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Abstract

In this paper, we study the relaxed smoothing problems with general closed convex
constraints. It is pointed out that such problems can be converted to a convex quadratic
minimization problem for which there are good programs in software libraries.
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1. Introduction

Let
x1 < x2 < · · · < xn < xn+1

and
y1, y2, . . . , yn, yn+1 = y1.

The mathematical form of the problems considered in this paper is to find a twice continuous
differentiable periodic function g(x) with g(xn+i) = g(xi), such that g(x) is the optimal solution
of the following problem:

min

∫

xn+1

x1

|g′′(x)|2dx (1.1)

s. t u ∈ Ω (1.2)

where

u = (u1, u2, . . . , un)T , ui =
g(xi) − yi

δyi

, (1.3)

δyi, i = 1, . . . , n are given positive numbers and Ω is a closed convex set in Rn. We refer the
problem to relaxed smoothing problem whenever Ω 6= {0}. For Ω = {v ∈ Rn | ‖v‖2 ≤ r}, the
problem was investigated by Reinsch [2] and it was converted to a smooth convex unconstrained
optimization. Problem (1.1) with general closed convex constraints have more applications, for
example, Ω = {v ∈ Rn | ‖v‖∞ ≤ r} is also interesting in real problems.

It is well known that the solution of the non-relaxed problem of (1.1) is a spline function.
We will prove that the solution of the relaxed smoothing problem with general closed convex
constraints is the spline function g(x) ∈ C2 of the following form:

g(x) = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3, x ∈ [xi, xi+1). (1.4)

Then the task of solving problem (1.1)-(1.2) is to find ai, bi, ci, di, i = 1, . . . , n.
In next section, we summarize some notations and the basic relations of the spline function.

Section 3 illustrates that the coefficients of the spline function can be obtained by solving a
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convex quadratic programming. Finally, in Section 4, we prove that the obtained spline function
is the solution of the original problem and give our conclusions.

2. Notations and the Basic Relations

For analysis convenience, we need the following notations. Let hi := xi+1 − xi,

D =











δy1

δy2

. . .

δyn











and H =











h1

h2

. . .

hn











be diagonal matrices in Rn×n. Denote

y =











y1

y2

...
yn











, a =











a1

a2

...
an











, b =











b1

b2

...
bn











, c =











c1

c2

...
cn











and d =











d1

d2

...
dn











.

Note that a, b, c, d are unknown vectors. Since g(xi) = ai, using these notations, the relation
(1.3) can be written as

u = D−1(a − y). (2.1)

In addition, we needs the following permutation matrix

P :=













0 1 0
. . .

. . .

. . . 1
1 0













.

For this matrix P we have P T P = I ,

Pa =











a2

...
an

a1











and P T a =











an

a1

...
an−1











.

Now, let us list the basic properties of the periodic spline function g(x) ∈ C2. First, since
g(x−

i+1) = g(x+
i+1), we have ai + bihi + cih

2
i

+ dih
3
i

= ai+1 and thus

a + Hb + H2c + H3d = Pa. (2.2)

In addition, because g′(x−

i+1) = g′(x+
i+1), we have bi + 2cihi + 3dih

2
i

= bi+1 and

b + 2Hc + 3H2d = Pb. (2.3)

Finally, since g′′(x−

i+1) = g′′(x+
i+1), we have ci + 3dihi = ci+1 and thus

c + 3Hd = Pc. (2.4)
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3. The Convex Quadratic Programming

If the solution of Problem (1.1)-(1.2) is a spline function of form (1.4), the objective function
can be written as

∫

xn+1

x1

|g′′(x)|2dx =

n
∑

i=1

∫

xi+1

xi

|2ci + 6di(x − xi)|
2dx

=

n
∑

i=1

(4hic
2
i

+ 12cidih
2
i

+ 12d2
i
h3

i
)

= 4cT Hc + 6cT H2d + 6dT H2c + 12dT H3d. (3.1)

Substituting Hd = 1
3 (P − I)c (see (2.4)) in (3.1) and by a manipulation we get

∫

xn+1

x1

|g′′(x)|2dx =
2

3
cT Mc, (3.2)

where
M = 2H + 2P T HP + HP + P T H. (3.3)

Note that

HP =













0 h1 0
. . .

. . .

. . . hn−1

hn 0













, P T HP =











hn

h1

. . .

hn−1











and thus

M =

















2(h1 + hn) h1 hn

h1 2(h2 + h1) h2

h2
. . .

. . .

