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ON QUADRATURE OF HIGHLY OSCILLATORY FUNCTIONS *V
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Abstract

Some quadrature methods for integration of fab f(x)ei“’g(”)d:c for rapidly oscillatory
functions are presented. These methods, based on the lower order remainders of Taylor
expansion and followed the thoughts of Stetter [9], Iserles and Ngrsett [5], are suitable for
all w and the decay of the error can be increased arbitrarily in case that ¢'(x) # 0 for
x € [a,b], and easy to be implemented and extended to the improper integration and the

general case I[f] = fab f(x)eig(“”f”)dx,

Mathematics subject classification: 65D32, 65D30.
Key words: Oscillatory integral, quadrature, Filon-type method, Taylor expansion.

1. Introduction

The quadrature of highly oscillating integrals is important in many areas of applied math-
ematics. The standard integration formulas such as the trapezoid rule, Simpson’s rule or
Gaussian integration may suffer from difficulty. Many methods have been developed since
Filon [2], such as Price [8], Stetter [9], Longman [6], Levin [7], Iserles [3,4] and Iserles and
Norsett [5], etc.

For the Filon-type quadrature of the form foh f(x)ew(x)dx, Iserles [3] analyzed the con-
vergent behavior in a range of frequency regimes and showed that the accuracy increases when
oscillation becomes faster. Recently Iserles and Norsett [5] extended the approach of Iserles
[3,4] and defined the generalized Filon-type method for integral fol f(z)e9®) dy and showed
that the rate of decay of the error, once frequency grows, can be increased arbitrarily by the
inclusion of higher derivatives.

Both the Filon-type and the generalized Filon-type, an approach f(x) by splines, are efficient
for suitably smooth functions under the condition that the moments fol k9@ dg can be
accurately calculated.

Price’s numerical approximation of Fourier transforms [8] is considered the integration be-
tween the zeros, for example,

2m
(x) sinnxdx.
0
Each
(k+1)7/n
/ f(z) sinnzdz
km/n

may be expeditiously computed by use of a Labatto rule. The Price method completely fails
when w is significantly larger than the number of quadrature points.
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Here we present some methods, basing on the lower order remainders of Taylor expansion,
which transfer highly oscillatory functions into 'nice’ functions—mnon-highly oscillating func-
tions. And following the thoughts of Setter [9], Iserles and Ngrsett [5] we show that these
methods are suitable for all w and the decay of the error can be increased arbitrarily the same
as the generalized Filon-type method for large w in case that ¢'(x) # 0 for « € [a,b]. These
methods are easy to be implemented and extended to the improper integration and the integral

b
I[f]z/ f(x)eig(“”””)dx,

where €*9(“»*) with highly oscillation and lim,, _«, ¢’ (w,z) = oo for all  in [a, b].

2. Quadrature of Integral [’ f(x)e™9®)dz
Let I[f] denote the following integral

b
11f] = / F()e 9@ da, (2.1)

where f and g are suitably smooth functions. Suppose that the function g has at most finite
stationary points in [a,b]. Without loss of generality, assume g has only one stationary point
Zo in [a,b]. Otherwise, we will partition the interval into finite subintervals such that each
subinterval only contains one stationary point. The nth order Taylor polynomial of €“9(*) is

Fo=1, F,(iwg(x)) =1+ iwg(x)+ (iwgz(!x))z (iwgg(!ac))?’ + 7(zwgn('x))”
and the nth order remainder of Taylor expansion is
To(x) = 9™ — F, (iwg(z)). (2.2)
T, (x) can be written as
2 k41 2k
(cos(wg(x)) ~1+ —.—(“’gf)) 4o U 22%!9(“’” > -
k 2k—1
I - i <sin(wg(:v)) —wg(z)+ -+ (_1)(2(;;}9_(1133 ; k n=2k,
nl\Z) = 2 1V (o)
(cos(wg(x)) ~1+ —.—(“’gf)) 4o U (2%)!9( ) +
1V (walz)) 2k
i <sin(wg(:v)) —wg(z)+ -+ ( 1)(2(k z_( 1))), ) , n=2k+1.
2 IR . )k g2k—1
Note that U, := cos(x)—1+7+---+w, Vi = Sln(:v)—w+"'+m are

