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Abstract

A numerical method combining the approaches of C.I. Goldstein and L.-A. Ying is used
for the simulation in three-dimensional magnetostatics related to an exterior problem in
magnetic induction. Recently introduced, this method is based on the use of a graded mesh
obtained by gluing homothetic layers in the exterior domain and has been performed in the
case of edge element discretizations. In this work, the theoretical and practical aspects of
the method are inspected in the case of face element and volume element discretizations,
for computing a magnetic induction. Error estimates, implementations, and numerical
results are provided.
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1. Introduction

When we are concerned with the numerical simulation associated with a linear exterior
problem, we use in major cases the boundary integral method for discretizing the problem.
This approach requires the discretization of boundary integral operators and following the usual
processes, we are led to consider dense matrices in computations. Typically, when we compute
the magnetic induction (see e.g. [15]) in three-dimensional magnetostatics, we use a vector-
valued boundary integral operator with which a dense matrix is associated by finite element
techniques. The assembling of such a matrix is not easy, and moreover its size, proportional to
the square of the number of boundary edges, can forbid fine meshes for storage requirements.

Goldstein’s approach (see [14]) is an alternative to the boundary integral method. This
approach is based on the coupling of the finite element method with an appropriately graded
mesh near infinity. The original exterior problem is rewritten in a bounded truncated domain
for which the boundary is near infinity. The definition of this truncated domain and the use of
a graded mesh are crucial in such a way that optimal error estimates hold between the original
continuous solution and the discrete solution—resulting from the truncated domain.

In another approach, Ying has introduced in [20] an infinite mesh method for exterior
domains. The method is based on a superposition of homothetic layers and therefore provides
a kind of graded mesh. The main difference between the boundary integral method and Ying’s
approach concerns the discretization of boundary integral operators. Namely in the case of the
Poincaré-Steklov operator, he builds recursively a sequence of stiffness matrices that converges
to the stiffness matrix of the infinite mesh corresponding thus to the discretization of the
Poincaré-Steklov operator.
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Other alternatives to the boundary integral method can be found in [4], [13], [16] as well as
in additional references cited therein.

We are concerned here with an approach recently introduced in [1], [2], called the exponential

mesh approximation, mixing the methods of Goldstein [14] and Ying [20], and which consists
of building an infinite mesh as in [20] and of doing truncations of this mesh as in [14]. This
method has been applied to the computation of the demagnetizing potential in micromagnetics
[1], and to the computation of a magnetic reaction field [2]. The exponential mesh consists of
an assembling of homothetic layers in the exterior domain and gives a natural way to get a
graded mesh at infinity. Locally in each homothetic layer, finite element approximations are
considered. For example, Lagrange’s elements are used in [1] and edge elements are used in [2].
Here, we will consider face element and volume element approximations.

The exterior problem considered hereafter comes from magnetostatics and consists of finding
a vector field B such that:

divB = 0 in IR3 and curl(ν B) = J in IR3 .

The datum J is a current density, B is the magnetic induction, and ν is a physical parameter
used to describe the magnetic reluctance of the considered material. In what follows, a magnetic
material will typically be represented by a bounded domain Ω with boundary Γ. Also, ν will
take in Ω′ = IR3 \Ω the value ν0, the reluctance of the vacuum. Time-independent, the current

density is considered here as: J = j̃, the extension, outside Ω by zero, of a vector field j confined
to Ω, divergence-free, square integrable with normal trace on Γ equal to zero. In the space,
this current density creates a source field hs: curlhs = J , div hs = 0 in IR3, which can be
explicitly determined with the help of the Biot-Savart formula [5]. The original system is thus
reformulated as a new problem where hs appears as a datum: find a vector field B such that

divB = 0 in IR3 , (1)

curl(ν B) = curlhs in IR3 , (2)

lim|x|→∞ |B(x)| = 0 .
A recent approach (see e.g. [15]) proposed for solving (1) − (2) consists of considering a

mixed formulation in which the restriction of B to Ω, used as unknown in Ω, is coupled on Γ
with a vector-valued boundary unknown allowing to represent B in Ω′ with the help of a vector
potential. With such a formulation, which uses of course a vector-valued boundary integral
operator, (1) − (2) is treated by a mixed finite element method.

A variational mixed method is also used in our approach in order to solve (1)− (2). Namely,
besides B which appears as an unknown in the considered mixed formulation, a scalar field also
defined in IR3 is used as an auxiliary unknown. A first difference with the mixed formulation
using a boundary integral operator is that B is no longer represented in Ω′ with the help of a
vector potential. More precisely, our formulation does not use any boundary unknown and we
suggest to discretize this formulation with the help of exponential mesh approximations.

This work contains five sections. In section 2 we consider some notations and introduce
from (1) − (2) a mixed formulation in magnetic induction.

Exponential mesh approximations are reported in section 3. In this part, we start by
describing the discretization of the whole space IR3 with the help of an exponential mesh. Then,
we introduce the discrete spaces of infinite dimension in which the unknowns are determined,
and consider a discrete formulation on the exponential mesh for which we derive an error
estimate. This formulation yields a discrete system of infinite dimension and we truncate the
exponential mesh in order to reduce the size of the system to a finite dimension. A second error
estimate for the truncated system is established with an asymptotic formula between the interior
mesh size, the homothetic coefficient ξ and the number of homothetic layers N considered for
the exponential mesh. We consider two kinds of boundary condition on the magnetic induction
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when we truncate the exponential mesh; namely a Dirichlet boundary condition and a boundary
condition of Neumann type. Two discrete systems, where each system is associated with one
kind of boundary condition, are then considered for computations. The matrix of each system
is sparse and its condition number depends highly on the two parameters ξ and N . The matrix
for the exterior mesh is built with the knowledge of the matrix in the first homothetic layer
[20]. Since only the matrix in the first layer is stored for the exterior mesh, saving of memory
storage is easily performed. We conclude this section by discussing some algorithms used to
solve our systems.

Numerical results deriving from exponential mesh computations are described in section 4
and some conclusions are reported in section 5.

2. Mixed Continuous Formulation

2.1 Some Notations

The usual notation for Sobolev spaces is employed; the scalar product associated with a
Hilbert space X is denoted by ( . , . )X and the corresponding norm by ‖ . ‖X . We consider Ω a
bounded convex open subset of IR3, with connected boundary Γ. Let Ω′ = IR3 \Ω, and assume
that

hs ∈ {u ∈ (L2(IR3))3 ; div u = 0 in IR3 , curlu = 0 in Ω′ } , (3)

ν(x) = ν0 > 0 ∀x ∈ Ω′, 0 < ν? ≤ ν(x) < ν0 ∀x ∈ Ω, (4)

where ν? is a real constant.
Let us consider

H(div ;D) = {u ∈ (L2(D))3 ; div u ∈ L2(D)} ,

the Hilbert space endowed with the scalar product (see [11])

(u, η)H(div ; D) = (u, η)(L2(D))3 + (div u, div η)L2(D) ,

where D can be IR3 or a bounded open subset of IR3. The vector field B satisfying (1) − (2),
i.e.

divB = 0 in IR3 and curl(νB) = curlhs in IR3 ,

is sought in B = H(div ; IR3).
Let us also consider the space (see [9])

Wm(O) = {ψ; (1 + |x|2)
|α|−1

2 ∂αψ ∈ L2(O) ∀ 0 ≤ |α| ≤ m } ,

where O can be Ω′ or IR3; m is a strictly positive integer, α = (α1, α2, α3) is a multi-index,
x = (x1, x2, x3) is a point in IR3 and |x| =

√
x2

1 + x2
2 + x2

3.

