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Abstract

By making use of the quotient singular value decomposition (QSVD) of a matrix pair,
this paper establishes the necessary and sufficient conditions for the existence of and the
expressions for the general solutions of the linear matrix equation AXAT + BY BT = C

with the unknown X and Y , which may be both symmetric, skew-symmetric, nonnegative
definite , positive definite or some cross combinations respectively. Also, the solutions of
some optimal problems are derived.
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1. Introduction

It has been of interest for many authors to solve the linear matrix equations under con-
strained conditions. For the cases of one unknown matrix, such as AX = B or AXB = C, the
discussions can be seen in literatures [6,11,12,14,16] and [17]. The authors in [2,3,5,13] and [15]
considered the solutions of the following linear matrix equation with two unknown matrices

AXB + CY D = E, (1.1)

which originates from the applications to output feedback pole assignment problems in control
theory and from an inverse scattering problem. As special cases, Jameson and Kreindler (1973),
Jameson, Kreindler and Lancaster(1992), and Dobovisek (2001) developed the consistent con-
ditions and representations of the solutions of homogeneous equations

AX ± Y B = 0 (1.2)

with X or Y symmetric(Hermitian), nonnegative definite or positive definite and some cross
combinations respectively.

In this paper, we discuss the symmetric matrix equation

AXAT +BY BT = C (1.3)

with the unknown X and Y both symmetric, skew-symmetric, nonnegative definite , positive
definite or some cross combinations respectively, which has been studied in [3] for the case X
and Y are both symmetric by using the general singular value decomposition (GSVD).
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Let Rm×n denote the set of all real m× n matrices, SRn×n , ARn×n, SRn×n
0 , SRn×n

+ and
ORn×n are the sets of all real symmetric , skew-symmetric, symmetric nonnegative definite,
symmetric positive definite and orthogonal n× n matrices respectively. When the size is clear,
we also write A ≥ 0 or A > 0 to denote that A is symmetric nonnegative definite or symmetric
positive definite matrix, and A ≥ B(A > B) means A−B ≥ 0(A−B > 0). For A ∈ Rm×n, let
AT , A+ and R(A) be, respectively, the transpose, the Moore-Penrose inverse and the column
space of A. ‖ · ‖F stands for the Frobenius norm of a matrix, A ∗ B represents the Hadamard
product of A and B.

Let A ∈ Rm×n, B ∈ Rm×p, C ∈ Rm×m, S1 = SRn×n, S2 = SRn×n
0 ,S3 = SRn×n

+ , S4 =

ARn×n, T1 = SRp×p, T2 = SR
p×p
0 ,T3 = SR

p×p
+ , T4 = ARp×p, in the next sections the following

problems are considered.

Problem I. Given A,B and C, and let

Lij = {[X,Y ] : X ∈ Si, Y ∈ Tj , AXA
T +BY BT = C}, (1.4)

find the consistent conditions for Lij 6= ∅, and if the conditions hold, find the expression of
[X,Y ] ∈ Lij .

problem II. Find [X̂, Ŷ ] ∈ Lii, such that

∥

∥

∥[X̂, Ŷ ]
∥

∥

∥

F
=

[

‖X̂‖2
F + ‖Ŷ ‖2

F

]
1

2

= min . (1.5)

This paper is organized as follows. In section 2, we introduce some preliminaries and give
the solutions of Problem I and Problem II on L11. In section 3, we establish the solutions of
Problem I on L12 and L13 . In section 4, we provide the solutions of Problem I and Problem II
on L22, the solutions of Problem I on L23 and L33. Finally in section 5, we discuss the solutions
of Problem I and Problem II on L44.

2. Preliminaries and the Solution on L11

We first introduce two lemmas about nonnegative definite and positive definite matrices,
see [1], [8] and [18, p325].

Lemma 2.1. Given matrix H =

(

E F

F T G

)

with E ∈ Rn1×n1 , F ∈ Rn1×n2 , G ∈ Rn2×n2 ,

then the following statements are equivalent.

(i) H ≥ 0;

(ii) E ≥ 0, G− F TE+F ≥ 0 and R(F ) ⊆ R(E);

(iii) G ≥ 0, E − FG+F T ≥ 0 and R(F T ) ⊆ R(G).

