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Abstract

The n-divided difference of the composite function h := f ◦ g of functions f , g at a
group of nodes t0, t1, · · · , tn is shown by the combinations of divided differences of f at
the group of nodes g(t0), g(t1), · · · , g(tm) and divided differences of g at several partial
group of nodes t0, t1, · · · , tn, where m = 1, 2, · · · , n. Especially, when the given group of
nodes are equal to each other completely, it will lead to Faà di Bruno’s formula of higher
derivatives of function h.
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1. Introduction

It is studied that a divided difference of a function at a group of given nodes can be shown
by combining the divided difference of the same function at another group of nodes[1,6,11].
When the given nodes are closed together, the divided difference is difficult to be computed.
If the divided difference can be described by the combination of the divided difference of the
same function at another distant node, then can be easily computed [12]. That is to say, it is
the generalization of Lagrange numerical derivative method.

It is well-known that the Leibniz formula

h(n)(x) =

n
∑

ν=0

(

n

ν

)

f (ν)(x)g(n−ν)(x) (1.1)

of higher derivative of h(x) := f(x) · g(x), whose divided difference form is as follows:

Steffensen[10] formula. Let h(x) := f(x) · g(x). For any nodes x0, x1, · · · , xn, we have

h[x0, x1, · · · , xn] =

n
∑

ν=0

f [x0, x1, · · · , xν ] · g[xν , xν+1, · · · , xn]. (1.2)

Now, let us begin to study the formulas of divided difference or the form of Faà di Bruno’s
formula for the composite function. Recently, introductions to the Faà di Bruno’s formula of
higher derivative of composite function[9, 5] and it’s generalizations [3, 7] have been closely
noticed by researchers. Johnson [9] stated not only its history, but also its partition description
under the view of combination, the Bell polynomial description, determinant description, and
various kinds of formulas based on Taylor formulas. One of the aims of this paper is to give
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a supplement to the Johnson’s interesting results based on what we obtain in the paper. Of
cause, Basic formulas obtained in the paper about the divided difference is undoubtedly useful
for numerical analysis and combination analysis.

We will begin from the first order case. It is known that in primary calculus the formulas
of the first order derivative for the composite function is as the following:
Chain Rule. Suppose x = g(t) and y = f(x) have derivatives at t = t0 and x = g(t0),
respectively. Then, the composite function y = h(t) := f(g(t)) has derivative at t = t0,and

h′(t) = f ′(x0)g
′(t0) = f ′(g(t0))g

′(t0). (1.3)

The proof of the Chain Rule should be done as followings. Let t1 6= t0, and x1 = g(t1), we
have

h(t1) − h(t0)

t1 − t0
=
f(x1) − f(x0)

x1 − x0
·
g(t1) − g(t0)

t1 − t0
. (1.4)

Let t1 → t0, (1.3) follows from (1.4) immediately. But the bug of this proof method is that
we can not guarantee x1 6= x0, even though we can let t1 6= t0. So there is something wrong
with (1.4). To avoid this tragedy, in Courant & John’s well-known calculus course [4], strict
condition of g′(t) has no zero point on an interval is used.

As a matter of fact, the case x = x1 is not a tragedy. it just takes
f(x1) − f(x0)

x1 − x0
into the

existed derivative f ′(x0). If we use the following definition of the first order divided difference
of f at nodes x0, x1:

f [x0, x1] :=







f(x1) − f(x0)

x1 − x0
, if x1 6= x0;

f ′(x0), if x1 = x0,
(1.5)

then (1.4) can be replaced by the following suitable equality

h(t1) − h(t0)

t1 − t0
= f [x0, x1]

g(t1) − g(t0)

t1 − t0
. (1.6)

The above equation surely holds for x1 6= x0. As long as y = f(x) has derivative at x = x0.
Let t1 → t0 in (1.6), then the Chain Rule (1.3) follows.

Besides, we can easily find that (1.3) and the key step in its proof can be unified into the
following formula:

h[t0, t1] = f [x0, x1]g[t0, t1]

= f [g(t0), g(t1)]g[t0, t1],
(1.7)

which are called as divided difference form of Chain Rule or chain rule of the first order divided
difference. When t1 6= t0, (1.7) becomes (1.6); while t1 = t0, (1.7) becomes (1.3).

