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Abstract

A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration
scheme and a shift-splitting preconditioner are presented, for solving the large sparse sys-
tem of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian
positive definite matrix. The convergence property of the shift-splitting iteration method
and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed
in depth, and the best possible choice of the shift is investigated in detail. Numerical
computations show that the shift-splitting preconditioner can induce accurate, robust and
effective preconditioned Krylov subspace iteration methods for solving the large sparse
non-Hermitian positive definite systems of linear equations.
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1. Introduction

Let C
n represent the complex n-dimensional vector space, and C

n×n the complex n × n
matrix space. In this paper, we will consider preconditioning the large sparse system of linear
equations

Ax = b, A ∈ C
n×n and x, b ∈ C

n, (1)

where A is a large sparse non-Hermitian positive definite matrix (i.e., its Hermitian part H =
1
2 (A + A∗) is positive definite), and b and x are, respectively, the known and the unknown
vectors. Here, we have used A∗ to denote the conjugate transpose of the matrix A.

The system of linear equations (1) with a non-Hermitian positive definite coefficient matrix
A arises in many problems in scientific and engineering computing, see [24, 2, 23]. When a
Krylov subspace iteration method is employed to compute an approximation for its solution
x∗ = A−1b, an economical and effective preconditioner is often demanded in order to improve the
computational efficiency, the approximate accuracy and the numerical stability of the referred
Krylov subspace iteration method, see [2, 23]. There have been many elegant preconditioners
presented and studied in the literature in recent years [24, 1, 2, 23, 3, 4, 21], which are cheaply
applicable and practically efficient for matrices of specific structures and properties. These
preconditioners can be roughly categorized into the incomplete factorizations [18, 17, 5, 2]
and the splitting iterations [24, 3, 4, 21]. Essentially, a preconditioner aims to transform the
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original linear system (1) by a suitable linear transformation such that the spectral property
of the coefficient matrix A ∈ C

n×n is largely improved, and therefore, the convergence speed
of the referred Krylov subspace iteration method is considerably accelerated. However, both
incomplete factorization and splitting iteration are only applicable and efficient for special
classes of matrices, e.g., a diagonally dominant or an irreducibly weakly diagonally dominant
matrix. Even for a Hermitian positive definite matrix, its incomplete Cholesky factorization
may break down [17]; and for a non-Hermitian positive definite matrix of strong skew-Hermitian
part, the splitting iteration may diverge [9].

For the Hermitian positive definite system of linear equations, considering that the conju-
gate gradient method is quite efficient when its coefficient matrix has tightly clustered spectrum
[2, 12, 23], Bai and Zhang [8] recently presented a class of regularized conjugate gradient (RCG)
method by first shifting and contracting the spectrum of the coefficient matrix, and then ap-
proximating the iterates of the regularized iteration sequence by the conjugate gradient (CG)
iteration [15, 10, 16]. Therefore, the RCG method is actually an inner/outer iteration method
[19, 20, 13, 11, 14] with a standard splitting iteration as its outer iteration, and the CG it-
eration as its inner iteration. The shifted and contracted matrix leads to a linear polynomial
preconditioner and the RCG iteration leads to a nonstationary iteration preconditioner for the
Hermitian positive definite linear system.

For the non-Hermitian positive definite system of linear equations (1), in this paper we first
present a shift splitting for the coefficient matrix A, and then construct a shift-splitting iter-
ation scheme for the linear system (1). Theoretically, this scheme is proved to be convergent
unconditionally to the exact solution of the system of linear equations (1). The shift split-
ting also naturally induces a simple but effective preconditioner for the coefficient matrix A.
Moreover, the shift-splitting preconditioning matrix itself can be again approximated by em-
ploying an incomplete factorization or a splitting iteration. This leads to a so-called two-level
preconditioner for the system of linear equations (1). In actual applications, we can suitably
choose the shift in such a way that the induced splitting matrix has reasonably good diago-
nally dominant property such that its incomplete factorization or splitting iteration is existent,
stable, and accurate. Hence, the two-level preconditioner can lead to a highly efficient Krylov
subspace iteration method for solving the system of linear equations (1). These results extend
and develop those for Hermitian positive definite linear system studied in [8] to non-Hermitian
positive definite one.