monotonic and smooth in [0, +00) or (—o0,0] for all n = 1,2,.... Hence, for monotonic and
smooth function g(z), Up(wg(x)) and V,,(wg(x)) are smooth and monotonic in [a,b] N [0, c0)
and [a, b] N (—o0,0]. Therefore T, (x) are not oscillatory even if ¢*9(*) is highly oscillatory for
)2
large w. For example, cos(1000z3) — 1 is highly oscillatory, but cos(1000z%) — 1 + %
1 1
and cos(lOOO:E%) -1+ (10()3:1:3)2 - (100%1:3 r
For g(z) having at most finite stationary points in [a, b], by the intermediate value theorem
for derivatives of Darbouxe [10], ¢’(z) has the same sign between the stationary points and g(z)
is monotonic in these subintervals, the nth(n > 2) Taylor remainders T,,(x) is not oscillatory
functions, either. To calculus the highly oscillatory integrals, we need only lower order Taylor
expansions. Here we consider the first and second order Taylor expansions.

are monotonic and smooth.
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Figure 1: The monotonicity of the Taylor remainders

To compute the integral fol f(2)e9@) dg, for small w we consider fol fx)(ew9l® — 1 —
. 1 . 1 iwalz . . 1
iwg(@))dz+ [y f(@)(1+ivg(x))dz, or [y (@)™ ~1—iwg(z)—(iwg(x))*/2)da+ [y fz)(1+
iwg(r) + (iwg(x))?/2)dx. For example, fo% log z sinwzdx = fo% log z(sinwz — wx)dr + w fo% x
log xdx. Compute the integrations in the right hand by the adaptive Simpson’s rule in MAT-
LABG6.5 and cite the data in Davis and Robinowitz [1] (P. 155):

w  Exact Gso 2x Ly 2wx Ly Fy Fy F11p Price  New

1 —24377 —2.4378 —2.4380 —2.4377
2 —1.5572 —1.5570 —1.5880 —1.5572
4 —.9507 —.9507 —.9830 —.9507
10 —.4718 —.4721 —.4941 —.4410 —.4567 —.4646 —.4676 —.4617 —.4718
20 —.2705  .1237 —.2853 —.2511 —.2622 —.2666 —.2683 —.2650 —.2705
30 —.1939 —1.1143 —-.2051 —.1793 —.1880 —.1911 —.1923 —.1899 —.1939

And fo%:vcos 50z sinwxdz fo% x(cos 50z — 1 + 50222/2) (sin wz — wz)dr — 0% (=1 +
50222 /2)(sinwr — wz)dr + w fo% 22(cos 50z — 1+ 50222 /2)dx + w fo% 22dr +w fo% 5022 /2dx.
Compute the integrations in the right hand by the adaptive Simpson’s rule in MATLABG6.5 and
use the data in Davis and Robinowitz [1] (P. 155):

w Exact G'3o 2w X Ly Fr Fi1 Price New
1 .00251428 2.1561858 56312612 .00251729
2 .00503460 87569672 4.7048779 .00504042
4 .01011785 —.09742242 .69758325 .01012942
10 .02617994 .10585082 9.3325313 .11049126 .29057620 .14484073 .02620855
20 .05983986 —.81286374 .1110445 .09287746 .0534164 .00511070 .05989761
30 .11780972 —.64534403 .16391873 .10205656 .11600732 .11013379 .11789654

However for large w or to get higher accuracy, we define the following notations introduced

in [5] and consider the following expansions: Let

ool fl(z) = f(x),

lfl(e) = 7 2

k=0,1,2,--.

In case ¢'(z) # 0 for all © € [a, b].
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Lemma 2.1. Suppose that f, g : [a,b] — R are smooth functions and ¢'(x) # 0 for all x € [a, b)].
Then

) = JL s
Zk 1 { k+1 [f](b) Tkil(b) _ (—1)7€+1 O'kfl[f](a) Tkl(a)} (23)

g'(b) (iw)*  g'(a)

+(zw f Tn f](x)Tn 1(x)dx

_ b wg(x _ 1 b f(i[]) iwg(x _ 1 f(i[]) iwg(x b
Proof. I[f] = [, f(x)e9™dx = 75 Ja md(e 9(r) — 1) = Wwylz (9 —1)[5 —
% f: o1[f](z)(e9®) — 1)dz. By induction, it is easy to get equation (2.3).