Lemma 2.2. Given matrix H =

(

E F

F T G

)

with E ∈ Rn1×n1 , F ∈ Rn1×n2 ,G ∈ Rn2×n2 , then

the following statements are equivalent.

(i) H > 0;

(ii) E > 0, G− F TE−1F > 0;

(iii) G > 0, E − FG−1F T > 0.

The quotient singular value decomposition (QSVD) of a matrix pair [A,B] is stated as
follows(cf. [4]), compared with the GSVD, it has a simple form.

Lemma 2.3. Given two matrices A ∈ Rm×n, B ∈ Rm×p, the QSVD of [A,B] is

A = M
∑

AU
T , B = M

∑

BV
T , (2.1)
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where M is a nonsingular m × m matrix, and if we let k = rank(A,B), r = k − rank(B),
s = rank(A) + rank(B) − k, then in (2.1), U ∈ ORn×n, V ∈ ORp×p and

∑

A =







IA 0 0
0 SAB 0
0 0 0A

0 0 0







r

s

k − r − s

m− k

,
∑

B =







0B 0 0
0 IAB 0
0 0 IB
0 0 0







r

s

k − r − s

m− k

,

r s n− r − s p+ r − k s k − r − s

here IA, IB and IAB are identity matrices, 0A and 0B are zero matrices, and

SAB = diag(σ1, · · · , σs), σi > 0(i = 1, · · · , s).

The solutions on L11 about Problem I and II can be seen in [3, Theorem 3.1], which was
derived by GSVD, now we state the similar results proved by QSVD, the proof is similar to
that of [3, Theorem 3.1] , so we omit the proof.
Theorem 2.1 (XT = X,Y T = Y ). Let the QSVD decomposition of the matrix pair [A,B] be
of the form (2.1). Partition M−1CM−T into the following form:

M−1CM−T =







C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44







r

s

k − r − s

m− k

, (2.2)

r s k − r − s m− k

then the set L11 is nonempty if and only if

CT = C,C13 = 0, C14 = 0, C24 = 0, C34 = 0, C44 = 0, (2.3)

when the condition (2.3) is satisfied, the general expression of [X,Y ] ∈ L11 is

X = U





C11 C12S
−1
AB X13

S−1
ABC

T
12 S−1

AB(C22 − Y22)S
−1
AB X23

XT
13 XT

23 X33



UT , (2.4)

Y = V





Y11 Y12 Y13

Y T
12 Y22 C23

Y T
13 CT

23 C33



V T , (2.5)

where
X13 ∈ Rr×(n−r−s), X23 ∈ Rs×(n−r−s), X33 ∈ SR(n−r−s)×(n−r−s),

Y11 ∈ SR(p+r−k)×(p+r−k), Y22 ∈ SRs×s, Y12 ∈ R(p+r−k)×s, Y13 ∈ R(p+r−k)×(k−r−s)

are arbitrary matrices.
In L11, there exists a unique [X̂, Ŷ ] that makes (1.5) hold, and X̂, Ŷ can be expressed as

X̂ = U





C11 C12S
−1
AB 0

S−1
ABC

T
12 Ψ ∗ (SABC22SAB) 0

0 0 0



UT ,

Ŷ = V





0 0 0
0 Ψ ∗ C22 C23

0 CT
23 C33



V T , (2.6)
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here

Ψ = (ψij) ∈ Rs×s, ψij =
1

1 + σ2
i σ

2
j

, 1 ≤ i, j ≤ s. (2.7)

3. The Solutions on L12 and L13

In this section we discuss the solutions of Problem I on L12 and L13 respectively.
Theorem 3.1 (XT = X,Y ≥ 0). Let the QSVD decomposition of the matrix pair [A,B] be
of the form (2.1) and M−1CM−T be of the form (2.2). Suppose the condition (2.3) hold, then
the set L12 is nonempty if and only if

C33 ≥ 0, R(CT
23) ⊆ R(C33). (3.1)

When the condition (3.1) is satisfied, the general expression of [X,Y ] ∈ L12 is given by (2.4)
and (2.5), where X13, X23, X

T
33 = X33 are arbitrary submatrices with appropriate sizes, and

Y T
11 = Y11, Y12, Y13, Y

T
22 = Y22 are parameter matrices with appropriate sizes which satisfy















R(Y T
13) ⊆ R(C33),

R(Y T
1 ) ⊆ R(Y2),

Y2 ≥ 0,
Y0 − Y1Y

+
2 Y

T
1 ≥ 0,

(3.2)

where






Y0 = Y11 − Y13C
+
33Y

T
13,

Y1 = Y12 − Y23C
+
33C

T
23,

Y2 = Y22 − C23C
+
33C

T
23.