The organization of the paper is as follows. In Section 2 we introduce the shift splitting
concept and the shift-splitting iteration scheme, and discuss their convergent and precondition-
ing properties. In Section 3 we describe and analyze the two-level preconditioning technique
which is defined by adopting a further approximation of the shift-splitting preconditioning ma-
trix. Numerical results are given in Section 4 to show the feasibility and the effectiveness of
the shift-splitting and the corresponding two-level preconditioners when they are employed to
accelerate the Krylov subspace iteration methods. Finally, in Section 5 we use brief conclusions
to end this paper.

2. The Shift-splitting Preconditioner

For a non-Hermitian positive definite matrix A ∈ C
n×n, we use λ(A) to represent its eigen-

value and σ(A) its spectrum set, βl(A) and βu(A) the lower and the upper bounds of the real
parts of its eigenvalues, and γl(A) and γu(A) the lower and the upper bounds of the imaginary
parts of its eigenvalues, respectively. That is to say, we have

βl(A) ≤ ℜ(λ(A)) ≤ βu(A) and γl(A) ≤ ℑ(λ(A)) ≤ γu(A),

where ℜ(λ) and ℑ(λ) represent the real and the imaginary parts of the complex λ. Without
causing confusion, sometimes we may neglect the matrix A and simply write these bounds as
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βl, βu and γl, γu. The condition number κ2(A) of the matrix A ∈ C
n×n with respect to the

Euclidean norm is given by κ2(A) = ‖A‖2‖A−1‖2. We use ‖A‖ to denote any consistent matrix
norm defined in C

n×n, and I the identity matrix of suitable dimension.
Given a non-Hermitian positive definite matrix A ∈ C

n×n and a positive parameter α, we
can construct the shift splitting of the matrix A as follows:

A ≡ M(α) − N(α)

=
1

2
(αI + A) − 1

2
(αI − A).

This splitting naturally leads to the shift-splitting iteration scheme

x(k+1) = (αI + A)−1(αI − A)x(k) + 2(αI + A)−1b, k = 0, 1, 2, . . . , (2)

for solving the system of linear equations (1).
Because the shift-splitting iteration scheme (2) is only a single-step method, in actual appli-

cations it may have considerably less computing workloads than the two-step iteration methods
such as the Hermitian and skew-Hermitian splitting (HSS) iteration [7] and the positive-definite
and skew-Hermitian splitting (PSS) iteration [6]. See also [21].

Evidently, the shift-splitting iteration scheme (2) is convergent for all initial vector x(0) ∈ C
n

if and only if the spectral radius of its iteration matrix

T (α) = (αI + A)−1(αI − A)

is less than one, i.e., ρ(T (α)) < 1. The following theorem precisely describes the unconditional
convergence property of the shift-splitting iteration method.

Theorem 2.1. Let A ∈ C
n×n be a non-Hermitian positive definite matrix and α a positive

constant. Then the spectral radius ρ(T (α)) of the iteration matrix T (α) of the shift-splitting
iteration is bounded by ̺(α) = ‖(αI + A)−1(αI − A)‖. Consequently, we have

ρ(T (α)) ≤ ̺(α) < 1, ∀α > 0,

i.e., the shift-splitting iteration (2) is convergent unconditionally to the exact solution x∗ ∈ C
n

of the system of linear equations (1).

Proof. It is obvious that ρ(T (α)) ≤ ̺(α) holds for all α > 0. From Lemma 2.1 in [6], we
further know that ̺(α) < 1, ∀α > 0.

Recall that when A is skew-Hermitian T (α) is the Cayley transform which maps all the
purely imaginary eigenvalues of the matrix A onto the unit circle centered at origin. Therefore,
in general, we will call T (α) the generalized Cayley transform which maps all eigenvalues of the
positive definite matrix A into the interior of the unit disk centered at origin.