Studies in the paper shows that similar results hold for higher divided differences. That
is, Faà di Bruno’s formula for higher derivative of composite function has its relative form of
divided difference. It will be given in the following Theorem 2.2 and 2.3, which not only give a
suitable generalization to Faà di Bruno’s formula, but also give the simplest proof method for
the formula. They are basic formulas about divided difference.

2. Main Results

To discuss the n-th order divided difference of f at a group of nodes x0, x1, · · · , xn, we
first give its definition of recursion form for nodes which are different from each other. Then,
we understand the divided difference at nodes where some nodes are equal as the limit of the
divided difference mentioned above. From this point of view, we have (for example, see Isaacson
& Keller [8])
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Lemma 2.1. Let x0, x1, · · · , xm be nodes different from each other, and xm+1, xm+2, · · · , xn

have ki ≥ 0 nodes equal to xi, respectively, where i = 0, 1, · · · ,m, and k0+k1+· · ·+km = n−m.
If f has the ki-th order derivative at xi, i = 0, 1, · · · ,m, then

f [x0, x1, · · · , xn] =
1

k0!k1! · · ·km!
(
∂

∂x0
)k0(

∂

∂x1
)k1 · · · (

∂

∂xm

)kmf [x0, x1, · · · , xm]. (2.1)

Especially, if f has the n-th order derivative at x0, then

f [x0, x1, · · · , xn] =
1

n!
f (n)(x0) (2.1a)

holds for the case x1 = x2 = · · · = xn = x0.

In the following, we briefly call the condition in Lemma 2.1 for the existence of derivative
of f as f has enough higher order derivative at relative nodes.

The main result is

Theorem 2.2. Let h(t) := f(g(t)). If f has enough higher order derivative at relative nodes,
then for a group of different nodes t0, t1, · · · , tn (n ≥ 1), we have

h[t0, t1, · · · , tn] =

n
∑

m=1

f [g(t0), g(t1), · · · , g(tm)]
∑

ν0≤ν1≤ν2≤···≤νm

m
∏

i=1

g[ti−1, tνi−1
, tνi−1+1, · · · , tνi

],

(2.2)
where ν0 := m, νm := n, and subscript variants in the inner multiple summation of the right
hand of (2.3) are ν1, ν2 · · · , νm−1. If function g has enough higher order derivative at relative
nodes, then (2.2) holds for any groupe of nodes t0, t1, · · · , tn(it is not necessary to suppose that
the nodes are different from each other). Especially, when t1 = t2 = · · · tn = t0, (2.2) becomes
Faà di Brouno’s formula defined by

1

n!
h(n)(t0) =

n
∑

m=1

1

m!
f (m)(g(t0))

∑

ν0≤ν1≤ν2≤···≤νm

m
∏

i=1

g(νi−νi−1+1)(t0)

(νi − νi−1 + 1)!
,

ν0 := m, νm := n.

(2.3)

The equation (2.3) is a new version of Faà di Bruno’s formula. From (2.1a), it is obvious
that (2.2) contains (2.3). Next, we use new subscript variants

ki := νi − νi−1 + 1, i = 1, 2, · · · ,m,

in the inner multiple summation of the right hand of (2.2). Then, the former will be replaced
by

νi = k1 + k2 + · · · + ki +m− i, i = 1, 2, · · · ,m− 1.

The restricted condition of new subscript variants is

k1 + k2 + · · · + km = n, k1 ≥ 1, · · · , km ≥ 1.

Thus, from Theorem 2.2 , we get

Theorem 2.3. Let h(t) := f(g(t)). If functions f and g has enough higher order derivative at
relative nodes, respectively, then for any group of nodes t0, t1, · · · , tn (n ≥ 1), it holds that

h[t0, t1, · · · , tn] =

n
∑

m=1

f [g(t0), g(t1), · · · , g(tm)]

×
∑

k1+k2+···+km=n

k1,··· ,km≥1

m
∏

i=1

g[ti−1, tνi−1
, tνi−1+1, · · · , tνi

],

(2.4)
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where

ν0 := m, νi := k1 + k2 + · · · + ki +m− i (i = 1, 2, · · · ,m− 1), νm := n.