(3.3)

Remark. Since L12 ⊆ L11, therefore condition (2.3) must be satisfied in Theorem 3.1.
Proof. The “if” part. Denote

X0 = U





C11 C12S
−1
AB 0

S−1
ABC

T
12 S−1

AB(C22 − C23C
+
33C

T
23)S

−1
AB 0

0 0 0



UT ,

Y0 = V





0 0 0
0 C23C

+
33C

T
23 C23

0 CT
23 C33



V T , (3.4)

then in view of Lemma 1, XT = X , Y T ≥ 0 and [X,Y ] ∈ L12, so L12 is nonempty.
The “only if” part. Let [X,Y ] ∈ L12, then [X,Y ] ∈ L11, so Y has the form (2.5). Because

Y ≥ 0 implies

(

Y22 C23

CT
23 C33

)

≥ 0, therefore (3.1) follows by Lemma 2.1.

When condition (3.1) is met, L12 is nonempty. X,Y can be expressed by (2.4) and (2.5).
By Lemma 2.1, Y ≥ 0 implies R(Y T

13) ⊆ R(C33), C33 ≥ 0 and

(

Y0 Y1

Y T
1 Y2

)

=

(

Y11 − Y13C
+
33Y

T
13 Y12 − Y13C

+
33C

T
23

Y T
12 − C23C

+
33Y

T
13 Y22 − C23C

+
33C

T
23

)

≥ 0,

therefore (3.2) follows by Lemma 2.1 again. The proof is complete.
Theorem 3.2 (XT = X,Y > 0). Let the QSVD decomposition of the matrix pair [A,B] be
of the form (2.1) and M−1CM−T be of the form (2.2). Suppose the conditions in (2.3) hold,
then the set L13 is nonempty if and only if

C33 > 0. (3.5)
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When the condition (3.5) is satisfied, the general expression of [X,Y ] ∈ L13 is given by (2.4)
and (2.5), where X13, X23, X

T
33 = X33 are arbitrary submatrices with appropriate sizes, and

Y T
11 = Y11, Y12, Y13, Y

T
22 = Y22 are parameter matrices with appropriate sizes which satisfy

{

Y2 > 0,
Y0 − Y1Y

−1
2 Y T

1 > 0,
(3.6)

with(3.3), here C+
33 = C−1

33 .

4. The Solutions on L22, L23 and L24

In this section we discuss the solutions of Problem I and II on L22 and the solutions of
Problem I on L23 and L33 respectively.
Theorem 4.1 (X ≥ 0, Y ≥ 0). Let the QSVD decomposition of the matrix pair [A,B] be of
the form (2.1) and M−1CM−T be of the form (2.2). Suppose the condition (2.3) hold, then

(i) The necessary and sufficient conditions for the set L22 is nonempty is that

C ≥ 0, R(CT
23) ⊆ R(C33), R(C12S

−1
AB) ⊆ R(C11),

C22 ≥ CT
12C

+
11C12 + C23C

+
33C

T
23. (4.1)

When the condition (4.1) is satisfied, the general expression of [X,Y ] ∈ L22 is given by (2.4)
and (2.5), where

Y22 = C23C
+
33C

T
23 +G, 0 ≤ G ≤ C22 − CT

12C
+
11C12 − C23C

+
33C

T
23. (4.2)

Y T
11 = Y11, Y12, Y13 are parameter matrices with appropriate sizes which satisfy (3.2) with (3.3),

and X13, X23, X
T
33 = X33 are parameter matrices with appropriate sizes which satisfy















R(X13) ⊆ R(C11),
R(ZT

1 ) ⊆ R(Z2),
Z2 ≥ 0,
Z0 − Z1Z

+
2 Z

T
1 ≥ 0,

(4.3)

where






Z0 = S−1
AB(C22 − Y22)S

−1
AB − S−1

ABC
T
12C

+
11C12S

−1
AB ,

Z1 = X23 − S−1
ABC

T
12C

+
11X13,

Z2 = X33 −XT
13C

+
11X13.