When A is Hermitian positive definite we easily see that ρ(T (α)) = ̺(α),

̺(α) = max
λ∈σ(A)

∣∣∣∣
α − λ

α + λ

∣∣∣∣ < 1, ∀α > 0,

and ̺(α) attains its minimum

√
κ(A)−1√
κ(A)+1

at α =
√

βl(A)βu(A). Now, the convergence rate of

the shift-splitting iteration (2) is the same as those of the conjugate gradient method, the HSS
method, and the PSS method. Actually, the shift-splitting iteration, the HSS iteration, and
the PSS iteration all reduce to the same iteration scheme for the system of linear equations (1).
Moreover, in [8] the regularized splitting for the matrix A is defined as

A ≡ M̃(α) − Ñ(α)

= (αI + A) − αI
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and, correspondingly, its iteration matrix is given by

T̃ (α) = α(αI + A)−1,

the corresponding convergence factor is given by

˜̺(α) := ρ(T̃ (α)) = max
λ∈σ(A)

α

α + λ
,

and ˜̺(α) attains its minimum 0 at α = 0. See also [17]. Evidently, the splitting matrices M(α)

and M̃(α) are only different by a factor of 1
2 . However, this little difference seems intrinsic and

crucial as it may lead to drastic difference between the properties of the functions ρ(α) and
˜̺(α) with respect to α ∈ (0, +∞).

When A is non-Hermitian positive definite, the convergence rate of the shift-splitting itera-
tion (2) is about equal to that of the PSS iteration.

In addition, we easily see that ̺(α) is the contraction factor of the shift-splitting iteration (2),
as it holds that

‖x(k+1) − x∗‖ ≤ ̺(α)‖x(k) − x∗‖, k = 0, 1, 2, . . . .

When the lower eigenvalue bound of the matrix H = 1
2 (A+A∗) and the upper eigenvalue bound

of the matrix (AA∗) (i.e., ‖A‖2) are available, we can further derive the following estimate about
̺(α).

Theorem 2.2. (The convergence theorem).
Let A ∈ C

n×n be a non-Hermitian positive definite matrix, H = 1
2 (A + A∗) be its Hermitian

part, and α a positive constant. Denote by βl(H) the lower bound of the eigenvalues of the
matrix H. Then the contraction factor ̺(α) of the shift-splitting iteration (2) can be bounded
by

̺u(α) =

√
α2 − 2βl(H) + ‖A‖2

2

α2 + 2βl(H) + ‖A‖2
2

, ∀α > 0.

It then follows straightforwardly that ̺u(α) attains its minimum
√

‖A‖2−βl(H)
‖A‖2+βl(H) when α = ‖A‖2.

Proof. By direct computations we have

̺(α)2 = ρ((αI + A)−1(αI − A)(αI − A)∗(αI + A)−∗)

= max
x 6=0

x∗(αI − A)(αI − A)∗x

x∗(αI + A)(αI + A)∗x

= max
x 6=0

α2x∗x − 2αx∗Hx + x∗AA∗x

α2x∗x + 2αx∗Hx + x∗AA∗x

≤ ̺u(α)2.

Hence, it holds that ̺(α) ≤ ̺u(α).
As a matter of fact, any matrix splitting not only can automatically lead to a splitting iter-

ation method, but also can naturally induce a splitting preconditioner for the Krylov subspace
methods. The splitting preconditioner corresponds to the shift-splitting iteration (2) is given
by

M(α) =
1

2
(αI + A). (3)

We call this preconditioner the shift-splitting preconditioner for the matrix A.
The shift-splitting preconditioner is simple but quite effective in actual applications. In fact,

because A is positive definite, its diagonal entries have positive real parts. It then follows that
(αI +A) is more diagonally dominant than A itself. Therefore, instead of the original matrix A,
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we can obtain a more accurate and stable incomplete factorization or splitting approximation
to the shifted matrix (αI + A).

The following theorem describes the eigenvalue distribution of the preconditioned matrix
M(α)−1A with respect to the shift splitting.

Theorem 2.3. (The eigen-distribution theorem).
Let A ∈ C

n×n be a non-Hermitian positive definite matrix and α a positive constant. Then
M(α) and M(α)−1A have the same eigenvector sets as A.