~|

To calculate the integral f; on[f)(x)Th—1(x)dz, we consider the composite trapezoidal rule,
the composite 2-point Gauss-Legendre quadrature and the composite Simpson’s rule. Denote
the corresponding method by QS-T[f], QS “5[f] and QS-¥[f] and h = (b — a)/m, the length of
each subinterval.

Firstly, we establish an error analysis for general composite interpolation quadratures with
positive weights such as the composite trapezoidal rule, the composite Simpson’s rule and the
composite Gaussian quadrature, etc.

Lemma 2.2. Suppose that u,v : [a,b] — R are suitably smooth. Then for any partition

{z;} C [a,b] and nonnegative sequence {a;}Y with Ejvzl a; =1,

[ v 0o Zaa e oa) < o o

Proof. Since ming<z<p u(z)v(z) < Ejvzl a;u(z;)v(z;) < maxe<z<p u(z)v(z), by the mean
value theorem of continuous functions, there exists an z¢ € [a,b] such that u(zg)v(zg) =

Z;VZI a;u(z;)v(z;). Then

|2 w(@)v(@)de — (b—a) SN apu(z;)o(z)| = | [ u dw—f u(zo)v(wo)da|

< () ||5o|fa (x — wo)dal
< Oo y

Theorem 2.3. Suppose that f,g : [a,b] — R are smooth functions and ¢'(x) # 0 for all

x € [a,b]. Then forn=2,3,... and 1 < |w|, the error of the composite interpolation quadrature
with positive weights for (2.3) is satisfied
(b—a)h
|Qulf] = I1f]] < o] (lonlf) oo + llonlfIlocllg’lloo) (€19l + 1), (2.4)

where h is the length of each subinterval.
Proof. Let F(z) = op[f](x) and Ty—1(z) = Up—1(wg(z))+iVi—1(wg(x)). Then U,_1(wg(z))
and V;,_1(wg(x)) have same sign and monotonic on [a, b] for all n > 2 and

L L
(iw)" (iw)"

By Lemma 2.2 on each subinterval, we have that the error of calculating ( 7 f F(x)ei9 () dg

b b b
/ F(z)Typ—1(x)dx = (/ F(2)Up—1(wg(x))dx + z/ F(x)an(wg(x))d:c> .

by the composite interpolation quadrature with positive weights is less than or equal to

b—
|QnlfI=11f]] < ( w n|) IF oo IUn-1lloo H I Flloc 17 -1 lloaH I F oo Ve -1+ Flloo | Vi -1 lloe ) -




On Quadrature of Highly Oscillatory Functions 583

Note that [[U}, _(wg(x))llec = [w[[|Va-1(wg(2))llcllg'lloc for n — 1 being even and |[U;,_,
(wg(@)|loo = |W|||Va—2(wg(2))]lcollg’lcc for n — 1 being odd and |w| > 1. It can be verified
that

@ulf] = 117
< Co Rt Flelgee) (14 1+ gl + e 4 10 4y ol
< Lo P+ Flelg e el + 1),

jwl

For the composite trapezoidal rule, the composite Simpson’s rule and the composite 2-point
Gauss-Legendre quadrature, more accurate estimation can be obtained.
Theorem 2.4. Suppose that f,g : [a,b] — R are suitably smooth functions and ¢'(x) # 0 for
all x € [a,b]. Then forn=2,3,4 and 1 < |w|

(b — a)h?

QU7 ~ 111 < MU 000 O 29
Q% 5 [f] = I[f]]
< 1% n[|a]j]|n_ TonlfW 4 (s, 1,57, 790, 59, 0,61, 6", 6 9(4))1(;0_|Ta|21h42 29
QLS 1f1 = 1111l
< 1 o |[£]|]n_ NonlI W sty g4, 19, 19, 9,9/, ", g 9(4))712178;'5')542. 27

where M(f, f', ", 9,9, 9") and My(f, f', f", f®, f® . g.4, 9", 9, g™ are constants without
reference to w and h.