(4.4)

(ii) In L22, there exists a unique [X̂, Ŷ ] that makes (1.5) hold, and X̂, Ŷ can be expressed
as

X̂ = U





C11 C12S
−1
AB 0

S−1
ABC

T
12 S−1

AB(C22 − C23C
+
33C

T
23 − Ĝ)S−1

AB 0
0 0 0



UT ,

Ŷ = V





0 0 0
0 C23C

+
33C

T
23 + Ĝ C23

0 CT
23 C33



V T , (4.5)

where Ĝ is the unique solution of following optimal problem

‖S−1
ABGS

−1
AB + S−1

AB(C23C
+
33C

T
23 − C22)S

−1
AB‖2

F + ‖G+ C23C
+
33C

T
23‖

2
F = min, (4.6)

for 0 ≤ G ≤ C22 − CT
12C

+
11C12 − C23C

+
33C

T
23.
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Proof. (i) Necessity. Suppose [X,Y ] ∈ L22, then [X,Y ] ∈ L11, and X has the form (2.4), Y
has the form (2.5). X ≥ 0, Y ≥ 0 imply that C ≥ 0 by (1.3) and

(

C11 C12S
−1
AB

S−1
ABC

T
12 S−1

AB(C22 − Y22)S
−1
AB

)

≥ 0,

(

Y22 C23

CT
23 C33

)

≥ 0,

therefore by Lemma 2.1,















R(C12S
−1
AB) ⊆ R(C11),

S−1
AB(C22 − Y22)S

−1
AB − S−1

ABC
T
12C

+
11C12S

−1
AB ≥ 0,

R(CT
23) ⊆ R(C33),

Y22 − C23C
+
33C

T
23 ≥ 0.

(4.7)

Let
Y22 = C23C

+
33C

T
23 +G, (4.8)

from (4.7) we know G ≥ 0 and C22 − Y22 − CT
12C

+
11C12 ≥ 0, i.e.,

C22 − CT
12C

+
11C12 − C23C

+
33C

T
23 ≥ G ≥ 0.

Sufficiency. Denote X0, Y0 by (3.4), then in view of Lemma 2.1 and condition (4.1), we know
X0 ≥ 0, Y0 ≥ 0 and [X0, Y0] ∈ L22, so L22 is nonempty.

When condition (4.1) is met, the expression (2.5) and the condition (3.2) about Y follows,
the proof is similar to that of Theorem 3.1. While in (2.4), X ≥ 0 implies that R(X13) ⊆ R(C11)

and

(

Z0 Z1

ZT
1 Z2

)

≥ 0, therefore (4.3) follows.

(ii) When [X,Y ] ∈ L22, from (2.4), (2.5) and (4.2), we have

‖X‖2
F + ‖Y ‖2

F

= α0 + ‖S−1
AB(C22 − Y22)S

−1
AB‖2

F + ‖Y22‖2
F + 2‖X13‖2

F

+2‖X23‖2
F + ‖X33‖2

F + ‖Y11‖2
F + 2‖Y12‖2

F + 2‖Y13‖2
F

where α0 is a constant number, therefore ‖X‖2
F + ‖Y ‖2

F = min if and only if X13 = 0, X23 =
0, X33 = 0, Y11 = 0, Y12 = 0, Y13 = 0 and

‖S−1
AB(C22 − Y22)S

−1
AB‖2

F + ‖Y22‖
2
F = min,

this is the optimal problem (4.6), notice that the set

{

G ∈ SRs×s| 0 ≤ G ≤ C22 − CT
12C

+
11C12 − C23C

+
33C

T
23

}

is a closed convex set, therefore the optimal problem (4.6) has a unique solution.
The proof of the following results is similar to that of Theorem 4.1, so we omit the process.