Let the eigenvalues of A satisfy

βl(A) ≤ ℜ(λ(A)) ≤ βu(A) and |ℑ(λ(A))| ≤ γ(A),

with βl(A) > 0. Then the eigenvalues of the preconditioned matrix M(α)−1A with respect to
the shift-splitting preconditioner M(α) of A satisfy

βl(M(α)−1A) ≤ ℜ(λ(M(α)−1A)) ≤ βu(M(α)−1A) and |ℑ(λ(M(α)−1A))| ≤ γ(M(α)−1A),

where




βl(M(α)−1A) = 2βl(A)
α+βl(A) ,

βu(M(α)−1A) = max
{

2[(α+βl(A))βl(A)+γ(A)2]
(α+βl(A))2+γ(A)2 , 2[(α+βu(A))βu(A)+γ(A)2]

(α+βu(A))2+γ(A)2

}
,

γ(M(α)−1A) = 2αγ(A)
(α+βl(A))2 .

Proof. It is obvious that the matrices A, M(α) and M(α)−1A have the same eigenvector
sets.

Let λα be an eigenvalue of the matrix M(α)−1A and xα be a corresponding eigenvector,
i.e., M(α)−1Axα = λαxα. Then we have

Axα = λαM(α)xα,

and hence,

λα =
x∗

αAxα

x∗
αM(α)xα

=
2x∗

αAxα

αx∗
αxα + x∗

αAxα
.

Denote by ξ + ıη =
x∗

α
Axα

x∗

α
xα

, where ı is the imaginary unit. Then ξ > 0 and

λα =
2(ξ + ıη)

α + (ξ + ıη)
=

2[(α + ξ)ξ + η2 + ıαη]

(α + ξ)2 + η2
.

As

ℜ(λα) =
2[(α + ξ)ξ + η2]

(α + ξ)2 + η2
,

we easily obtain

ℜ(λα) ≥ 2 · min

{
ξ

α + ξ
, 1

}
=

2ξ

α + ξ
≥ 2βl(A)

α + βl(A)
= βl(M(α)−1A)

and

ℜ(λα) ≤ 2[(α + ξ)ξ + γ(A)2]

(α + ξ)2 + γ(A)2

≤ max

{
2[(α + βl(A))βl(A) + γ(A)2]

(α + βl(A))2 + γ(A)2
,

2[(α + βu(A))βu(A) + γ(A)2]

(α + βu(A))2 + γ(A)2

}

= βu(M(α)−1A),
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where we have applied the fact that ℜ(λα) is a monotonically increasing function with respect
to the variable t := η2. As

ℑ(λα) =
2αη

(α + ξ)2 + η2
,

we easily obtain

|ℑ(λα)| =
2α|η|

(α + ξ)2 + η2
≤ 2α|η|

(α + ξ)2
≤ 2αγ(A)

(α + βl(A))2
= γ(M(α)−1A).

Essentially, we may choose a parameter α such that the eigenvalues of the preconditioned
matrix M(α)−1A are more tightly clustered than the original matrix A, and the computing cost
of the induced preconditioned Krylov subspace method is, at least, not increased. It follows that
there is a trade-off between these two requirements and, hence, finding an optimal parameter
α is a very difficult problem in actual applications. If only the first requirement is considered,
then we may minimize the function

A(α) := 2[βu(M(α)−1A) − βl(M(α)−1A)]γ(M(α)−1A)

and obtain an α. But this α is certainly not the required optimal parameter. Note that
A(α) is an estimate of the area of the rectangle including all eigenvalues of the preconditioned
matrix M(α)−1A. Hence, minimizing A(α) implies clustering the eigenvalues of M(α)−1A.
Alternatively, we may choose a parameter α such that A(α) ≪ 2[βu(A)−βl(A)]γ(A) is at least
satisfied.

Based on Theorem 2.3 we can estimate the asymptotic convergence rate of the Krylov
subspace iteration methods, accelerated by the shift-splitting preconditioner M(α), for solving
the system of linear equations (1). As an example, in the following we give an analysis for the
convergence property of the preconditioned GMRES method [23].

To simplify the notations, we denote by

Aα = M(α)−1A and bα = M(α)−1b,

and consider the preconditioned linear system

Aαxα = bα, with xα ≡ x, (4)

associated with the shift-splitting preconditioner M(α). As is known, GMRES is a polynomial
iteration method in which the k-th residual is written as

r(k)
α = bα − Aαx(k)

α = Pk(Aα)r(0)
α , Pk ∈ Πk, Pk(0) = 1,

where Πk is the set of polynomials of degree not greater than k. At each iteration step, the
GMRES iterate is computed such that

‖r(k)
α ‖2 = min

Pk∈Πk,Pk(0)=1
{‖Pk(Aα)r(0)

α ‖2}.