Proof. Let F(z) = 0,[f](z). Since {F(x)e™9@}" = F"(g)eiw9(® )+2in'( )g' (z)e9(®) —
W2F(2)g" (2)e™9®) fiwF (x)g" (x)e™9®) | the error of computlng 1 @) f F(x)e™9) dx by the

composite trapezoidal rule is less than or equal to %(HF”HW + 2| F'¢||oo + | Fg? |00 +

|IFg" |loo)- The error of calculating each 1tem (R f F(z)(iwg(z))*dz by the composite trape-

. . (b—a
soidal rule is %(HF@’“HM%HF - 1g'||m+k||ng 2] + | Fg* 19" o)

Define M(f, f',f",9,9’,g"”) be the n times of the maximum of ||F"|s + 2|\F’g’||
1F9 e+ Fg" loos | F" 9" loo + 21 F' " g lsc + R F g g oo +1Fg" 9" oo, K =1,...,n—
1, then
(b — a)h?

QSIS = If]] < M(f, f’,f”,g,g’,g”)W-

Similarly, by direct computation we can get

Q511 = 1111
4
|Q [ n[|u]}]| I[Un[f]” +Ml(faflvflluf(3)7f(4)7guglugllug(3)7g(4))1(20_|wa|/21}£2
QT 1] - I1f]]
|QCGS[ w[f] = o[l 1o p(3) p(4) P (3)(4) (b—a)h4
|w|n +M1(f7f7f 7f 7f »9,.9,9 ,9 »d )W
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If we use the following estimation about the composite Simpson’s rule

b b— h3
[ staras - Qosts) < LTI )

we can get the estimation for the 2nd remainder of Taylor expansion:
Corollary 2.5. Suppose that f,g : [a,b] — R are smooth functions and g'(x) # 0 for all
x € [a,b]. Then forn=3 and 1 < |w|

(b—a)h?

|QgS[f] B I[f” S M2(f, f/,f”,f/”7g7g/7g//7g”/) 196|w| (28)

where Mo (f, f/, ", ", 9,9',9",9") is a constant without reference to w and h.
In the following we consider some numerical examples (See Figure 2-3, Table 1) based on
the following expansions (n = 2, 3):

1) - f flaende = L 2 Fhaeien 1)
- <( <w< - b e st @y
o)

iy _ o a (2.9)
= Zk 1 7 ) b)kal(b) _ D ox 7 )Tkl(@)}
e f on f](:r) L (@)da(= Q)

(iw)*  ¢'(a)

Example 2.1. Let’s consider the numerical quadrature for fol cos(x)e™®dx by the new method
(2.9) with n = 2, 3 together with the classic methods (see Figure 2), compared with the classical
composite trapezoidal rule, composite two-point Gauss-Legendre quadrature. The new methods
are quite efficient and the classical methods suffer from difficulty.

Example 2.2. Let’s consider the numerical quadrature for fol eew(@+sin(@)) gz by the method
(2.9) with n = 2 together with the composite two-point Gauss-Legendre quadrature compared
with the adaptive Simpson quadrature in Matlab6.5 (see Table 1).

Table 1: Numerical quadrature for fol erelw@tsin(@)) g,

w  quad(MATLABS6.5) Exact QY %% h=0.01

T .6495644493+1.34949531391 6495644665+ 1.3494953111 6495644656+ 1.3494953111

2 —.6611284693+.6872965838i —.6611284681+.6872965836i —.6611284681+.6872965830i

10 —.0601697795-.1149863480i —.06016978312-.1149863477i —.06016978341—.1149863480i

102 .0164011227+4.0114459817i  .01640115897+.01144595130i .01640116287+.01144595333i

10° .0530404104-.1032264282i  .843801824e — 3 — .1049835167¢ — 2i .8438135711e — 3 — .1049923850e — 2i
10% .7775528393-.5659099847i  —.1703373117e — 3 + .3845531294e — 5i —.1703359420e — 3 + .384591075¢ — 5i

105 —.4489371543+.01539864951 —.8406404573¢ — 5 — .1051689603¢ — 47 —.8406394455¢ — 5 — .1051691982¢ — 4i
10° —.08559189332-.1124372529i .1708754572¢ — 5 + .5889246310e — 74 .1708754574e — 5 + .5889248448e — 7i

Remark 2 6. 1. For Q5-%[on[f]] — Ilon[f]] and Q5[0 [f]] — I[on[f]], note that |A 3%, aiF
(21) e@9@)| < (b — a)||F||s for any nonnegative sequence {a;}7" satisfying >, ha; = b — a,
then

b
I/ oulf1(2)e™ ) — QF ol NIl < 206 — a)llow s,

[ onlfi@)et=s® — @§ (o 1] < 206 - a)lonlF]