Especially, when t1 = · · · = tn = t0, (2.3) becomes Faà di Bruno’s formula defined by

1

n!
h(n)(t0) =

n
∑

m=1

1

m!
f (m)(g(t0))

∑

k1+k2+···+km=n

k1,··· ,km≥1

m
∏

i=1

g(ki)(t0)

ki!
. (2.5)

The inner multiple summation of the right hand of (2.5) is just the value of the general
partial Bell polynomial B̂n,m(x1, x2, · · · , xn) at

xk =
g(k)(t0)

k!
, k = 1, 2 · · · , n.

In fact, the (general) productive function of B̂n,m is

(

∞
∑

k=1

xkt
k)m =

∞
∑

n=m

B̂n,mt
n, m = 1, 2, · · · , n. (2.6)

See, for example, Comter [2]. If we expand the left hand of (2.6) according to the multiplication
method of m power series, and compare coefficients of tn, we get

B̂n,m(x1, x2, · · · , xn) =
∑

k1+k2+···+km=n

k1,··· ,km≥1

xk1
xk2

· · · , xkm
. (2.7)

So, (2.5) can be rewritten as

1

n!
h(n)(t0) =

n
∑

m=1

1

m!
f (m)(g(t0))B̂n,m(

g′(t0)

1!
,
g′′(t0)

2!
, · · · ,

g(n)(t0)

n!
). (2.8)

If we expand the m power of the left hand of (2.6) directly according to the formula of
multinomial terms, then

B̂n,m(x1, x2, · · · , xn) =
∑

a1+2a2+···+nan=n

a1+a2+···+an=m

m!

a1!a2! · · ·an!
xa1

1 x
a2

2 · · · , xan

n

=
m!

n!
Bn,m(1!x1, 2!x2, · · · , n!xn)

(2.9)

follows, where

Bn,m(x1, x2, · · · , xn) :=
∑

a1+2a2+···+nan=n

a1+a2+···+an=m

n!

a1!(1!)a1a2!(2!)a2 · · ·an!(n!)an
xa1

1 x
a2

2 · · · , xan

n (2.10)

is an exponent form of partial Bell polynomial. Based on (2.10), (2.5) can be rewritten as

h(n)(t0) =

n
∑

m=1

f (m)(g(t0))Bn,m(g′(t0), g
′′(t0), · · · , g

(n)(t0)). (2.11)
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Example 2.4. When n = 4, it follows from (2.2) that

h[t0, t1, t2, t3, t4]

= f [g(t0), g(t1)]g[t0, t1, t2, t3, t4]

+ f [g(t0), g(t1), g(t2)](g[t0, t1]g[t1, t2, t3, t4]

+ g[t0, t2, t3]g[t1, t3, t4]

+ g[t0, t2, t3, t4]g[t1, t4])

+ f [g(t0), g(t1), g(t2), g(t3)](g[t0, t3]g[t1, t3]g[t2, t3, t4]

+ g[t0, t3]g[t1, t3, t4]g[t2, t4]

+ g[t0, t3, t4]g[t1, t4]g[t2, t4])

+ f [g(t0), g(t1), g(t2), g(t3), g(t4)]g[t0, t4]g[t1, t4]g[t2, t4]g[t3, t4].

(2.2a)

When t1 = t2 = t3 = t4 = t0, it becomes

h(4)(t0)

4!
=
f ′(g(t0))

1!

g(4)(t0)

4!

+
f ′′(g(t0))

2!

(

2(
g′(t0)

1!
)(
g′′′(t0)

3!
) + (

g′′(t0)

2!
)2
)

+
f ′′′(g(t0))

3!

(

3(
g′(t0)

1!
)2(

g′′(t0)

2!
)
)

+
f (4)(g(t0))

4!

(g′(t0)

1!

)4

.

(2.3a)

Now we see that

B̂4,1 = x4, B̂4,2 = 2x1x3 + x2
2, B̂4,3 = 3x2

1x2, B̂4,4 = x4
1.