It is well known that if Aα is diagonalizable with the eigenvector matrix Wα, then the 2-norm
of the residual is bounded from above and has the estimate

‖r(k)
α ‖2

‖r(0)
α ‖2

≤ κ2(Wα) · min
Pk∈Πk,Pk(0)=1

max
λ∈Υ(Aα)

|Pk(λ)|,

where κ2(Wα) denotes the Euclidean condition number and Υ(Aα) a set which contains the
spectrum of the matrix Aα. The convergence of GMRES is therefore essentially bounded by
the quantity

ρk(Υ(Aα)) = min
Pk∈Πk,Pk(0)=1

max
λ∈Υ(Aα)

|Pk(λ)|.
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The corresponding asymptotic convergence factor (see [24]) is defined by

ρ(Υ(Aα)) = lim
k→∞

ρk(Υ(Aα))
1

k . (5)

To estimate (5), we will restrict our attention to the case where Υ(Aα) is an ellipse enclos-
ing the eigenvalues of the matrix Aα except for the origin[23]. Since the spectrum of Aα is
symmetric with respect to the real axis, we have only to consider the ellipse which is aligned
with axis. Let E(a, b, c, d) denote the ellipse with center d, foci d ± c and semi-axes a and b,
where c2 = a2 − b2. We note that the ellipse E(a, b, c, d) has either real or complex conjugate
foci depending on the sign of a− b. The asymptotic convergence factor on these ellipses can be
expressed as

ρ(Υ(Aα)) =
a + b

d +
√
d2 − c2

. (6)

We refer the readers to [23] for details.
According to our preconditioned matrix Aα, we have shown in Theorem 2.3 that its eigen-

values are enclosed in the rectangle

[βl(Aα), βu(Aα)] × [−γ(Aα), γ(Aα)] .

To estimate the asymptotic convergence rate of the GMRES, we compute an ellipse E(a, b, c, d)
of smallest area containing this rectangle. Because the center of the rectangle is (τ, 0), where

τ =
βu(Aα) − βl(Aα)

2

and the length of the sides of the rectangle are

χ = βu(Aα) − βl(Aα) and ω = 2γ(Aα),

the ellipse E(a, b, c, d) which has the smallest area of all ellipses and encloses the rectangle is
given by

a =

√
2

2
χ, b =

√
2

2
ω, c =

√
2

2

√
|χ2 − ω2|, d = τ, (7)

see [22]. By combining (6) and (7), we know that the asymptotic convergence rate of the
GMRES method for solving the system of linear equations (4) is

ρ(Υ(Aα)) =
χ + ω√

2τ +
√

2τ2 − |χ2 − ω2|
.

Consequently, if we choose a parameter α such that the function ρ(Υ(Aα)) is minimized,
then the eigenvalues of the preconditioned matrix M(α)−1A may be clustered tightly.

3. The Two-level Preconditioners

In actual applications of the shift-splitting preconditioner M(α) (see (3)) to some Krylov
subspace iteration methods such as GMRES, we need to solve the generalized residual equation

M(α)z = r

at each of the iteration steps, where r is the current residual and z the generalized residual.
This may be still costly and complicated, in particular, when A is large sparse and very ill-
conditioned, even the matrix (αI+A) preserves well the sparse structure and is more diagonally
dominant than the original matrix A. Therefore, we need to further approximate M(α) by
another matrix, say P (α), which may be produced by some efficient and practical approximation
process such as the incomplete triangular factorization (ILU) [18, 2], the incomplete orthogonal-
triangular factorization (IQR) [23, 5], or the unsymmetric Gauss-Seidel iteration (UGS) [24, 2,
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1, 3, 4]. This then yields the so-called two-level preconditioning technique that approximates
the original matrix A by P (α) through two steps: first approximating A by M(α) and then
approximating M(α) by P (α).

Because (αI + A) is as sparse as A and it is more diagonally dominant than A, we may
choose a suitable shift α such that the incomplete factorizations or the relaxation iterations
associated with M(α) are more robust and efficient than those associated with A itself.

