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Abstract

We present and analyze a robust preconditioned conjugate gradient method for the
higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary
linear element stiffness matrix is chosen to be the preconditioner for higher order finite
elements. Then an algebraic multigrid method of linear finite element is applied for solving
the preconditioner. The optimal condition number which is independent of the mesh size
is obtained. Numerical experiments confirm the efficiency of the algorithm.

Mathematics subject classification: 65N30, 65N55.
Key words: Finite element, Algebraic multigrid methods, Preconditioned Conjugate Gra-
dient, Condition number.

1. Introduction

Multigrid method is one of the most efficient methods for solving large scale algebraic
systems arising from the discretizations of partial differential equations(c.f. [1, 2, 9, 8, 10, 11]).
The mesh size independent convergence rate can be achieved for geometric multigrid methods.
For many practical problems, since the complexity of problems and solution domains, we have
to use unstructured grids shown as in the Figure 2 and 3 for examples. The algebraic multigrid
methods (AMG) are more suitable for the unstructured grids than geometric multigrid methods.
A typical algebraic multigrid algorithm is like the algorithm 2.1, where the matrix Bh is the
stiff matrix of the k order Lagrangian finite element. In the algebraic multigrid procedure, the
coarsening of the grids is the most important issue but it is not easy to control the number
of coarse grid degrees of freedom. The known AMG methods for finite element systems are
designed mainly based on the linear element[3, 1]. Whether the convergence rate depends on
mesh size or not is still open. The numerical examples show the dependence, see Table 2.1.

Lagrangian finite elements are important class of finite elements family in practical appli-
cations, which includes the linear and high order Lagrangian finite elements (see the Figure
1). The matrix structural of higher order finite element system is much complicated than the
linear ones. The direct application of AMG algorithm for linear element to the higher order
finite element yields the reduction of the efficiency (see the Table 2.1 and Table 2.2 for details).
The more robust and efficient AMG algorithms need to be designed carefully.
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Figure 1: (a) The linear element. (b) The quadric element. (c) The cubic element.

Figure 2: (a) The grid 1 with 2776 elements. (b) The grid 2 with 6427 elements.

Let T h be a partition of Ω for a higher order Lagrangian finite element discretization, then
we can introduce a refined grid T l

h by refining the grid T h through connecting the nodes, for
example, the Figure 4 shows the grid Th corresponding to quadric Lagrangian finite element and
the refining grid T l

h. Based on the new partition T 1

h we can construct the stiffness matrix Bh of
the linear Lagrangian finite element. This matrix Bh is supposed to be the preconditioner for the
conjugate gradient algorithm for solving the discretization systems of high order Lagrangian
finite element. The condition number of the preconditioned conjugate gradient methods is
shown to be bounded independently on the mesh size. The numerical experiments confirm our
theoretical results. The rigorous proof is given for the quadratic element and it can be extended
to the higher order elements easily.

The rest of the paper is organized as follows. In section 2, we introduce the typical algebraic
multigrid algorithm and give some comments. In section 3, for high order lagrangian finite
elements, we give PCG methods based on algebraic multigrid method of linear finite element
and provide some numerical experiments. Finally in section 4, we give a rigorous theoretical
analysis for our PCG methods.

2. The Algebraic Multigrid Algorithm

For simplicity, we consider the following model problem
{

−∇(a(x)∇u) = f, x := (x1, x2) ∈ Ω,

u|∂Ω = 0,
(2.1)

where c0 ≤ a(x) ≤ c1 and c0, c1 are positive constants.
Let T h be the triangular partition of the domain Ω, and Pk be the set of polynomials of

degree no more than k, where h is the maximal diameter of all the partition elements in T h.
We introduce the following Lagrangian finite element space.
Definition 2.1 V k

h = {vk
h(x) : vk

h(x) ∈ C(Ω̄), vk
h|T ∈ Pk, ∀T ∈ T h} is called a k order La-
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Figure 3: (a) The grid 3 with 8615 elements. (b) The grid 4 with 6181 elements.