Hence together with (2.5), (2.6) and (2,7), these approaches are suitable for w = O(1) and the
rate of decay of the error can be increased as frequency grows.
2. Similarly the estimations about the higher order n(> 3) Taylor expansion is |Q$T[f] —

2
) < M. " 9.9 9" Pl
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Numerical Quadrature of Jécos(x)e“’J Xdx
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Figure 2: Error analysis of the integration fol cos(x)e™®dz. Note that the real part of the integral

function in Q5" ¢* is highly oscillatory but keeps the same sign.
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To get higher order of approach about large w, we consider the following integral formula:

1) = f! fla)e wmd:c |
_ { Lo Sl (-1)7 oj_l[f]w)}
-1 J0 Wy g

a

_ {( Logalfl0) (=1 oy f(a)
> 1)/’“2) ([é”u])g;) " (= [f](a)
s n Os4+k—1 _\= Ok—1 a a
( 11)S+nk 1 {( )erk +g’(b) Tk—l(b) (Z-w)erk g’(a) Tk—l( )}

+()75+n f Ostn [ fl(2)Th—1(z)dx

i 1>): J : sm(x)ew@dx

(2.10)

To quadrature the integral f; Osinlf](@)Th—1(x)dz we also consider the composite trape-
zoidal rule, the composite Simpson rule and the composite 2-point Gauss-Legendre quadrature.
Denote the corresponding method by INQS-T[f], INQS-J[f] and INQS-E5[f]. According to
Theorem 2.4, we can get the following
Theorem 2.7. Suppose that f,g : [a,b] — R are smooth functions and ¢'(x) # 0 for all
x € la,b]. Then for s>1,n=2,3 and 1 < |w|

QUTIf) — 11f)] < M/, f f”,g,gﬂg”)% 211)
QESIA - 11/
< [ L2l gy f’,f”,f(g),f(4),g,g’,g”,g<3>,g(4>)71§3|;|ﬁ}i42 212
QEEs () - 1)
< [0 lonl T Toalll) gy g, 47,49, 4,055 g et

(2.13)

Example 2.3. Let’s consider the numerical quadrature for fol cos(x)e™ @@ dy by the
method (2.10) with n = 1 or 2 and s = 1 together with the composite two-point Gauss-
Legendre quadrature (see Figure 4). The quadrature is more efficient than the corresponding
(2.9).

In case ¢'(x9) = 0 and ¢'(x) # 0 for all « # zg,x € [a, b], without loss of generality, assume
g(xo) = 0 since

b
I[f] = ef9ta0) / F@)e8@=90) g

Suppose that there exists an positive integer r such that ¢(") (x0) # 0. Tt is not difficult to show

_1\ym+1

that x¢ is a removed discontinuous point of o, [f](2)Ty—1(z) and ( 1) — S /] (o) Tn—1
(iw) g (o)

(xo9) = 0 for all n. Hence the following formula is also true

1] = J!f@)erda

w LD g [£(0) _ED™ omalfl@y
Zm—l{ (’Lw)m (b) Tmfl(b) (Z-w)m g’l(a) Tmfl( )}

ENLT
e L oul@) T @)
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Numerical Quadrature of ficos(x)edx
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Figure 4: Numerical quadrature of integral fol cos(x)e™*dx by (2.10)

Numerical examples show that in this case the method is also accurate for the number of
1
composite subintervals is larger than 10w? and can be efficiently used for Bessel transforms (cf.

[11]).

Example 2.4. Let’s consider the numerical quadrature for fol ei”2d:v, fol e eos(*) 4y and

fo%log(ac) sin(wz)dz by the method (2.9) with n = 1,2 or 3, together with the composite
two-point Gauss-Legendre quadrature (see Table 2-4).

