→∞
e(ũk) = 0. (6.16)

Let ũ∗ be a cluster point of {ũk} and the subsequence {ũkj} converges to ũ∗. Since e(u) is a
continuous function with respect to u, according to (6.16) we have

e(ũ∗) = lim
j→∞

e(ũkj ) = 0. (6.17)

It follows that every cluster point of {ũk} is a solution of LVI (1.3). Assume that {ũk} has
more than one cluster points, e.g., (x̃∗

1, z̃
∗
1) and (x̃∗

2, z̃
∗
2). Denote

v∗1 = z̃∗1 + Ax̃∗
1, v∗2 = z̃∗2 + Ax̃∗

2, (6.18)

then v∗1 and v∗2 are two cluster points of {ṽk}. However (6.12) and (6.13) indicate that

lim
k→∞

vk = lim
k→∞

ṽk = v∗1 = v∗2 , (6.19)

and thus
(z̃∗1 − z̃∗2) = A(x̃∗

2 − x̃∗
1). (6.20)

According to the second inequality of LVI (1.3) and z̃∗1 , z̃∗2 ∈ Z, we have

( z̃∗1 − z̃∗2)T (−Ax̃∗
2 + q2) ≥ 0, (z̃∗2 − z̃∗1)T (−Ax̃∗

1 + q2) ≥ 0. (6.21)

Adding the two inequalities in (6.21), we obtain

(z̃∗1 − z̃∗2)T (−A(x̃∗
2 − x̃∗

1)) ≥ 0. (6.22)

Substituting (6.20) into (6.22) and using AT A = nIk, we get

−n‖x̃∗
1 − x̃∗

2‖
2 ≥ 0. (6.23)
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It follows that
x̃∗

1 = x̃∗
2, z̃∗1 = z̃∗2 , (6.24)

thus {ũk} has exactly one cluster point and

lim
k→∞

ũk = u∗. (6.25)

The proof is complete.

Remark 4. Using Weiszfeld procedure, NB method to solve Weber problem and the algorithm
in [3] to solve constrained Weber problem require comparatively little CPU time. Compared
with these popular methods, the proposed projection-type method has some merits:

1. The projection-type method is applicable for solving both Weber problem and constrained
Weber problem whose constrained area is closed and convex;

2. The singularity that if an iterate is identical with one of customers then the next iterate
would be undefined may happen in these popular methods. Whereas, it follows from
Theorem 2 that this singularity would not happen in the proposed projection-type method,
thus, for an arbitrarily chosen initial point this new projection-type method can acquire
the solution of Weber problem and constrained Weber problem.

7. Numerical Experience

This section has two parts:

1). Subsection 7.1 illustrates that this singularity would not happen in the proposed projection-
type method.

2). Subsection 7.2 reports the performance of the projection-type method for solving a large
number of various Weber problems.

All tested problems are coded with MATLAB 6.5 and numerical experiments have been carried
out in PC Pentium IV with CPU 1.7G. The stopping criterion of the proposed method is chosen
as

‖e(u)‖∞ < 10−5. (7.1)

7.1 Singularity

When using the popular methods to solve Weber problem and constrained Weber problem,
according to (2.1) and (2.2), we readily know that if one iterate xk is identical with one of
the customers then the next iterate xk+1 is undefined and these methods would stop at a non-
optimal solution. The reason for this singularity is that we choose a “bad” initial point. To
avoid this singular case an appropriate initial point should be taken. Whereas Chandrasekaran
and Tamir (1989) showed that the set of “bad” initial points may contain a continuum subset
and in advance we have no way to clearly know whether one initial point is “good” or “bad”.
However, Theorem 2 guarantees that for an arbitrarily chosen initial point this new method
can acquire the optimal solution of Weber problem and constrained Weber problem.

To illustrate this, we consider the following simple Weber problem. There are nine customers
ai (i = 1, · · · , 9) in the plane whose locations are given by the columns of the following matrix.
All wi are 1. It is easy to know its optimal solution is (0, 0).

(

−1 0 1 −1 0 1 −1 0 1

−1 −1 −1 0 0 0 1 1 1

)

(7.2)

When Weiszfeld procedure or NB method is used to solve this Weber problem, the following
two kinds of points can’t be selected as the initial point:
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1) the nine customers and,

2) some other points which are not customers and beginning with which may generate an
iterate identical with one of the customers.

However, any point in the plane can be taken as the initial point of the proposed projection-
type method. Table 7.1 gives the main results of the new projection-type method for different
initial points. In Table 7.1 “randomly” means this problem is tested 100 times with randomly
generated initial points and the numbers are the average number of iterations and the average
computing time.