. . .
. . . hn−1

hn hn−1 2(hn + hn−1)

















is a positive definite matrix (since it is diagonal dominate).
It follows from (2.2) that

H−1(P − I)a = b + Hc + H2d (3.4)

and
−P T H−1(P − I)a = −P T b − P T Hc − P T H2d. (3.5)

From (2.4) we have

H2d =
1

3
H(P − I)c. (3.6)

Adding (3.4) and (3.5) and using (3.6), we get

Qa = b − P T b + Hc − P T Hc +
1

3
(I − P T )H(P − I)c, (3.7)

where
Q = (I − P T )H−1(P − I). (3.8)
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It follows from (2.3) that

b − P T b = 2P T Hc + 3P T H2d
(3.6)
= 2P T Hc + P T H(P − I)c

= P T Hc + P T HPc. (3.9)

Substituting (3.9) into (3.7), we obtain (see (3.3))

Qa =
1

3
(2H + 2P T HP + HP + P T H)c =

1

3
Mc. (3.10)

According to (3.10), the objective function (3.2) can be rewritten as

6aT QT M−1Qa. (3.11)

By using u = D−1(a − y), we convert the original problem to the following convex quadratic
minimization problem:

min 1
2uT DT QT M−1QDu + yT QT M−1QDu

s. t u ∈ Ω.
(3.12)

After getting the solution of (3.12), we can get the solution of the vectors a, b, c and d by

a
(2.1)
= Du + y,

c
(3.10)
= 3M−1Qa,

d
(2.4)
=

1

3
H−1(Pc − c),

b
(2.2)
= H−1(Pa − a) − H(c + Hd).

4. Optimality

The purpose of this section is to prove that the spline function (1.4) with a, b, c, d obtained
from the last section is the solution of Problem (1.1)-(1.2). First, we prove the following lemma.
Lemma 1. Let u be a solution of (3.12). Then we have

(u′ − u)T DQc ≥ 0, ∀u′ ∈ Ω. (4.1)

Proof. Denote the objective function of (3.12) by θ(u). Since Ω is closed convex and u is a
solution of (3.12), it follows that u ∈ Ω and

(u′ − u)T∇θ(u) ≥ 0, ∀u′ ∈ Ω.

Note that
∇θ(u) = DT QT M−1QDu + DT QT M−1Qy.

Since D and Q are symmetric, it follows that

∇θ(u)
(2.1)
= DQM−1Q(a − y) + DQM−1Qy

(3.10)
=

1

3
DQc.
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The assertion of this lemma is proved.

Now, we are in the stage to prove the optimality theorem.

Theorem 1. Let f(x) be a twice continuous differentiable periodic function, f(xi) = ãi,
f(xi) = f(xn+i) and ũ = D−1(ã − y) ∈ Ω. Then we have

∫

xn+1

x1

|g′′(x)|2dx ≤

∫

xn+1

x1

|f ′′(x)|2dx.

Proof. Since

∫

xn+1

x1

|f ′′(x)|2dx =

∫

xn+1

x1

|g′′(x)|2dx +

∫

xn+1

x1

|f ′′(x) − g′′(x)|2dx

+2

∫

xn+1

x1

[g′′(x)(f ′′(x) − g′′(x))]dx,

we only need to show that

∫

xn+1

x1

g′′(x)(f ′′(x) − g′′(x))dx ≥ 0.

Using f, g ∈ C2 and by a manipulation (integration by parts), we get

∫

xn+1

x1

g′′(x)(f ′′(x) − g′′(x))dx

=

n
∑

i=1

∫

xi+1

xi

g′′(x)(f ′′(x) − g′′(x))dx

=
n

∑

i=1

(f ′(x) − g′(x))g′′(x)

∣

∣

∣

∣

xi+1

xi

−
n

∑

i=1

∫

xi+1

xi

(f ′(x) − g′(x))g′′′(x)dx

= −

n
∑

i=1

∫

xi+1

xi

(f ′(x) − g′(x))g′′′(x)dx. (4.2)

The last equation of (4.2) is followed from the periodicity of g. Integrate the function again
and use g(4) = 0, we obtain

∫

xn+1

x1

g′′(x)(f ′′(x) − g′′(x))dx

= −

n
∑

i=1

∫

xi+1

xi

(f ′(x) − g′(x))g′′′(x)dx

= −
n

∑

i=1

(f(x) − g(x))g′′′(x)

∣

∣

∣

∣

xi+1

xi

+
n

∑

i=1

∫

xi+1

xi

(f(x) − g(x))g(4)(x)dx

= −

n
∑

i=1

(f(x) − g(x))g′′′(x)

∣

∣

∣

∣

xi+1

xi

(since g(4) = 0)

= 6
(

(f(x1) − a1)(d1 − dn) +

n
∑

i=2

(f(xi) − ai)(di − di−1)
)

= 6(ã − a)T (d − P T d). (4.3)
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Using (3.6), we obtain

d − P T d = −
1

3
(P T − I)H−1(P − I)c

(3.8)
=

1

3
Qc.

Substituting it into (4.2) and using the assertion of Lemma 1, we get

∫

xn+1

x1

g′′(x)(f ′′(x) − g′′(x))dx = 2(ã − a)T Qc

= 2(D−1(ã − y) − D−1(a − y))T DQc

= 2(ũ − u)T DQc

≥ 0.

The proof is complete.
Conclusions remark. This paper pointed out that the relaxed smoothing problem with
general closed convex constraints is equivalent to a convex quadratic programming (CQP)
(3.12). For such CQP, if Ω is a box or a polytope, many excellent numerical methods have
been designed in the literature [1, 3]. Hence, it is meaningful to derive Problem (1.1)-(1.2) to
a convex quadratic programming of form (3.12) for which there are good programs in software
libraries.
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