2.2 Mixed Formulation in Magnetic Induction

From (2) let us introduce, according to the Poincaré lemma [9], ψ ∈W 1(IR3) such that:

ν B = grad ψ + hs in IR3 . (5)

The introduction of the auxiliary unknown ψ allows us to rewrite the model problem in the
form of a mixed formulation. Equation (2) is replaced by (5) which is written in the weak form

(ν B, η)(L2(IR3))3 + (div η, ψ)L2(IR3) = (hs, η)(L2(IR3))3 ∀ η ∈ B,

and equation (1) is also considered in the weak form:

(divB, φ)L2(IR3) = 0 ∀φ ∈ L2(IR3) .
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With these two weak equations we introduce the formulation defined as follows.

For hs and ν satisfying (3) and (4) respectively, find (B,ψ) in the space B × L2(IR3) such
that:





(ν B, η)(L2(IR3))3 + (div η, ψ)L2(IR3) = (hs, η)(L2(IR3))3 ∀ η ∈ B ,

(divB, φ)L2(IR3) = 0 ∀φ ∈ L2(IR3) .
(6)

The study of the mixed formulation (6) can be performed with the Babuska-Brezzi frame-
work (see [3], [7]). Let us set

a(u, η) = (ν u, η)(L2(IR3))3 , b(u, φ) = (div u, φ)L2(IR3) ,

the continuous bilinear forms on B × B and B × L2(IR3) respectively. Note that η ∈ B 7−→
(hs, η)(L2(IR3))3 is a continuous linear form.

We have

Proposition 2.1. The formulation (6) has at least one solution (B,ψ) ∈ B × L2(IR3) and B
is unique.

Moreover, B satisfies (1) − (2) and there exists a positive constant c := C(ν?) such that

||B||B ≤ c ||hs||(L2(IR3))3 .

The closed subspace V = {u ∈ B ; b(u, φ) = 0 ∀φ ∈ L2(IR3)} can also be written as:
V = {u ∈ B ; div u = 0 in IR3}. Using (4), we get a(u, u) ≥ ν? ‖u‖

2
B

∀ u ∈ V , and
then a( · , · ) is V−elliptic. This allows to deduce, following the Babuska-Brezzi theory, that the
formulation (6) has at least one solution and that from each solution (B,ψ) ∈ B×L2(IR3), the
vector field B is unique.

Let (B,ψ) ∈ B × L2(IR3) a solution of (6). From the second weak equation of (6), we
obtain that B satisfies (1). By setting η = curlϕ, with ϕ ∈ (D(IR3))3, it follows from the first
weak equation of (6) that the relation (2) holds for B. On the other hand, with η = B in the
first weak equation of (6), we have: (ν B,B)(L2(IR3))3 = − (divB,ψ)L2(IR3) + (hs, B)(L2(IR3))3 .
Due to the fact that B ∈ V , we deduce by using (4) and the Cauchy-Schwarz inequality that:
‖B‖B ≤ 1

ν?
‖hs‖(L2(IR3))3 .

The formulation (6) allows us to determine the physical unknown B in accordance with
(1) − (2).

3. Exponential Mesh Approximations

3.1 Introduction

To discretize the formulation (6), we consider a mesh with homothetic layers for the exterior
domain Ω′ as explained in Ying [20]. The construction of the exterior mesh requires the bounded
domain Ω to be a convex polyhedron.

For the sake of simplicity, we assume that the center of Ω is the origin O(0, 0, 0). We
denote by ξ > 1 a real constant and define Γk := ξk Γ, for any positive integer k, the convex
polyhedron homothetic to Γ with the constant of proportionality ξk and center O. We call a
layer the bounded domain Ck, delimited by two consecutive polyhedra Γk−1 and Γk. All the
layers are decomposed into tetrahedra in order to obtain the same shape of mesh for each layer
(see in Figure 1. a simple example of multi-layer mesh). We obtain in this way a conforming
mesh of Ω′. It is important to already notice that at infinity, the tetrahedra of the triangulation
become larger and larger. We couple the multi-layer mesh of Ω′ with an interior mesh of Ω
(which is described in what follows) in order to define a mesh of IR3.
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Figure 1: An example of multi-layer mesh outside a bounded domain Ω.

Let us denote by K a tetrahedron, by %K the diameter of the largest sphere included in K,
and by hK the diameter of K. As usual, we consider a triangulation T covering Ω and made
up of tetrahedra K. The aspect-ratio of T is defined as follows:

hT = sup
K∈T

hK .

We call Tk a sequence of triangulations of the convex domain Ω and denote by T k the trian-
gulation of IR3 obtained by gluing on Γ the triangulation Tk and the multi-layer triangulation
of Ω′ described above. We assume that this sequence is regular in the sense that there exists a
constant c > 0 such that:

∀ k, sup
K∈Tk∪C1

hK

%K

≤ c ,

and moreover,
lim

k−→∞
hTk∪C1

= 0 .

It is important to notice that this does imply a dependence of ξ on hT in the sense that we
need to have a triangulation of C1 as “fine” as Tk. In the sequel, we denote T instead of Tk and
T instead of T k when no confusion is possible.

Let Pm be the space of polynomials of degree less than or equal to m, with m a positive
integer, and let P̃m be the space of homogeneous polynomials of degree m.

Consider the vectorial subspace (see Raviart & Thomas [19]):

D1 = (P0)
3 ⊕ P0 x ; x =




x1

x2

x3


 .

We associate with B the discrete space:

Bh = {Bh ∈ B ; Bh|K ∈ D1 ∀ K ∈ T } .
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This is an infinite dimensional space since the triangulation T contains an infinite number of
tetrahedra. A vector field Bh of the space Bh is written in each tetrahedron K as (see e.g. [5],
[15]):

Bh =

4∑

f=1

Bf
h 2(λi∇λj ∧ ∇λk + λj∇λk ∧ ∇λi + λk∇λi ∧ ∇λj) , (7)

where

• f is one of the four faces of K with vertices si, sj , sk

• Bf
h is the scalar unknown associated with f which represents the flux of Bh on f

• λi is the barycentric function associated with the vertex si and

• 2(λi∇λj ∧∇λk +λj∇λk ∧∇λi +λk∇λi ∧∇λj) is the shape function associated with f .

The space Bh is a Hilbert space when endowed with the scalar product of B.
The discrete space associated with L2(IR3) is defined as follows:

Qh = {ψh ∈ L2(IR3) ; ψh|K ∈ P0 ∀K ∈ T } .