And (2.3a) can be rewritten as

h(4)(t0) = f ′(g(t0))g
(4)(t0) + f ′′(g(t0))(4g

′(t0)g
′′′(t0) + 3g′′(t0)

2)

+ 6g′′′(g(t0))g
′(t0)

2g′′(t0) + f (4)(g(t0))g
′(t0)

4.

Again, we see that

B4,1 = x4, B4,2 = 4x1x3 + 3x2
2, B4,3 = 6x2

1x2, B4,4 = x4
1.

Example 2.4 shows how the complexity relation in Faà di Bruno’s formula evolves from the
simple relation of divided difference of composite function in Theorem 2.2. Indeed, the divided
difference of composite function given by Theorem 2.2 is not only much more general than the
Faà di Bruno’s formula, but also much clearer.

3. Proof of the Main Results

First, we need the following transformation form of Steffensen formula

Lemma 3.1. Let t0, t1, · · · , tn be a group of nodes different from each other, and Φ(t) :=
φ(t) · ψ(t), where φ and ψ satisfy

φ(t0) = 0 and ψ(tn) = 0,

respectively. Then it holds that

Φ[t0, t1, · · · , tn] =

n−1
∑

ν=1

φ[t0, t1, · · · , tν ]ψ[tν , tν+1, · · · , tn]. (3.1)
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Proof. The equation (3.1) follows from Steffenson formula

Φ[t0,t1, · · · , tn] = φ[t0]ψ[t0, t1, · · · , tn]

+

n−1
∑

ν=1

φ[t0, t1, · · · , tν ]ψ[tν , tν+1, · · · , tn] + φ[t0, t1, · · · , tn]ψ[tn],

and
φ[t0] = φ(t0) = 0, ψ[tn] = ψ(tn) = 0

by the assumption.
Lemma 3.1 can be generalized to the following more general conclusion.

Lemma 3.2. Let t0, t1, · · · , tn be a group of nodes different from each other, and function φi

satisfies
φi(ti) = 0, i = 0, 1, · · · ,m− 1.

Suppose Φ(t) := φ0(t)φ1(t) · · ·φm−1(t). Then when n ≥ m, we have

Φ[t0, t1, · · · , tn] =
∑

ν0≤ν1≤ν2≤···≤νm

m
∏

i=1

φi−1[ti−1, tνi−1
, tνi−1+1, · · · , tνi

],

ν0 := m, νm := n.

(3.2)

Proof. We use induction for m. It is true that (3.2) holds for m = 1.
For m = 2, it follows

Φ[t0,t1, · · · , tn] = Φ[t0, t2, t3, · · · , tn, tn+1]

=

n
∑

ν=2

φ0[t0, t2, t3, · · · , tν ]φ1[tν , tν+1, · · · , tn+1]

from Lemma 3.1(here tn+1 := t1) and the symmetry of the divided differences. If we replace
tn+1 with t1 and change the sequence order of the nodes, then we have

Φ[t0, t1, · · · , tn] =

n
∑

ν=2

φ0[t0, t2, t3, · · · , tν ]φ1[t1, tν , tν+1, · · · , tn].

The lemma holds for m = 2.
Suppose that divided difference of multiplication of m − 1 functions, whose values at

t0, t1, · · · , tm−2 are zero, can be computed by (3.2) for m ≥ 3. Write

Φ(t) := φ0(t)φ1(t) · · ·φm−3(t)φm−2(t),

φm−2(t) := φm−2(t)φm−1(t), tn+1 := tm−1.

Then we get

Φ[t0, t1, · · · , tn] = Φ[t0, t1, · · · tm−2, tm, tm+1 · · · , tn, tn+1]

=
∑

ν0≤ν1≤···≤νm−2≤n+1

m−2
∏

i=1

φi−1[ti−1, tνi−1
, tνi−1+1, · · · , tνi

]φm−2[tm−2, tνm−2
, tνm−2+1, · · · , tn+1].

(3.3)
Note that the terms with νm−2 = n+ 1 in the multiple summation of the right hand of (3.3) is
not necessary to be computed, because they all have factors

φm−2[tm−2, tn+1] = φm−2[tm−2, tm−1] = 0.