Theorem 4.2 (X ≥ 0, Y > 0). Let the QSVD decomposition of the matrix pair [A,B] be of the
form (2.1) and M−1CM−T be of the form (2.2). Suppose the condition (2.3) hold and C ≥ 0,
then the necessary and sufficient conditions for the set L23 is nonempty is that

C33 > 0, R(C12S
−1
AB) ⊆ R(C11),

C22 ≥ CT
12C

+
11C12 + C23C

−1
33 C

T
23. (4.9)

When the condition (4.9) is satisfied, the general expression of [X,Y ] ∈ L23 is given by (2.4)
and (2.5), where

Y22 = C23C
−1
33 C

T
23 +G, 0 < G ≤ C22 − CT

12C
+
11C12 − C23C

−1
33 C

T
23. (4.10)
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Y T
11 = Y11, Y12, Y13 are parameter matrices with appropriate sizes which satisfy (3.6) with (3.3),

and X13, X23, X
T
33 = X33 are parameter matrices with appropriate sizes which satisfy (4.3) with

(4.4).

Theorem 4.3 (X > 0, Y > 0). Let the QSVD decomposition of the matrix pair [A,B] be of the
form (2.1) and M−1CM−T be of the form (2.2). Suppose the condition (2.3) hold and C ≥ 0,
then the necessary and sufficient conditions for the set L33 is nonempty is that

C11 > 0, C33 > 0,

C22 > CT
12C

−1
11 C12 + C23C

−1
33 C

T
23. (4.11)

When the condition (4.11) is satisfied, the general expression of [X,Y ] ∈ L33 is given by (2.4)
and (2.5), where

Y22 = C23C
−1
33 C

T
23 +G, 0 < G < C22 − CT

12C
−1
11 C12 − C23C

−1
33 C

T
23. (4.12)

Y T
11 = Y11, Y12, Y13 are parameter matrices with appropriate sizes which satisfy (3.6) with (3.3),

and X13, X23, X
T
33 = X33 are parameter matrices with appropriate sizes which satisfy

{

Z2 > 0,
Z0 − Z1Z

−1
2 ZT

1 > 0,
(4.13)

with (4.4), here C+
11 = C−1

11 .

5. The Solutions on L44

Let us first introduce a lemma.

Lemma 5.1. Given G,H ∈ Rr×r, Λ = diag(λ1, · · · , λr) > 0, P = diag(r1, · · · , rr) > 0, there
exists a unique matrix Ŝ ∈ ARr×r, such that

‖ΛŜΛ −G‖2
F + ‖P ŜP −H‖2

F

= min
S∈ARr×r

(

‖ΛSΛ−G‖2
F + ‖PSP −H‖2

F

)

, (5.1)

and Ŝ can be expressed as

Ŝ =
1

2
φ ∗

(

Λ(G−GT )Λ + P (H −HT )P
)

, (5.2)

where

φ = (ϕij) ∈ Rr×r, ϕij =
1

λ2
iλ

2
j + r2i r

2
j

, 1 ≤ i, j ≤ r. (5.3)

Proof. For S = (sij) ∈ ARr×r, G = (gij) ∈ Rr×r, and H = (hij) ∈ Rr×r, we have

‖ΛSΛ−G‖2
F + ‖PSP −H‖2

F

=
∑

i,j

[

(λiλjsij − gij)
2 + (rirjsij − hij)

2
]

=
∑

1≤i≤r

[

g2
ii + h2

ii

]

+
∑

1≤i<j≤r

{2(λ2
iλ

2
j + r2i r

2
j )s2ij + g2

ij + g2
ji

+h2
ij + h2

ji + 2[λiλj(gji − gij) + rirj(hji − hij)]sij}.

(5.4)
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From (5.4), it is easy to obtain a unique solution Ŝ = (ŝij) ∈ ARr×r of (5.1), and

ŝij =
1

2

1

λ2
i λ

2
j + r2i r

2
j

[λi(gij − gji)λj + ri(hij − hji)rj ], 1 ≤ i, j ≤ r, (5.5)

Thus (5.2) is proved.
The following theorem establishes the necessary and sufficient conditions for the existence of

the solutions of Problem I and Problem II on L44, and under these conditions, the expressions
of the solutions are obtained.
Theorem 5.1. Let the QSVD decomposition of the matrix pair [A,B] be of the form (2.1) and
M−1CM−T be of the form (2.2). Then the set L44 is nonempty if and only if