For each ψh ∈ Qh, the degree of freedom associated with the tetrahedron K is the scalar
unknown

∫
K
ψh dx. The shape function (also called volume function) associated with K, and

denoted χK , is defined such that
∫

K
χK′ dx = 1 if K = K ′ and

∫
K
χK′ dx = 0 otherwise.

3.2 Discrete Formulation in Magnetic Induction

The discrete formulation associated with (6) is written as follows.
For hs and ν satisfying (3) and (4), find (Bh, ψh) in the space Bh ×Qh such that:





(ν Bh, ηh)(L2(IR3))3 + (div ηh, ψh)L2(IR3) = (hs, ηh)(L2(IR3))3 ∀ ηh ∈ Bh ,

(divBh, φh)L2(IR3) = 0 ∀φh ∈ Qh .
(8)

This is a mixed formulation where the physical unknown is the discrete magnetic induction Bh.
As in the continuous case, we introduce

Proposition 3.1. The formulation (8) has at least one solution (Bh, ψh) ∈ Bh ×Qh and the

vector field Bh is unique and satisfies (1).
There exists a positive constant c := C(ν?) such that ‖Bh‖B ≤ c ‖hs‖(L2(IR3))3 .

Denoting by Vh = {uh ∈ Bh ; b(uh, φh) = 0 ∀ φh ∈ Qh}, a closed subspace of Bh, we check
without difficulty that:

Vh = {uh ∈ Bh ; div uh = 0 in IR3} .

Then, according to (4), we deduce that a(uh, uh) ≥ ν? ‖uh‖
2
B

∀ uh ∈ Vh. This allows to
state, following the discrete version of the Babuska-Brezzi theory (see [3], [8], [12]), that the
formulation (8) has at least one solution and that, from each solution (Bh, ψh) ∈ Bh ×Qh, the
vector field Bh is unique and is an element of Vh. On the other hand, by setting ηh = Bh in
the first weak equation of (8), it derives that:

(ν Bh, Bh)(L2(IR3))3 = −(divBh, ψh)L2(IR3) + (hs, Bh)(L2(IR3))3 .

Then, since Bh ∈ Vh, the above relation allows to deduce by using (4) and the Cauchy-Schwarz
inequality, the same estimate as in the continuous case: ‖Bh‖B ≤ 1

ν?
‖hs‖(L2(IR3))3 .

As before, we note that the formulation (8) allows to determine in a unique way the physical
unknown Bh.
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3.3 Error Estimates and Truncations

We first establish an error estimate for the exponential mesh between the continuous solution
B satisfying (6) and the discrete solution Bh given by (8). We rewrite (8) in a truncated
domain in order to consider then a matrix system of finite dimension for the effective numerical
calculation of Bh. A second error estimate between B and the discrete solution Bh then
computed with the truncated mesh is given. This last error estimate uses an asymptotic formula
between the number of layers N , the mesh size of the magnetic domain Ω and the homothetic
coefficient ξ.

We will assume in this subsection that ν is more regular: we consider the case

ν(x) = ν0 > 0 ∀x ∈ Ω′, ν(x) = ν1 < ν0 ∀x ∈ Ω, (9)

with ν1 ∈ IR?
+. This hypothesis is more restrictive than (4).

Remark 3.1. Let hs and ν be given in (3) and (9). If B satisfies (1) − (2) then, there exists
A ∈ (W 1(IR3))3 such that: B = curlA in IR3, and





curl(ν1 curlA− hs) = 0 in Ω,

curl(ν0 curlA) = 0 in Ω′,

[(ν curlA− hs) ∧ n]Γ = 0.

(10)

The relation [(ν curlA−hs)∧n]Γ = 0, where n is the unit normal to Γ, reports the continuity
of the tangential trace of νB − hs on Γ provided by (2). In this relation, we denote by [u]Γ =
u|extΩ − u|intΩ the jump across Γ of an arbitrary field u. The vector field A can be considered
as harmonic in Ω′, in such a way that by setting

p = curlA|extΩ ∧ n− curlA|intΩ ∧ n , (11)

we get in particular the integral representation (see e.g. [6]): ∀ x ∈ Ω′,

A(x) =
1

4π

∫

Γ

p(y)

|x− y|
dσy . (12)

This allows to check in particular that | curlA| decreases to zero at infinity.
Moreover in this subsection, we replace the hypothesis (3) by the more regular one:

hs ∈ {u ∈ (H2(IR3))3 ; div u = 0 in IR3 , curlu = 0 in Ω′ } . (13)

In this way, the vector field B has the following regularity: B|Ω′ ∈ (W 2(Ω′))3, B|Ω ∈ (H2(Ω))3.
In the sequel, we denote by B(O,R) the open ball of center O and of radius R.

Lemma 3.1. Let ν and hs be the data given in (9), (13), and A = (A1, A2, A3) satisfying (10)
with these data and harmonic in Ω′. Let α be a multi-index with |α| = 2. There exist R? > 0
and C > 0 such that: ∀ x ∈ IR3 \ B(O,R?), ∀ 1 ≤ i ≤ 3,

|∂αAi(x)| ≤
C

|x|3
.

Proof. Let us consider A as in (10) and harmonic in Ω′. The hypotheses (9) and (13)
provide the regularity of A, A|Ω′ ∈ (W 3(Ω′))3, A|Ω ∈ (H3(Ω))3 and allow to check from (11)
that p = (p1, p2, p3) ∈ (L2(Γ))3 in particular. We get with the formula (12) that: ∀ 1 ≤ i ≤ 3,

∂αAi(x) = 1
4π

∫

Γ

pi(y) ∂
α
x ( 1

|x−y|) dσy. On the other hand, since there exists a constant C > 0
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such that |∂α
x ( 1

|x−y|)| ≤ C
|x−y|3 , it follows that: |∂αAi(x)| ≤ C ′

∫

Γ

|pi(y)|
|x−y|3 dσy, with C ′ > 0 a

constant. The desired estimate is then obtained by using the fact that pi ∈ L2(Γ) and by taking
any constant R? > 0 such that Ω ⊂ B(O,R?).

Remark 3.2. Using the same arguments, we also note that there exist R?? > 0 and C > 0
such that: ∀ x ∈ IR3 \ B(O,R??), ∀ 1 ≤ i ≤ 3, we have |∂αAi(x)| ≤

C
|x|4 when |α| = 3.

We can now introduce

Theorem 3.1. Let ν and hs be given in (9) and (13). Let B and Bh satisfying (6) and (8)
respectively. There exists a constant C > 0 such that:

‖B −Bh‖B ≤ C hT ∪C1
.

Proof. Let us consider the weak formulations (6) and (8). Since B ∈ V = {u ∈ B ; div u =
0 in IR3} and Bh ∈ Vh = {uh ∈ Bh ; div uh = 0 in IR3}, it follows that: ∀ uh ∈ Vh,

(ν (Bh − uh), Bh − uh)(L2(IR3))3 = (ν (B − uh), Bh − uh)(L2(IR3))3 .