So, the restriction on the index of multiple summation becomes

m = ν0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νm−2 ≤ n. (3.4)
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By Lemma 3.1 and φm−1(tn+1) = φm−1(tm−1) = 0, we get

φm−2[tm−2, tνm−2
, tνm−2+1, · · · , tn+1]

=
n
∑

ν=νm−2

φm−2[tm−2, tνm−2
, tνm−2+1, · · · , tν ]φm−1[tν , tν+1, · · · , tn+1]

=
∑

νm−2≤ν≤n

φm−2[tm−2, tνm−2
, tνm−2+1, · · · , tν ]φm−1[tn+1, tν , tν+1, · · · , tn].

(3.5)

Put it into (3.3), and combine the multiple summation at the end of (3.3) with that of (3.5)
into a new multiple summation with the index restriction (3.4) and νm−2 ≤ ν ≤ n. It is obvious
that the index restriction on multiple summation is

ν0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νm−2 ≤ νm−1 ≤ νm, νm−1 := ν, ν0 := m, νm := n.

So, (3.2) holds for all positive integer m.
The Proof of Theorem 2.2. Let t0, t1, · · · , tn be nodes different from each other, Newton

interpolation polynomial of function h on it is

N(t;h, {ti}
n
i=0) = h(t0) +

n
∑

ν=1

h[t0, t1, · · · , tν ]ων(t), (3.6)

where

ων(t) := ων(t; {ti}
n
i=0) :=

ν−1
∏

i=0

(t− ti).

On the other hand, Newton interpolation polynomial of function f at nodes x0, x1, · · · , xn is

N(x; f, {xi}
n
i=0) = f(x0) +

n
∑

m=1

f [x0, x1, · · · , xm]ωm(x; {xi}
n
i=0). (3.7)

Let x = g(t), xi = g(ti), i = 0, 1, · · · , n in (3.7) and replace

ωm(g(t); {g(ti)}
n
i=0) =

m−1
∏

i=0

(g(t) − g(ti)) =: Ωm(t) (3.8)

with its Newton interpolation polynomial

N(t; Ωm, {ti}
n
i=0) =

n
∑

ν=m

Ωm[t0, t1, · · · , tν ]ων(t)

(Obviously, Ωm[t0, t1, · · · , tν ] = 0 for ν < m), it follows the Newton interpolation polynomial
for composite function f ◦ g defined by

N(t; f ◦ g, {ti}
n
i=0) = f(g(t0)) +

n
∑

m=1

f [g(t0), g(t1), · · · , g(tm)]

n
∑

ν=m

Ωm[t0, t1, · · · , tν ]ων(t).

Change the order of the summation, we have

N(t; f ◦ g, {ti}
n
i=0) = f(g(t0)) +

n
∑

ν=1

ν
∑

m=1

f [g(t0), g(t1), · · · , g(tm)]Ωm[t0, t1, · · · , tν ]ων(t). (3.9)

Since (3.6) and (3.9) are the same according to the uniqueness of interpolation polynomial
of h = f ◦ g, the coefficients of the term including ωn(t) are equal. So,

h[t0, t1, · · · , tn] =

n
∑

m=1

f [g(t0), g(t1), · · · , g(tm)]Ωm[t0, t1, · · · , tn] (3.10)
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follows. If we use Lemma 3.2 to compute the divided difference of function Ωm defined by (3.8),
we get

φi(t) = g(t) − g(ti), i = 0, 1, · · · ,m− 1.

Since the order of divided difference of φi included in the right hand of (3.2) is at least one,
these divided differences are ones of g, which induces

Ωm[t0, t1, · · · , tn] =
∑

ν0≤ν1≤ν2≤···≤νm

m
∏

i=1

g[ti−1, tνi−1
, tνi−1+1, · · · , tνi

],

ν0 := m, νm := n.

(3.11)

Hence (2.2) follows form (3.11)and (3.10).
If function g has enough higher order derivative at relative nodes, (2.2) holds for general

nodes automatically.
Acknowledgements. Dedicated to the late Prof. Kong Feng (1920-1993), the first author of
the paper discussed Faà’s formula with him about twenty years ago.
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