Table 2: The Real Part of Numerical Quadrature for fol e’ 4y

w  Exact Ch=10"*" Q¥°®:h=10"
1 9045242379 9045242379 9045242379
102 06011251848 06011251848 06011251848
10* 006251292600  .006251292338 1006251292348
10° .001981842195  .001981930823 001981842418

10°  .0006264818245  .0006266791662 .0006264817632
10 .00006267045435 .00006294843361  .00006269030065

Table 3: The Real Part of Numerical Quadrature for fol eiweos(@) gy

w  Exact QY h=10"3 Q¥ :h=10""
1 6597810536 .6597810536 16597810536

10 —.3019277972  —.3019277972 —.3019277972

10° 03899526001 103899526012 103899526001

108 —.01108796294  —.01108812902 —.01108796293

10°  —.002711212278 —.002702214698  —.002711249511

10°  .0005211644843  .000532892649 .0005210915902

Table 4: The Numerical Quadrature for fOQTr log(z) sin(wz)dz

w 1 10 100 1000 10000

QS50 001y  —243765339  —0.47179307 —0.07020264 —0.00926222 —0.00107962
QS 00  —243765339  —0.47179307 —0.07020265 —0.00931860 —0.00116613
Exact —2.43765339  —0.47179307 —0.07020266 —0.00932285 —0.00116254

3. Quadrature of Integral [’ f(z)e"“®) dx

Suppose that f, g(w,x) are suitably smooth and lim,_,« ¢, (w, x) = oo for all x in [a, b].



588 S.H. XIANG AND Y.X. ZHOU

Let

d alf)@)

oxr1[fl(x) = 4z g (0.7) =0,1,2,---,

and the nth order Taylor polynomials of ¢%9(«>®)

(igw,2))®  (iglw.x)* (ig(w, z)"

and

T, (z) = €9« — F (ig(w, x)).

Notice that Ty, (x) is not highly oscillatory. Let

Uk-i-l[f](‘r) = %%7k2071727'”

Similar to Lemma 2.1, we have

Lemma 3.1. Suppose that f(x),g(w,x) are smooth functions and ¢, (w,x) # 0. Then

1] = [!f(x)e 9@ dx

To calculate the integral f; onlf])(2)Th—1(x)dx we also consider the composite 2-point
Gauss-Legendre quadrature based on the lower Taylor expansions (3.1) or (2.10). Denote the
corresponding method by GQS¢5[f] and GINQS" Gs[f] respectively.

Example 3.1. We give a numerical experiment to calculate the integra I = fo eilwr+wa?) g

The adaptlve Slmpson s quadrature and the composite two-point Gauss-Legendre quadrature
for f eiwr+w”2%) g2 are unstable and completely failure when w > 30 and w > 1000 respectively.
And the asymptotic method in [5] with the 2nd expansion is also completely failure.
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Numerical Quadrature forjée

(@ x4+’ Xz)dx

10
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I I I I
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Figure 5: Error analysis of the integration fol eilwrtwa®) gy by (3.1) with n = 2 or (2.10) withn=s=1
with the composite two-point Gauss-Legendre quadrature, and by (2.10) with n = 1 and s = 1 with
the composite two-point Gauss-Legendre quadrature.

Table 5: The Numerical Quadrature for fol eilwatw?s®) g,

w

quad(in MATLABG.5)

Exact

QS%% . h=10.001

QS-¢% . h = 0.0001

1
10
20
30
50
102
102

5720708 + .6143220:
.0268622 + .0582458:
0125165 + .0260591:
—.0203178 — .01017314
—.0253604 — .01017313
—.0656340 — .10188201
—.0846111 + .1686435

5720708 + .61432201
.0268623 + .05824571
.0125166 + .0260592:
.0090652 + .0172849:
.0052465 + .01058621
.0027160 + .00539731
.0002708 + .0005345¢

5720708 + .6143220:
.0268623 + .05824571
0125166 + .0260592:
.0090652 + .0172849:
.0052465 + .0105862:
.0027160 + .0053973:
0002665 + .00053212

5720708 + .6143220:
.0268623 + .05824571
0125166 + .0260592:
.0090652 + .0172849:
.0052465 + .0105862:
.0027160 + .0053973¢
.0002708 + .0005345¢

w

Exact

GINQ{%:h=10""*

Gauss:h = 1074

Asymptotic method:s=2

1
10

10?
10°

5720708 + .61432207
.0268623 + .05824571
.0027160 + .0053973:
.0002708 + .00053451%

5720708 + .61432207
.0268623 + .05824571
.0027160 + .0053973:
.0002708 + .00053451%

5720708 + .6143220:
.0268623 + .05824571
.0027160 + .00539714
.0034855 + .00357441

2.3339248 + 1.07136074
1998109 + .10475821
.0200109 + .01004857
.0020003 + .0009996:
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