Moreover, by Theorem 2.3 we know that the matrix M(α)−1A has the same eigenvector
set as the matrix A and its eigenvalues are more clustered. Hence, when P (α) is a good
approximation to M(α), it may be also a good approximation to A itself from aspects of both
eigenvalue clustering and eigenvector coinciding, as

P (α)−1A = (P (α)−1M(α))(M(α)−1A).

4. Numerical Results

Consider the convection-diffusion equation

−∆u + β(x, y)(x
∂u

∂x
+ y

∂u

∂y
) + γ(x, y)u = f(x, y), (8)

where β(x, y) and γ(x, y) are two smooth functions.
We use the finite difference scheme to discretize the convection-diffusion equation (8). That

is to say, the convective term is discretized by the upwind difference scheme and the diffusive
term is discretized by the centered difference scheme, on a uniform N × N grid. This leads
to a system of linear equations (1) whose coefficient matrix A is of order n = N2. In the
experiments, we choose

β(x, y) = qex+y and γ(x, y) = 100(e1/x cos(y) + e1/y cos(x)),

with q a positive constant used to control the magnitude of the convective term. In addition,
we take the right-hand-side vector b such that the exact solution of the resulted system of linear
equations (1) is x∗ = (1, 1, . . . , 1)T .

In this section, we are going to test the numerical behaviour of the shift-splitting precon-
ditioner M(α) by iteratively solving the above-described system of linear equations with the
preconditioned GMRES method[23], for various choices of N and q. The shift-splitting precon-
ditioner M(α) or its two-level alternative P (α) is employed to accelerate the GMRES iteration
method. More specifically, the testing preconditioners include the standard ILU[18] and IGO[5]
which are obtained from the incomplete LU and the incomplete Givens-orthogonal factoriza-
tions of the coefficient matrix A, and the new two-level shift-splitting ILU and two-level shift-
splitting IGO (denoted respectively as TSILU and TSIGO in short) which are obtained from
the incomplete LU and the incomplete Givens-orthogonal factorizations of the shift-splitting
preconditioner M(α).

Each iteration process is started from an initial vector having all entries equal to zero, and
terminated once either the iteration number is over 200 or the current iteration residual r(k) =
b − Ax(k) satisfies ‖r(k)‖2/‖r(0)‖2 ≤ 10−6, where r(0) = b − Ax(0) is the initial residual. The
performance of the testing preconditioners is compared from aspects of number of iteration steps
(denoted by “IT”) and CPU times (denoted by “CPU”). All numerical results are implemented
on Origin 3800 using C++ with double precision.

In Tables 1 and 2, we list the numbers of iteration steps and the total CPU times of the
preconditioned GMRES methods. The α adopted in TSILU and TSIGO are the experimentally
optimal shifts αexp determined in the sense that the preconditioned GMRES with the precon-
ditioner M(α) attains the least number of iteration steps among all experimental samples of
the α.
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From these two tables, we see that TSILU outperforms ILU and TSIGO outperforms IGO
considerably in aspects of both iteration steps and CPU times. Roughly speaking, ILU shows
better preconditioning effect than IGO, TSIGO, however, has much better preconditioning
effect than IGO, in particular, when q becomes large.

To further illustrate the effect of the shift α on the preconditioning quality of the shift-
splitting preconditioner, in Figures 1- 4 we plot the curves of IT and CPU versus α, respectively,
when N = 32 and q = 2000 as well as when N = 64 and q = 3000, for the preconditioned
GMRES methods. From these figures we can see that the iteration steps and the CPU times
vary very irregularly when α is increasing. However, the functional relationships of the curves
IT-α and CPU-α are intuitively comparable, especially when α is close to the experimentally
optimal shift αexp. In fact, the curves IT-α and CPU-α share the same minimum point αexp.

Figures 5 and 6 depict the curves of IT and CPU versus q for the preconditioned GMRES
methods. We see that the curves IT-q and CPU-q have almost the same shapes for each
preconditioner, and TSILU and TSIGO have better numerical behaviours than ILU and IGO,
respectively, for all q.

Figure 7 shows the functional relationship of the experimentally optimal shift αexp with
respect to q when N = 32. Clearly, both curves with respect to TSILU and TSIGO are much
similar, except for q ≥ 4000 when the behaviours of the two curves become drastically different.