Figure 4: (a) The grid T h corresponding to the quadric finite element. (b) The refining grid T l
h of the

grid T h corresponding to the linear finite element.

grangian finite element space and the functions in V k
h are called k order Lagrangian finite

element functions.
Especially we call V k

h the linear, quadratic and cubic Lagrangian finite element space for
k=1, 2 and 3 respectively(see the Figure 2 ). The finite element solution of equation (2.1)
uk

h ∈ V k
h satisfies

a(uk
h, vk

h) = (f, vk
h), ∀vk

h ∈ V k
h ∩ H1

0 (Ω), (2.2)

where

a(u, v) =

∫

Ω

a(x)(ux1
vx1

+ ux2
vx2

) dx,

(f, u) =

∫

Ω

fudx,

and the Sobolev space Hm(Ω) = {v|∂αv ∈ L2(Ω), |α| ≤ m}.
Write the the corresponding discretization systems of the equations (2.2) on the grid T h in

the matrix form
Ahuh = fh. (2.3)

A typical algebraic Multigrid method consists of two components, smoothing and coarsen-
ing including restriction and prolongation. In AMG, the smoother is taken as Gauss-Seidel
iteration usually. The most important thing to make AMG efficient is coarsening. Let’s ap-
ply the coarsening algorithm introduced in [4, 6] to the linear element system, and denote the
corresponding interpolation operator sequence as {P k

k−1
}J

k=2
which are constructed in energy
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minimization sense. We describe the corresponding AMG method to solve the equations (2.3)
as follows.
Algorithm 2.1 (V-Cycle)

for k = J, J − 1, · · · , 2
for j = 1, m1

wk = wk + Gk(bk − B̃kwk);
end for

rk = bk − B̃kwk;
bk−1 = (P k

k−1
)trk;

end for

w1 = (B̃1)
−1b1;

for k = 2, · · · , J − 1, J

wk = wk + P k
k−1

wk−1;
for j = 1, m2

wk = wk + Gk(bk − B̃kwk);
end for

end for

where wJ := uh, bJ := fh, B̃J := Ah, m1, m2 are the numbers of pre-smoothing and post-
smoothing iterations and Gk is a certain smoothing operator respectively.

Assume that a(x) = 1 in Equation (2.1), we examine the efficiency of the algebraic multi-
grid Algorithm 2.1, by solving the equations (2.3) of k order Lagrangian finite element. The
numerical results are shown as follows.

Table 2.1. The numerical results of AMG for linear, quadratic and cubic Lagrangian finite element on
the structured grid 2(see the Figure 4).

Element The linear element The quadric element The cubic element
Time(s) Iter. times Time(s) Iter. times Time(s) Iter. times

16 × 16 0.05 5 0.16 13 0.93 44

32 × 32 0.06 7 0.49 14 3.35 50

64 × 64 0.28 10 1.92 16 14.23 55

128 × 128 1.10 12 8.30 18 68.11 62

Table 2.2. The numerical results of AMG for linear, quadratic and cubic Lagrangian finite element on
the unstructured grid 1 ∼ grid 4(see the Figure 2 and 3)

Element The linear element The quadratic element The cubic element
Time(s) Iter. times Time(s) Iter. times Time(s) Iter. times

grid 1 0.16 11 0.82 16 4.34 44

grid 2 0.33 13 2.15 19 10.76 49

grid 3 0.44 13 2.58 18 15.10 46

grid 4 0.22 11 1.97 18 9.72 49

Table 2.1 and Table 2.2 show that the iteration number increases as the order of finite
element increases. In this paper we shall propose an efficient preconditioned conjugate gradient
methods based on AMG of linear finite element for solving the equations of high order finite
element 2.3. The optimal condition number is obtained and numerical results are provided.

3. Preconditioning by Linear Element

In this section, we will give the analysis of convergence of our new algorithms. For simplicity,
we only discuss the LPCG algorithm for solving the equations (2.3) of quadratic Lagrangian
finite element. Analogous to the above section, let Th be the regular triangular grid of quadratic
Lagrangian finite element space V 2

h and T l
h be the refining grid of linear finite element space
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V 1

h (see the Figure 4), N be degrees of freedom of the space V 2

h . The matrices Ah and Bh denote
the stiff matrices of the equation (2.1) for the finite element space V 2

h and V 1

h , respectively.
Firstly, we introduce the notation <

∼, >
∼, =

∼ as same as that in the paper [11], which means

that when we write

x1
<
∼ y1, x2

>
∼ y2 and x3

=
∼ y3

then there exist constants C1, c2, c3, and C3 such that

x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3.