This allows to check that there exists a constant C(ν?, ν0) > 0 depending on ν? and ν0 such
that:

‖B −Bh‖B ≤ C(ν?, ν0) inf
uh∈Vh

‖B − uh‖B . (14)

Let us reconsider the face element used to build the discrete space Bh and the associated
interpolate operator Πh such that (see e.g. [17]):

‖B − ΠhB‖(L2(K))3 ≤ c hK |B|(H1(K))3 , ‖div(B − ΠhB)‖L2(K) ≤ C hK |B|(H2(K))3 ,

where c, C > 0 are constants independent of hK , and | . |(H1(K))3 , | . |(H2(K))3 represent the usual
seminorms from (H1(K))3, (H2(K))3. With these inequalities, we estimate the right hand side
term of (14) following the usual reasoning (see e.g. [12], [17]) and obtain:

‖B −Bh‖
2
B

≤ c1(ν?, ν0)
∑

K∈T

h2
K (|B|2(H1(K))3 + |B|2(H2(K))3) , (15)

where c1(ν?, ν0) > 0 is a constant depending on ν?, ν0.
Let us consider the radii R?, R?? given in Lemma 3.1 and Remark 3.2: Ω ⊂ B(O,R) with

R = max(R?, R??), and denote by N the smallest integer such that B(O,R) ⊂ ξN Ω. Setting
d? = min

x∈∂Ω
dist(O, x) and d? = max

x∈∂Ω
dist(O, x), it follows that:

ξN−1 d? < R < ξN d? . (16)

Let us now inspect the right hand side term of (15) following the cases where K ⊂ Ω and
K ⊂ Cn with n ≤ N or n > N .

• If K ⊂ Ω, it follows without difficulty that

∑

K∈T

h2
K (|B|2(H1(K))3 + |B|2(H2(K))3) ≤ h2

T (|B|2(H1(Ω))3 + |B|2(H2(Ω))3) . (17)

• If K ⊂ Cn with n ≤ N , then hK ≤ ξN−1 hC1
, and with (16) it derives that:

hK ≤
R

d?

hC1
≤ C? hC1

,
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where C? > 0 is a constant independent of N and ξ. Thus,

∑

K⊂C1∪C2∪ ...∪CN

h2
K (|B|2(H1(K))3 + |B|2(H2(K))3)

≤ C2
? h

2
C1

(|B|2(H1(C1∪C2∪ ...∪CN ))3 + |B|2(H2(C1∪C2∪ ...∪CN ))3) ,

and therefore

∑

K⊂C1∪C2∪ ...∪CN

h2
K (|B|2(H1(K))3 + |B|2(H2(K))3) ≤ C2

? h
2
C1

(‖B‖2
(W 1(Ω′))3 + ‖B‖2

(W 2(Ω′))3) .

(18)

• If K ⊂ Cn with n > N ,

∑

K⊂Cn

h2
K (|B|2(H1(K))3 + |B|2(H2(K))3) ≤ ξ2(n−1) (|B|2(H1(Cn))3 + |B|2(H2(Cn))3)h

2
C1
.

Since B ∈ V , we get on the other hand from Lemma 3.1: |B|2(H1(Cn))3 = | curlA|2(H1(Cn))3 ≤

C
∫
Cn

1
|x|6 dx, where C > 0 is a constant, and A satisfies (10). As x ∈ Cn, we have |x| ≥

ξn−1 d?, and therefore | curlA|2(H1(Cn))3 ≤ C(d?, vol(Ω)) ξ3(ξ3−1)ξ−3n, with C(d?, vol(Ω)) >

0 a constant depending on d? and vol(Ω). In the same way, we obtain with Remark 3.2
that: |B|2(H2(Cn))3 = | curlA|2(H2(Cn))3 ≤ c(d?, vol(Ω)) ξ5(ξ3 − 1)ξ−5n, with c(d?, vol(Ω)) >

0 a constant depending on d? and vol(Ω). Thus,

∑

n>N

∑

K⊂Cn

h2
K (|B|2(H1(K))3 + |B|2(H2(K))3)

≤ C(d?, vol(Ω)) [ξ(ξ3 − 1)
∑

n>N

ξ−n + ξ3(ξ3 − 1)
∑

n>N

ξ−3n]h2
C1
,

and therefore

∑

n>N

∑

K⊂Cn

h2
K (|B|2(H1(K))3 + |B|2(H2(K))3) ≤ C ′(d?, vol(Ω))h2

C1
, (19)

with C ′(d?, vol(Ω)) > 0 a constant depending on d? and vol(Ω).

The desired estimate is then obtained with (17), (18) and (19).

The discrete formulation (8) will not be used directly for effective numerical calculations.
Indeed, (8) is set in an unbounded domain and therefore provides a linear system of infinite
dimension. As for approximations of exterior problems by truncations (see e.g. [4], [13], [16]),
we propose to reformulate (8) in a bounded domain

ΩN = ξN Ω ,

which is the union of the magnetic domain Ω and the N first homothetic layers of the exterior
domain Ω′. Typically ΩN appears here as a truncated domain of the whole three-dimensional
space. The reformulation of (8) in ΩN enforces the use of boundary conditions (see e.g. [16]),
on ΓN the boundary of ΩN , and allows to consider a linear system of finite dimension for
calculations. In what follows, we consider a homogeneous Dirichlet boundary condition and a
boundary condition of Neumann type.



140 S.M. MEFIRE

3.3.1 Truncation with Dirichlet Boundary Condition

The truncated problem associated with (1)−(2), and using a homogeneous Dirichlet bound-
ary condition, consists of finding a vector field BN such that:





divBN = 0 in ΩN ,

curl(νBN − hs) = 0 in ΩN ,

BN · n = 0 on ΓN .

(20)

Here n represents the unit normal to ΓN outwardly directed to ΩN .
The discrete formulation associated with (20) consists of finding (Bh, ψh) ∈ B

N
h ×QN

h such
that:





(ν Bh, ηh)(L2(ΩN ))3 + (div ηh, ψh)L2(ΩN ) = (hs, ηh)(L2(ΩN ))3 ∀ ηh ∈ B
N
h ,

(divBh, φh)L2(ΩN ) = 0 ∀φh ∈ QN
h .

(21)

This is a mixed formulation deriving from (8) where

B
N
h = {uh ∈ H(div ; ΩN ) ; uh|K ∈ D1 ∀ K ∈ T ∪ C1 ∪ · · · ∪ CN , uh · n = 0 on ΓN },

QN
h = {φh ∈ L2(ΩN ) ; φh|K ∈ P0 ∀ K ∈ T ∪ C1 ∪ · · · ∪ CN } .