CT = −C,C13 = 0, C14 = 0, C24 = 0, C34 = 0, C44 = 0. (5.6)

When the condition (5.6) is satisfied, the general expression of [X,Y ] ∈ L44 is

X = U





C11 C12S
−1
AB X13

−S−1
ABC

T
12 S−1

AB(C22 − Y22)S
−1
AB X23

−XT
13 −XT

23 X33



UT ,

Y = V





Y11 Y12 Y13

−Y T
12 Y22 C23

−Y T
13 −CT

23 C33



V T , (5.7)

where
X13 ∈ Rr×(n−r−s), X23 ∈ Rs×(n−r−s), X33 ∈ AR(n−r−s)×(n−r−s),

Y11 ∈ AR(p+r−k)×(p+r−k), Y12 ∈ R(p+r−k)×s, Y13 ∈ R(p+r−k)×(k−r−s), Y22 ∈ ARs×s

are arbitrary matrices.
In L44, there exists a unique [X̂, Ŷ ] that makes (1.5) hold, and X̂, Ŷ can be expressed as

X̂ = U





C11 C12S
−1
AB 0

−S−1
ABC

T
12 Ψ ∗ (SABC22SAB) 0

0 0 0



UT ,

Ŷ = V





0 0 0
0 Ψ ∗ C22 C23

0 −CT
23 C33



V T , (5.8)

here

Ψ = (ψij) ∈ Rs×s, ψij =
1

1 + σ2
i σ

2
j

, 1 ≤ i, j ≤ s, (5.9)

Proof. If the set L44 is nonempty, obviously, C must be skew-symmetric. For [X,Y ] ∈ L44,
according to Lemma 2.3, we have

MΣAU
TXUΣT

AM
T +MΣBV

TY V ΣT
BM

T = C, (5.10)

it is equivalent to
ΣAU

TXUΣT
A + ΣBV

TY V ΣT
B = M−1CM−T . (5.11)

Write

UTXU =





X11 X12 X13

−XT
12 X22 X23

−XT
13 −XT

23 X33





r

s

n− r − s

, V TY V =





Y11 Y12 Y13

−Y T
12 Y22 Y23

−Y T
13 −Y T

23 Y33





p+ r − k

s

k − r − s

,
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r s n− r − s p+ r − k s k − r − s (5.12)

by (5.11), (5.12) and (2.2), we obtain







X11 X12SAB 0 0
−SABX

T
12 SABX22SAB + Y22 Y23 0

0 −Y T
23 Y33 0

0 0 0 0






=







C11 C12 C13 C14

−CT
12 C22 C23 C24

−CT
13 −CT

23 C33 C34

−CT
14 −CT

24 −CT
34 C44






, (5.13)

Therefore
X11 = C11, X12 = C12S

−1
AB , Y23 = C23, Y33 = C33, (5.14)

C13 = 0, C14 = 0, C24 = 0, C34 = 0, C44 = 0, (5.15)

SABX22SAB + Y22 = C22. (5.16)

Thus when L44 is nonempty, the condition (5.6) hold and the expression (5.7) of L44 is
obtained.

In addition, L44 is a closed convex set, so there exists a unique [X̂, Ŷ ] ∈ L44 that makes
(1.5) hold. When [X,Y ] ∈ L44,

‖X‖2
F + ‖Y ‖2

F

= β0 + ‖S−1
AB(C22 − Y22)S

−1
AB‖2

F + ‖Y22‖2
F + 2‖X13‖2

F

+2‖X23‖
2
F + ‖X33‖

2
F + ‖Y11‖

2
F + 2‖Y12‖

2
F + 2‖Y13‖

2
F

where β0 is a constant number, therefore ‖X‖2
F + ‖Y ‖2

F = min if and only if X13 = 0,X23 =
0, X33 = 0, Y11 = 0, Y12 = 0, Y13 = 0 and

‖S−1
AB(C22 − Y22)S

−1
AB‖2

F + ‖Y22‖
2
F = min

for Y22 ∈ ARs×s. Therefore, by Lemma 5.1, we obtain Y22, and then X̂, Ŷ . Theorem 5.1 is
proved.
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