The following Lemma presents the estimate of condition numbers for two SPD matrices Ah

and Bh (see [11]).
Lemma 3.1 For the above SPD matrices Ah and Bh, the condition number of matrix BhAh

k(BhAh) <
∼ O(1) if and only if the following inequalities hold

(BhV, V ) <
∼ (AhV, V ) <

∼ (BhV, V ), ∀V = (v1, v2, · · · , vN )T ∈ RN (3.1)

where, (·,·) is the inner product of RN .
Let {xj}

N
j=1

be the set of non-Dirichlet nodes of the refining grid T l
h, we introduce the

following interpolation base functions {φ2
i }

N
i=1

in V 2

h and {φ1
i }

N
i=1

in V 1

h , respectively, which
satisfy

φl
i(xj) = δi,j i, j = 1(1)N, l = 1, 2. (3.2)

Define the functions v2

h(x) in V 2

h and v1

h(x) in V 1

h as follows

vl
h(x) =

N
∑

j=1

vjφ
l
j(x), l = 1, 2.

Then the inequalities (3.1) are equivalent to

a(v1

h(x), v1

h(x)) <
∼ a(v2

h(x), v2

h(x)) <
∼ a(v1

h(x), v1

h(x)), ∀(v1, v2, · · · , vN )T ∈ RN (3.3)

where,

a(u, v) =

∫

Ω

a(x)(ux1
vx1

+ ux2
vx2

) dx.

By the coerciveness condition of a(·, ·), we can rewriting the inequalities (3.3) as

‖v1

h‖1
<
∼ ‖v2

h‖1
<
∼ ‖v1

h‖1, ∀(v1, v2, · · · , vN )T ∈ RN (3.4)

where, ‖ · ‖ is the norm of Sobolev space H1(Ω).
Theorem 3.1 For any given regular triangular grid Th of quadratic Lagrangian finite element
space V 2

h , the inequalities (3.4) hold.
Proof. By the definition of the norm ‖ · ‖, we need to prove that

‖v1

h‖0
<
∼ ‖v2

h‖0
<
∼ ‖v1

h‖0, ∀(v1, v2, · · · , vN )T ∈ RN (3.5)

and

|v1

h|1 <
∼ |v2

h|1 <
∼ |v1

h|1, ∀(v1, v2, · · · , vN )T ∈ RN . (3.6)

This can be achieved by proving the following stronger results.

‖v1

h‖0,τ
<
∼ ‖v2

h‖0,τ
<
∼ ‖v1

h‖0,τ , ∀(v1, v2, · · · , vN )T ∈ RN (3.7)

and

|v1

h|1,τ
<
∼ |v2

h|1,τ
<
∼ |v1

h|1,τ , ∀(v1, v2, · · · , vN )T ∈ RN . (3.8)
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where, τ ∈ Th is any triangular element τ of quadratic finite element and τ l
j(j = 1(1)4) are

corresponding four refining triangular elements of linear finite element(see the Figure 6(q1) and
(q2)in section 4.)

Let the mesh size h be the maximal diameter of all elements in T h. For any triangular
element τ , denote x1(ξ, η) and x2(ξ, η) as the linear mapping from τ into standard reference
triangle τ̂(see the Figure 5), then we have

‖vl
h‖

2

0,τ
=
∼ h2‖v̂l

h‖
2

0,τ̂ , |vl
h|

2

1,τ
=
∼ |v̂l

h|
2

1,τ̂ , ∀vl
h ∈ V l

h, l = 1, 2, (3.9)

where, v̂l
h(ξ, η) := vl

h(x1(ξ, η), x2(ξ, η)), (ξ, η) ∈ τ̂ .
By (3.9), we need only to prove that the equations (3.7) and (3.8) hold in standard triangular
element τ̂ .

Since v̂1

h(ξ, η) and v̂2

h(ξ, η) have the same freedoms in τ̂ , thus it’s obvious under the norm
‖ · ‖0 that

‖v̂2

h‖0,τ̂
=
∼ ‖v̂1

h‖0,τ̂ , (3.10)

In the following, we will prove under the semi-norm | · |1 that

|v̂2

h|1,τ̂
=
∼ |v̂1

h|1,τ̂ , (3.11)

For any p0 ∈ P0, we have by equivalence of norms for finite dimensional space

|v̂1

h|1,τ̂ = |v̂1

h + p0|1,τ̂ ≤ ‖v̂1

h + p0‖1,τ̂ ≤ ‖v̂2

h + p0‖1,τ̂ ,

thus, by Bramble-Hilbert Lemma,

|v̂1

h|1,τ̂ ≤ inf
∀p0∈P0

‖v̂2

h + p0‖1,τ̂
<
∼ |v̂2

h|1,τ̂ . (3.12)

Analogously, we can prove that

|v̂2

h|1,τ̂ ≤ inf
∀p0∈P0

‖v̂1

h + p0‖1,τ̂
<
∼ |v̂1

h|1,τ̂ . (3.13)

Combining (3.12) and (3.13), we get (3.11), which completes the proof of the Theorem 3.1.