Since

(uh, ηh) ∈ B
N
h × B

N
h 7−→ (ν uh, ηh)(L2(ΩN ))3 ,

(uh, φh) ∈ B
N
h ×QN

h 7−→ (div uh, φh)L2(ΩN ) ,

ηh ∈ B
N
h 7−→ (hs, ηh)(L2(ΩN ))3 ,

are continuous and
(uh, ηh) ∈ B

N
h × B

N
h 7−→ (ν uh, ηh)(L2(ΩN ))3

is coercitive on

V N
h = {uh ∈ B

N
h ; (div uh, φh)L2(ΩN ) = 0 ∀ φh ∈ QN

h } = {uh ∈ B
N
h ; div uh = 0 in ΩN } ,

it follows with the usual reasoning (see e.g. [3], [7], [8]) that the truncated discrete formulation
(21) has at least one solution (Bh, ψh) ∈ B

N
h ×QN

h and that Bh is unique and is an element of
V N

h .
While ΩN is specified and therefore N is explicitly considered, (21) is suitable for a practical

implementation.
3.3.2 Truncation with a Boundary Condition of Neumann Type

The truncated problem associated with (1)− (2), where a boundary condition of Neumann
type is enforced, consists of finding a vector field BN such that:





divBN = 0 in ΩN ,

curl(νBN − hs) = 0 in ΩN ,

(νBN − hs) ∧ n = 0 on ΓN .

(22)

The discrete formulation associated with (22) consists of finding (Bh, ψh) ∈ B
N
h ×QN

h such
that:





(ν Bh, ηh)(L2(ΩN ))3 + (div ηh, ψh)L2(ΩN ) = (hs, ηh)(L2(ΩN ))3 ∀ ηh ∈ B
N
h ,

(divBh, φh)L2(ΩN ) = 0 ∀φh ∈ QN
h .

(23)
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This is a mixed formulation deriving from (8) where

B
N
h = {uh ∈ H(div ; ΩN ) ; uh|K ∈ D1 ∀ K ∈ T ∪ C1 ∪ · · · ∪ CN } ,

and QN
h is defined as previously. The formulation (23) has at least one solution (Bh, ψh) ∈

B
N
h ×QN

h , and moreover Bh is unique and belongs to

V N
h = {uh ∈ B

N
h ; (div uh, φh)L2(ΩN ) = 0 ∀ φh ∈ QN

h } = {uh ∈ B
N
h ; div uh = 0 in ΩN } .

Contrarily to (8), while N is explicitly determined, the discrete formulation (23) is suitable
for a practical implementation since it is set in a bounded domain.

We give below an error estimate between B satisfying (6) and the discrete solution Bh

determined with (23). This error estimate allows us to specify the choice of N the number of
homothetic layers.

Theorem 3.2. Let ν and hs be given in (9) and (13). In addition, assume that there exist

Rs > 0, Cs > 0 such that: ∀ |x| > Rs, |hs(x)| ≤ Cs

|x|2 . Let B satisfying (6). Consider the

number of layers N varying asymptotically according to h := hT ∪C1
as follows:

N ∼(h−→0) −
2 logh

log ξ
, (24)

and Bh satisfying (23). Then, there exists a constant C > 0 independent of h, N and ξ, such

that:

‖B −Bh‖H(div ; ΩN ) ≤ C h .

Proof. Let us consider the spaces (see e.g. [17]):

S1 = {u ∈ (P̃1)
3 ; u · x = 0}, R1 = (P0)

3 ⊕ S1,

H(curl; ΩN ) = {u ∈ (L2(ΩN ))3 ; curlu ∈ (L2(ΩN ))3},

HN
h = {uh ∈ H(curl; ΩN ) ; uh|K ∈ R1 ∀ K ∈ T ∪ C1 ∪ · · · ∪ CN }.

Let B and Bh satisfying the formulations (6) and (23) associated with (1) − (2) and (22)
respectively. Let Ah ∈ HN

h and set ηh = curlAh ∈ V N
h = {uh ∈ B

N
h ; div uh = 0 in ΩN }.

Using Ah as a test-function and integrating (2) and (22) on ΩN respectively, it follows that:

∫

ΩN

ν B · ηh dx =

∫

ΩN

hs · ηh dx +

∫

ΓN

(νB − hs) ∧ n ·Ah dσ , (25)

∫

ΩN

ν Bh · ηh dx =

∫

ΩN

hs · ηh dx . (26)

Following [18], let us consider also the vector field u satisfying:

curlu = curlAh in ΩN , divu = 0 in ΩN , u · n = 0 on ΓN , (27)

and such that,
‖u‖(H1(ΩN ))3 ≤ CN‖ curlAh‖(L2(ΩN ))3 , (28)

where CN > 0 is a constant depending on N . Since curlu = curlAh = ηh in ΩN , we also obtain
by integrating (2) on ΩN :

∫

ΓN

(νB − hs) ∧ n ·Ah dσ =

∫

ΓN

(νB − hs) ∧ n · u dσ . (29)
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Now, let us set Bh = curlwh, vh = curlθh, ηh = curl(wh − θh) with wh, θh ∈ HN
h . It derives

from (25) and (26) that:

∫

ΩN

ν (Bh−vh) ·(Bh−vh) dx =

∫

ΩN

ν (B−vh) ·(Bh−vh) dx −

∫

ΓN

(ν B−hs)∧n ·(wh−θh) dσ .

Using then the same arguments as in (27) − (29), we get that:

∫

ΩN

ν (Bh−vh)·(Bh−vh) dx =

∫

ΩN

ν (B−vh)·(Bh−vh) dx−

∫

ΓN

(ν B−hs)∧n·(w−θ) dσ . (30)

Of course, (27) and (28) are here considered with Ah := wh − θh, and u := w− θ ∈ (H1(ΩN ))3.
By using then (9) and the Cauchy-Schwarz inequality, we obtain from (30) that:

ν? ‖Bh−vh‖
2
(L2(ΩN ))3 ≤ ν0 ‖B−vh‖(L2(ΩN ))3‖Bh−vh‖(L2(ΩN ))3 + |

∫

ΓN

(ν B−hs)∧n·(w−θ) dσ| .

(31)
The regularity of ν with those of B and hs allow to estimate the second term of the right hand
side of (31) as follows:

|

∫

ΓN

(ν B − hs) ∧ n · (w − θ) dσ| ≤ ‖(ν B − hs) ∧ n‖(L2(ΓN ))3‖w − θ‖(L2(ΓN ))3 .

The estimate (28) provides therefore here: ‖w − θ‖(L2(ΓN ))3 ≤ cN ‖ curlwh − curlθh‖(L2(ΩN ))3 ,
with cN > 0 a constant depending on N . Then, by using a dimensional argument, we check
that this inequality scales with the homothetic coefficient ξ and becomes:

‖w − θ‖(L2(ΓN ))3 ≤ c ξ
N
2 ‖ curlwh − curlθh‖(L2(ΩN ))3 ,

with c > 0 a constant depending only on the shape of Ω. It derives then from (31) that:

‖Bh − vh‖(L2(ΩN ))3 ≤ c(ν0, ν?) ‖B − vh‖(L2(ΩN ))3 + c(ν?)ξ
N
2 ‖(ν B − hs) ∧ n‖(L2(ΓN ))3 ,

where c(ν?), c(ν0, ν?) > 0 are constants depending on ν?, ν0 and on the shape of Ω. Therefore
we check that there exist constants C(ν?) > 0, C(ν0, ν?) > 0 such that:

‖B−Bh‖H(div ; ΩN ) ≤ C(ν0, ν?) inf
vh∈V N

h

‖B−vh‖H(div ; ΩN ) + C(ν?) ξ
N
2 ‖(ν B−hs)∧n‖(L2(ΓN ))3 .