Table 7.1. Main results for different initial points

initial point iterations CPU time(s) initial point iterations CPU time(s)

a1 38 0.01643 a6 38 0.01702

a2 38 0.01612 a7 38 0.01832

a3 38 0.01562 a8 38 0.01563

a4 38 0.01563 a9 38 0.01562

a5 1 0.00090 randomly 37.45 0.01532

This simple example shows that the proposed projection-type method removes the singu-
larity and its implementation is not effected even when some of its iterates coincides with the
location of a customer. This improvement is especially meaningful for the case that the lo-
cations of customers are dense. In this sense the proposed projection-type method has the
advantage of Weiszfeld procedure and NB method.

7.2 Performance of the projection-type method

In order to verify practical efficiency of the proposed projection-type method, we use this
method to solve a large number of constrained Weber problems. CWPs under l2-norm are used
in our numerical experiments, however, as we have shown, the proposed method are also ap-
plicable for solving various Weber problems under l1 and l∞-norms. Twenty CWPs are tested
for each size and the average number of iterations and computing time are computed. The
customers of tested problems are randomly generated from (−10, 10)2 and the weights are ran-
domly generated from (0, 5). The constrained area X is taken as X = {x| ‖x− (−0.5, 0)T ‖2 ≤
1}.

Table 7.2 reports numerical results obtained by using different methods to solve linear
variational inequalities arising from CWPs. “�” in Table 7.2 means computing time is more
than two minutes. Table 7.2 shows that

1. As the sizes of CWPs increase, the number of iterations and computing time needed in
the proposed method increase too. In general, they increase rather slowly with the size.

2. The proposed method needs much fewer iterations and less computing time than the
method presented in [4] requires.

We know PC method in [4] is efficient for general monotone linear variational inequality. How-
ever, since the proposed method exploits the favorable structure of LVI (1.3), it is more efficient
for this class of problems.
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Table 7.2. Numerical results obtained by using different methods

PC method in [4] New method PC method in [4] New method

n iter. CPU(s) iter. CPU(s) n iter. CPU(s) iter. CPU(s)

50 58.14 0.15812 33.88 0.03125 600 404.50 22.76633 67.28 0.66705

100 137.23 0.73237 38.93 0.06953 700 422.87 29.89183 70.75 0.81405

200 208.52 2.51645 46.22 0.15594 800 531.30 46.26600 72.20 0.95780

300 274.68 5.98351 51.82 0.25908 900 632.22 66.48472 75.40 1.12810

400 344.24 10.82863 57.26 0.38500 1000 767.65 95.64139 81.80 1.36570

500 390.91 16.78115 61.88 0.51030 2000 >1000 � 86.30 2.83280

In Step 2 of the proposed method a slack technique is applied. According to Theorem 2, slack
factor α can be drawn from the interval (0, 2). In our numerical experiences, we have found
that slack factor α ∈ [1.4, 1.8] is more efficient than α = 1. Table 7.3 reveals computational
efficiency of the slack technique. The columns of “slack” and “noslack” give the average number
of iterations and computing time for this class of problems with slack factor α taken as 1.6 and
1, respectively. It is clear that the proposed method with slack factor α = 1.6 needs about
2/3 times number of iterations and computing time as the method with α = 1 requires, which
indicates that slack technique can improve computational efficiency of the proposed method
greatly.

Table 7.3. Main results using the proposed method

with/without slack technique applied

noslack (α = 1) slack (α = 1.6) noslack (α = 1) slack (α = 1.6)

n iter. CPU(s.) iter. CPU(s.) n iter. CPU(s.) iter. CPU(s.)

50 47.25 0.04375 33.88 0.03125 600 105.40 1.05780 67.28 0.66705

100 61.84 0.11492 38.93 0.06953 700 103.10 1.20160 70.75 0.81405

200 75.50 0.26026 46.22 0.15594 800 113.95 1.50235 72.20 0.95780

300 85.10 0.42814 51.82 0.25908 900 118.20 1.80160 75.40 1.12810

400 102.80 0.67970 57.26 0.38500 1000 122.10 2.04840 81.80 1.36570

500 105.30 0.89314 61.88 0.51030 2000 138.90 4.55150 86.30 2.83280

8. Conclusions

This paper discusses various Weber problems which are very relevant for practical appli-
cations. A transformation technique is adopted to reformulate various Weber problems as
min-max problems from which a class of monotone linear variational inequalities is obtained.
Based on the favorable structure of obtained variational inequalities, a new projection-type
method is suggested, which is easy to implement and promising for solving this class of prob-
lems. It also has the advantage in comparison with some popular methods for solving Weber
problem and constrained Weber problem: 1) it can be used to solve both Weber problem and
constrained Weber problem; 2) the singular case that when one iterate is identical with one of
customers the next iterate will be undefined would not happen in this projection-type method.
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