Figure 5: (a) A triangular element τ of quadratic finite element. (b) The corresponding standard
triangular element τ̂ . (c) The refining mesh τ̂l of standard triangular element τ̂

By the Theorem 3.1, we know that the condition number of our preconditioned conjugate
gradient method is independent of the equations size, which verify the numerical experiment
results above.
Remark. The idea of algorithm and the theoretical analysis we provide in this paper can be
extended to the general high order triangular and isoparametric quadrilateral finite elements.

4. A PCG Algorithm Based on AMG

To design an efficient PCG method, we need to construct an appropriate preconditioner for
the equations (2.3) of the high order Lagrangian finite element. Let Nk be the freedoms of k
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order Lagrangian finite element space V k
h , by refining the grid T h, we can get a grid T l

h so that
the total numbers of nodes in T l

h equal to Nk. For example, the Figure 6 show how to refine
an element corresponding to quadratic and cubic Lagrangian finite element into the elements
corresponding to linear finite element.

Figure 6: The Figure (q1) and (q2) express a element τ of quadratic finite element and corresponding
four refining elements τ l

j(j = 1(1)4) of linear finite element. The Figure (c1) and (c2) express a element
τ of cubic finite element and corresponding nine refining elements τ l

j(j = 1(1)9) of linear finite element.

For the refining grid T l
h, we introduce the linear finite element space V 1

h = {v1

h(x) : v1

h(x) ∈
C(Ω̄), v1

h|T ∈ P1, ∀T ∈ T l
h} , then we can obtain the stiff matrix Bh of the linear Lagrangian

finite element on a grid T l
h by geometric approach. Choosing the approximate inverse matrix

B̃−1

h of the matrix Bh as the preconditioner, we provided a preconditioned conjugate gradient

methods for the discretization systems (2.3). In this paper, we define B̃−1

h as follows. For given

vector rh ∈ RNk , then wh = B̃−1

h rh is obtained by calling some V − Cycles of the algorithm
2.1 to solving the following equations

Bhwh = rh, (4.1)

We call the above preconditioned conjugate gradient methods as the LPCG algorithm. The
Table 4.1 and 4.2 show that the iteration numbers is independent of the size of the equations,
thus comparing with the method in which we apply the ordinary AMG method to solve the
systems (2.3) directly (see The Table 2.1 and 2.2), our algorithm is more robust and efficient.

Table 4.1. The numerical results of LPCG algorithm for quadratic and cubic element with structured
grids(see the Figure 4)

quadratic element cubic element

Element Time(s) Iter. times Time(s) Iter. times

16 × 16 0.17 7 0.22 8

32 × 32 0.28 7 0.83 9

64 × 64 1.27 7 3.24 9

128 × 128 4.01 8 13.57 10

Table 4.2. The numerical results of LPCG algorithms for quadratic and cubic element with
unstructured grids (see the Figure 2 and 3)

quadratic element cubic element

Element Time(s) Iter. times Time(s) Iter. times

grid3 0.55 8 1.48 9

grid4 1.54 8 3.24 11

grid5 2.20 9 4.45 11

grid6 1.49 8 3.18 11

Next, using popular ILU-PCG algorithms where the preconditioner is the incomplete LU
decompose matrix of the high order finite element matrix Ah, we make some numerical exper-
iments. The Table 4.3 and 4.4 show the advantages of our LPCG algorithms.
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Table 4.3. The numerical results of ILU-PCG algorithms for quadratic and cubic finite element with
structured grids(see the Figure 4)

Element quardic element cubic element
Time(s) Iter. times Time(s) Iter. times

16 × 16 0.22 23 0.44 41

32 × 32 0.49 40 1.60 71

64 × 64 1.59 62 7.20 114

128 × 128 8.40 102 37.57 166

Table 4.4. The numerical results of ILU-PCG algorithms for quadratic and cubic finite element with
unstructured grids(see the Figure 2 and 3)

Element quardic element cubic element
Time(s) Iter. times Time(s) Iter. times

grid3 1.27 98 4.51 169

grid4 2.80 146 12.47 255

grid5 4.67 187 24.83 325

grid6 3.07 145 12.57 249
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