(32)
From the same argument that was used in the proof of Theorem 3.1, there exists a constant
c > 0 independent of N and h such that:

inf
vh∈V N

h

‖B − vh‖H(div ; ΩN ) ≤ c h .

To estimate the term ‖(ν B − hs) ∧ n‖(L2(ΓN ))3 of the right hand side of (32), we use, on the
one hand, the same constants R > 0, C > 0 as in Lemma 3.1 in order to check that: ∀ |x| > R,
‖B ∧ n‖2

(L2(ΓN ))3 ≤ C
∫
ΓN

1
|x|4 dx. Then, if N is taken as in (16) to satisfy R > ξN−1d?, we

have:

‖B ∧ n‖2
(L2(ΓN ))3 ≤ C

area(ΓN )

(ξN−1 d?)4
≤

C(d?)

ξ2N−4
, (33)

where C(d?) > 0 is a constant depending only on C, d? and on the shape of Ω. On the
other hand, the same arguments are used to estimate ‖hs ∧ n‖(L2(ΓN ))3 . Of course, since there

exist Rs > 0, Cs > 0 such that: ∀ |x| > Rs, |hs(x)| ≤ Cs

|x|2 , if N is finally taken to ensure
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min(R,Rs) > ξN−1d?, it follows that ‖hs ∧ n‖2
(L2(ΓN ))3 ≤ c(d?)

ξ2N−4 , with c(d?) > 0 a constant

depending only on Cs, d? and on the shape of Ω. Combining together (33) and this last estimate,
we get

‖(ν B − hs) ∧ n‖(L2(ΓN ))3 ≤
C(ν0, d?)

ξN−2
,

with C(ν0, d?) > 0 a constant depending on ν0, d? and on the shape of Ω. The required
condition on N is therefore determined from the relation: 1

ξ
N
2

−2
≤ h, and is given of course by

(24).

The asymptotic formula in Theorem 3.2 shows the link between three parameters: the mesh
size obtained from the construction of T , the homothetic coefficient ξ chosen for the construction
of the first homothetic layer C1, and the number of homothetic layersN to choose for delimiting
the truncated domain ΩN .

Remark 3.3. The additive hypothesis made on hs is in accordance with physics. Indeed, hs

is typically created by a current density exciting an inductor and is thus compactly supported;
moreover, the decay rate of hs is natural since it is similar to the one of curlA from (12).

Let us mention that a result similar to Theorem 3.2 can also be derived by using the same
arguments, when the infinite mesh is truncated with a Dirichlet boundary condition on the
magnetic induction.

3.4 Implementations

Here, we assume that a number of homothetic layers N is chosen and consider the truncated
formulations (21) and (23). We describe the implementation of (23) and discuss some numerical
algorithms in view of efficient computations. The implementation of (21) is similar to the one
of (23).

We call respectively NK, NF , NIF , nf the number of tetrahedra, faces, internal faces and
boundary faces resulting from the triangulation T covering Ω such that: NF = NIF + nf .
We also denote by NKE, NFE, NIFE the number of tetrahedra, faces, internal faces of the
triangulation of one layer Ck, such that: NFE = NIFE + 2nf . Of course, each internal edge
of Ck has its vertices on Γk−1 and Γk, and following the construction of T , there exists a same
number nf of faces on the interface Γ0 ≡ Γ of Ω and C1, and on each interface Γk of Ck and
Ck+1. There exist also a same number NIFE of internal faces and a same number NKE of
tetrahedra in each layer Ck.

Let us write, in accordance with (7), a vector field Bh of the space B
N
h with the above

notations:

Bh =

NIF∑

f=1

Bf
huf +

N∑

k=1

NIFE∑

f=1

Bf,k
h uf,k +

N∑

k=0

nf∑

f=1

Bf,Γk

h uf,k , (34)

where

• uf , uf,k are the shape functions associated with an internal face f of Ω and with a face
f of Ck respectively. These shape functions are written as in (7);

• Bf
h , Bf,k

h , Bf,Γk

h are the scalar unknowns associated with an internal face f of Ω, an
internal face f of the layer Ck and a face f on Γk respectively.

With these notations, uf,0 is the shape function associated with a face f of Γ and Bf,Γ0

h is the
corresponding unknown.

We also write an element ψh of the space QN
h as follows:

ψh =
NK∑

e=1

ψe
hqe +

N∑

k=1

NKE∑

e=1

ψe,k
h qe,k , (35)
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where

• qe, qe,k are the volume functions associated with a tetrahedron e of Ω and with a tetra-
hedron e of Ck respectively;

• ψe
h, ψe,k

h are the scalar unknowns respectively associated with a tetrahedron e of Ω, and
a tetrahedron e of Ck.

The variational equations of (23) yield a linear system of finite dimension when the scalar
function ν is constant in each tetrahedron. Namely, the discrete system associated with (23)
consists of finding (Bh, ψh) such that:


 M Rt

R 0





 Bh

ψh


 =


 s

0


 , (36)

where we have denoted

M =


U Ct 0 0 0 0 · · · 0

C Z + Z1 F t Gt 0 0 · 0

0 F L Y t 0 0 · 0

0 G Y A + ξ−1Z1 ξ−1F t ξ−1Gt
·

0 0 0 ξ−1F ξ−1L ξ−1Y t

0 0 0 ξ−1G ξ−1Y ξ−1A + ξ−2Z1

· ·

· · 0

· · ξ−(N−1)Gt

· ξ−(N−1)Y t

0 0 0 0 ξ−(N−1)G ξ−(N−1)Y ξ−(N−1)A




,

(37)
with ”t” the transpose, and

R =



W E 0 0 0 0 0 0 · · · 0

0 K S P 0 0 0 0 · 0

0 0 0 ξ−3K ξ−3S ξ−3P 0 0 · 0

· ·

· ·

· · ·

0 · · · 0 ξ−3(N−2)K ξ−3(N−2)S ξ−3(N−2)P 0 0

0 0 0 · · · 0 0 ξ−3(N−1)K ξ−3(N−1)S ξ−3(N−1)P




.

(38)

The construction of the matrices M and R uses the following homothetic formulæ: ∀ k ≥ 2,
∫

Ck

uf,k · vf,k dx = ξ−1

∫

Ck−1

uf,k−1 · vf,k−1 dx ,

∫

Ck

divuf,k qe,k dx = ξ−3

∫

Ck−1

divuf,k−1 qe,k−1 dx ,
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where uf,k (as vf,k) and qe,k are the shape functions associated respectively with a face f and
a tetrahedron e of Ck. The construction of the array s appearing in the right hand side of (36)
uses the same arguments as in the construction of M .