Table 1: IT and CPU for the ILU- and the TSILU-preconditioned GMRES methods

N Precond q 1000 2000 3000 4000 5000

IT 14 34 44 48 41
ILU

CPU 0.10 0.41 0.67 0.78 0.59
32 αexp 31.8 177.0 166.7 77.8 25.1

TSILU IT 4 10 21 21 28
CPU 0.01 0.05 0.17 0.17 0.28

IT 5 22 40 59 65
ILU

CPU 0.12 0.81 2.14 4.37 5.24
64 αexp 0.5 131.0 134.4 37.3 149.2

TSILU IT 5 4 12 19 18
CPU 0.07 0.06 0.27 0.58 0.54

Table 2: IT and CPU for the IGO- and the TSIGO-preconditioned GMRES methods

N Precond q 1000 2000 3000 4000 5000

IT 16 26 45 81 75
IGO

CPU 0.17 0.31 0.77 2.21 1.91
32 αexp 79.4 167.1 53.3 93.9 4.2

TSIGO IT 2 12 15 9 21
CPU 0.01 0.09 0.13 0.07 0.22

IT 5 17 52 68 51
IGO

CPU 0.18 0.67 3.87 6.24 3.74
64 αexp 0.1 39.6 177.2 139.3 50.6

TSIGO IT 5 4 3 9 12
CPU 0.13 0.11 0.09 0.26 0.38
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Figure 1: Curves of IT (left) and CPU (right) versus α for TSILU-preconditioned GMRES
methods. (N = 32 and q = 2000)
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Figure 2: Curves of IT (left) and CPU (right) versus α for TSIGO-preconditioned GMRES
methods. (N = 32 and q = 2000)
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Figure 3: Curves of IT (left) and CPU (right) versus α for TSILU-preconditioned GMRES
methods. (N = 64 and q = 3000)
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Figure 4: Curves of IT (left) and CPU (right) versus α for TSIGO-preconditioned GMRES
methods. (N = 64 and q = 3000)
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Figure 5: Curves of IT (left) and CPU (right) versus q. (N = 32)
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Figure 6: Curves of IT (left) and CPU (right) versus q. (N = 64)
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Figure 7: Curves of αexp versus q. (N = 32)
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Figure 8: Distribution of the eigenvalues for the scaled matrix Â = diag(A)−1/2 A diag(A)−1/2
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Figure 9: Distributions of the eigenvalues for the preconditioned matrices P̂ (α)−1Â, with P̂ (α)

the TSILU (left, αexp = 31.8) and the TSIGO (right, αexp = 79.4) factorizations of M̂(α) =
1
2 (αI + Â). (N = 32 and q = 1000)
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To further investigate the preconditioning property of the shift-splitting preconditioner
M(α), in Figures 8 and 9 we plot the eigenvalue distributions of the scaled coefficient ma-

trix Â := diag(A)−1/2 A diag(A)−1/2 and the correspondingly preconditioned matrix P̂ (α)−1Â

when N = 32 and q = 1000, where P̂ (α) is either the ILU or the IGO factorization of the

shift-splitting preconditioner M̂(α) = 1
2 (αI + Â). Here, the symmetrically diagonal scaling is

adopted to normalize the eigenvalues of the matrix A. Evidently, from these figures we observe
that the eigenvalues of the preconditioned matrices are more tightly clustered than the original
coefficient matrix and, therefore, the correspondingly induced preconditioned GMRES meth-
ods may converge quickly to the solution of the system of linear equations. This fact has been
already confirmed by the numerical results shown in Tables 1 and 2.

5. Conclusions

We have presented and analyzed a class of shift-splitting preconditioners for non-Hermitian
positive definite matrices, and used numerical examples to show that the new preconditioning
strategy may potentially yield efficient preconditioners for Krylov subspace methods such as
GMRES for solving large sparse positive definite systems of linear equations, provided a good
estimate of the shift α can be prescribed. The choice of such an α is usually problem-dependent,
and is also closely related to the Krylov subspace method used. Hence, how to determine
the best shift α such that the induced preconditioned Krylov subspace method possesses fast
convergence speed and low computation cost needs to be further studied in depth.
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