In (37), the matrix blocks


 U Ct

C Z


 ,




Z1 F t Gt

F L Y t

G Y A


 , (39)

correspond to the bilinear forms (uh, ηh) ∈ B
N
h × B

N
h 7−→ (ν uh, ηh)(L2(Ω))3 , (uh, ηh) ∈ B

N
h ×

B
N
h 7−→ (ν uh, ηh)(L2(C1))3 respectively. With these matrix blocks, we assemble in particular

the matrix block associated with the layer Ck:

ξ−(k−1)




Z1 F t Gt

F L Y t

G Y A


 ,

and therefore the matrix M . Thus, we just need to compute and store the matrix blocks given
in (39) in order to get M . We can already mention that the storage of M is easily performed
according to the reduced size of the matrix blocks in (39) and to their structure since only non
zero terms will have to be kept.

In the same way, in (38), the matrix blocks

[
W E

]
,
[
K S P

]
, (40)

correspond to the bilinear forms (uh, φh) ∈ B
N
h × QN

h 7−→ (div uh, φh)L2(Ω), (uh, φh) ∈ B
N
h ×

QN
h 7−→ (div uh, φh)L2(C1) respectively. Also, with these matrix blocks, we assemble in particular

the matrix block associated with the layer Ck:

ξ−3(k−1)
[
K S P

]
,

and therefore the matrix R. Again in the same way, as for the matrix M , the storage of R is
easily performed, since we just need to compute and store the matrix blocks of reduced size
given in (40). Although the dimension of the matrix of system (36), equal to NT ×NT with
NT = NIF +N ∗NIFE + (N + 1) ∗ nf +NK +N ∗NKE, can be large, the storage of this
matrix is easily performed.

Let us specify that a system similar to (36) is associated with the truncated formulation
(21) in the same way. We will retain that the matrix system associated with (21) or with (23)
takes into account two parameters: the homothetic coefficient ξ and the number of layers N .

An efficient way to compute (Bh, ψh) in (36) consists of using an iterative algorithm ac-
cording to the size of the system. The matrix M in (36), obtained from a symmetric and
positive definite bilinear form, is regular and after eliminating the unknown Bh in (36), we get
the matrix equation: RM−1Rt ψh = RM−1 s. There exist many methods (see e.g. [8], [12])
for solving (36) by using this matrix equation. The Uzawa algorithm [8] associated with the
usual Conjugate Gradient method (see e.g. [12]) turns out to be a quite efficient algorithm for
solving (36). Namely, applying to (36) the Uzawa algorithm consists algebraically of applying
the Conjugate Gradient method to the matrix equation. In such a process, the computation of
the inverse of M depends highly on ξ and N , and appears to be the most expensive step in the
Uzawa iterations (see also [2] for similar observations). In fact, when ξ is much larger than 1,
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the tetrahedra used for the discretization of the first homothetic layer C1 have an elongated
shape and the condition number of M becomes bad. When ξ ≈ 1, the tetrahedra of C1 become
flat and also, the condition number of M is bad. On the other hand, a disproportion in the
coefficients between first lines and last lines of M may create numerical instabilities for large
values of N since ξ > 1. To avoid this, an idea (see [1], [2]) consists of removing all the powers
of ξ in M with the help of a change of variables in (36). Here, we will restrict ourselves to the
treatment of (36) with the iterative process combining the Uzawa algorithm with the Conjugate
Gradient method (preconditioned by the diagonal of M for computing M−1). This iterative
process will allow in particular to overcome the full storage of matrix blocks in (39) and (40).

4. Some Numerical Results

In the first part of this section, we recast a mixed formulation in magnetic induction using
boundary elements, in view of a comparison with the numerical results deriving from exponential
mesh approximations. Namely, in the last part of this section, the numerical results obtained
with the formulations (21) and (23) are described.

4.1 Remarks for the Boundary Element Approximation

The mixed discrete formulation using boundary elements and deriving from (1) − (2) is
recalled as follows (see [15]).

For hs and ν given, find ((Bh, ζh), ψh) in the space Mh × Ψh such that:





(ν Bh, ηh)(L2(Ω))3 + ν0 < L(ζh), κh > + (div ηh, ψh)L2(Ω) =

(hs, ηh)(L2(Ω))3 + < n ∧ hs, κh > ∀ (ηh, κh) ∈ Mh ,

(divBh, φh)L2(Ω) = 0 ∀φh ∈ Ψh .

(41)

The vector field n represents the unit normal to Γ, inwardly directed to Ω. We have denoted
by L the boundary operator such that: ∀ ζ ∈ TH− 1

2 (curl; Γ) = {p ∈ (H− 1

2 (Γ))3 ; curlΓ p ∈

H− 1

2 (Γ), p · n = 0}, L(ζ) = n ∧ curlA with curl(curlA) = 0 in Ω′, divA = 0 in Ω′, and
n ∧ (A ∧ n) = ζ on Γ. Using the same notations and the same triangulation as T (with the
mesh size h := hT ) introduced in subsection 3.1, we have set:

Dh = {Bh ∈ H(div ; Ω) ; Bh|K ∈ D1 ∀ K ∈ T } ,

Ch = {ζh ; ζh|T ∈ R1
Γ ∀T ∈ T ∩ Γ} , R1

Γ = {q = n ∧ p ; p ∈ D1|Γ} ,

Mh = {(Bh, ζh) ∈ Dh × Ch ; Bh · n = curlΓ ζh on Γ} ,

Ψh = {ψh ∈ L2(Ω) ; ψh|K ∈ P0 ∀K ∈ T } .

Here < . , . > is the duality product between {p ∈ (H− 1

2 (Γ))3 ; divΓ p ∈ H− 1

2 (Γ), p · n = 0}

and TH− 1

2 (curl; Γ); curlΓ and divΓ are the surface curl and surface divergence. As it is
noted in [15], the solution (Bh, ζh) determined with (41) is unique and the vector field Bh

is in accordance with (1) − (2). Let us mention that the mixed formulation (8), proposed
in this work, appears as a variant of (41) considered in the whole three-dimensional space.
We refer to [15] for details concerning (41) and its continuous version. More precisely, we
refer to the discretization of the boundary operator L and to the treatment of the relation
Bh · n = curlΓ ζh (expressed in [15] as the matching condition on Γ of the magnetic induction).
The matrix corresponding to the boundary term < L(ζh), κh > is a full square matrix block of
dimension ne × ne. When the number ne of edges on Γ increases, the size of this full matrix
block increases and its memory storage requirement becomes more important. In [15], the
matrix system associated with (41) is solved with the Uzawa algorithm. In this procedure, the
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Conjugate Gradient method is used for computing the inverse of the matrix associated with
the bilinear form ((uh, ζh), (ηh, κh)) ∈ Mh ×Mh 7−→ (ν uh, ηh)(L2(Ω))3 + ν0 < L(ζh), κh >.

Some numerical results obtained with (41) will be compared below (see subsection 4.3) with
those deriving from exponential mesh computations.

4.2 Some Considerations

In the case where hs is a constant vector field, with Ω spherical and homogeneous, it is known
(see [10]) that the analytic solution of (1)− (2) is given in Ω by the formula: B = 3

(1+2 νr) ν0

hs

where νr = ν
ν0

(ν0 = 1/4π10−7 MKSA) is the relative magnetic reluctance. As in [15], we
consider hs = H0 ez where the unit vector ez is oriented following Oz with H0 a real constant.
We distinguish here the cases νr = 0.9, 0.85 and give some characteristics of the balls B1,B2

(which represent Ω) in the following table:

NK NIF NE nf ne hp

B1 160 280 254 80 120 0.85104

B2 1280 2400 1748 320 480 0.60982

For a ball Bp, the mesh size is denoted hp and NK, NIF, NE are respectively the number of
tetrahedra, internal faces and edges. Also, we denote by nf , ne the number of faces and edges
on the boundary of Bp. These balls have the same radius, taken as equal to one meter. We set

divL2(Bp) = ‖divBh‖L2(Bp) , errL2(Bp) =
‖B −Bh‖(L2(Bp))3

‖B‖(L2(Bp))3
.

We mentioned in subsection 3.1 that the layers used in the discretization of the exterior domain
Ω′ have the same triangulation. Here, as the domain Ω is a ball Bp (p = 1, 2), each layer is
represented by a spherical wreath CBp

with few characteristics given in the following table:

NKE NIFE NEE nfe

CB1
240 400 402 160

CB2
960 1600 1602 640

Each CBp
is built from the ball Bp. We denote respectively by NKE, NIFE, NEE the number

of tetrahedra, internal faces, and edges of CBp
. Also, nfe = 2nf is the number of faces on the

boundary of CBp
. The mesh size of CBp

depends here on the homothetic coefficient ξ.

4.3 Exponential Mesh Computations

We first consider the matrix system associated with the formulation (21) in order to compute
the vector field Bh satisfying (1) − (2) in a truncated domain where a Dirichlet boundary con-
dition is enforced. This matrix system is solved with the Uzawa algorithm using the Conjugate
Gradient method, where the stopping parameters (on the residues) are εuz and εcg respectively.

The numerical results presented below are described with respect to ξ and N . We will
observe that the computations with Dirichlet boundary conditions do always appreciably better
than those with boundary conditions of Neumann type and that in addition, the relative error
errL2 can be improved by loading the layers until a limiting case (see Figure 3.).

Figures 2.−3. present some results on the relative error errL2 when B1 is considered, νr = 0.9
and εuz = εcg = 10−6. On these figures, we also mark the value errL2(B1) = 0.3280106E-01
which is obtained from boundary element computations (see (41)) with the same choice of
parameters νr, εuz and εcg.
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Figure 2: errL2(B1) with νr = 0.9; at left N = 18, 22, 27 and at right N = 31, 32.
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Figure 3: errL2(B1) with νr = 0.9.

The relative error depends on the two parameters ξ and N . We observe that for ξ ≈ 1.29
and N = 41 we already obtain good results. However, this is not the case for other values
of ξ and N (see e.g. Figure 2.). The following table contains some values of errL2(B1) and of
divL2(B1) obtained under the same considerations.

N 41 41 41

ξ 1.29 1.295 1.3

errL2(B1) 0.3553820E-01 0.3554119E-01 0.3556726E-01

divL2(B1) 0.2630796E-04 0.2661785E-04 0.2679507E-04
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Figure 4. presents some results on the relative error when B1 is considered, νr = 0.85 and
εuz = εcg = 10−6. The value errL2(B1) = 0.4775338E-01 obtained with (41) for the same choice
of parameters νr, εuz and εcg is marked on this figure.
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Figure 4: errL2(B1) with νr = 0.85.

The relative error also depends on the magnetic reluctance νr. Let us mention on the other
hand that the influence of the stopping criteria can improve the results. More precisely, the
divergence-free constraint on the magnetic induction is well satisfied when small values for εuz

are considered (see e.g. the following table where εcg = 10−6 and εuz = 10−8).

N 41 41 41

ξ 1.29 1.295 1.3

νr 0.9 0.9 0.9

divL2(B1) 0.6257244E-05 0.7634007E-05 0.8235050E-05

In Figures 5. − 6., we present some results when (21) is considered with B2, νr = 0.9,
εuz = εcg = 10−6. The value errL2(B2) = 0.1366710E-01 obtained from (41) in that case is
marked on Figure 5. Also, some comparisons of the results between B1 and B2 are performed.

We already mention that, as with B1, the relative error depends also on ξ, N and νr. It is
observed (see Figure 6.) on the other hand that the optimal values of ξ and N differ on B1 and
B2.

The numerical results described above allow us to conclude that the computation of the
magnetic induction with (21) is appreciably as accurate as with (41).

We consider here the formulation (23) and recall that it allows to compute the vector field
Bh satisfying (1)− (2) in a truncated domain where a boundary condition of Neumann type is
enforced. Some results obtained from (23), by taking εuz = εcg = 10−6, are compared in Figure
7. with those of (41) and (21). It is observed from numerical simulations with (23) that the
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Figure 5: errL2(B2) with νr = 0.9; at left N = 42 and at right N = 42, 50.
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Figure 6: Comparison between B1 (– –) and B2 (—) of errL2 with νr = 0.9; at left N = 42, and at
right N = 50.

relative error errL2 (as well as divL2) preserves the same behavior with respect to ξ, N and νr

as in the case of simulations with (21).
The obtained results show that the computation with (23) is slightly less accurate than that

with (21), or that with (41). Also, as indicated for example in Figure 8., the CPU time needed
in the computation with (23) is more important than the one needed in the computation with
(21). This suggests that the use of a truncated domain, with a Dirichlet boundary condition
enforced, is more suitable for the computation of the considered magnetic induction.

From these numerical simulations (carried out on an SGI Origin 3200 of “CRI of Orsay”),
it has been globally observed that the CPU time needed in exponential mesh computations is
excessively expensive when compared with the CPU time (<< 1800 s. with B1 for example)
obtained from (41).
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Figure 7: Comparison of errL2(B1) with νr = 0.9, boundary condition of Neumann type (– –) and
Dirichlet boundary condition (—). At left ξ = 1.21, and ξ = 1.23 at right.
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Figure 8: Comparison of the CPU time with B1, N = 42, νr = 0.9, εuz = εcg = 10−6, boundary
condition of Neumann type (– –) and Dirichlet boundary condition (—).

5. Conclusions

A numerical method based on the use of an exponential mesh, in association with face and
volume elements, has been described for computing a magnetic induction. Dirichlet bound-
ary conditions and those of Neumann type have been considered for the truncations of the
exponential mesh. It has been observed that the computations of the magnetic induction with
Dirichlet boundary conditions do always appreciably better than those with boundary condi-
tions of Neumann type and are on the other hand appreciably as accurate as with a boundary
element computation. Although, the exponential mesh method yields an easy implementa-
tion with a saving storage, and can be considered as an alternative to the boundary element
method, the CPU time required in the exponential mesh computations is a drawback. In fact,
this CPU time is excessively expensive in comparison to the one needed with the boundary
element computation of the considered magnetic induction.
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