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Abstract

We study perturbation bound and structured condition number about the minimal
nonnegative solution of nonsymmetric algebraic Riccati equation, obtaining a sharp per-
turbation bound and an accurate condition number. By using the matrix sign function
method we present a new method for finding the minimal nonnegative solution of this al-
gebraic Riccati equation. Based on this new method, we show how to compute the desired
M -matrix solution of the quadratic matrix equation X2

− EX − F = 0 by connecting it
with the nonsymmetric algebraic Riccati equation, where E is a diagonal matrix and F is
an M -matrix.

Mathematics subject classification: 65F10, 65F15, 65N30.
Key words: Nonsymmetric algebraic Riccati equation, Minimal nonnegative solution, Ma-
trix sign function, Quadratic matrix equation.

1. Introduction

In this paper, we will mainly study the nonsymmetric algebraic Riccati equation (ARE)

XCX − XD − AX + B = 0, (1)

where A, B, C, D are given real matrices of sizes m×m, m×n, n×m and n×n, respectively.
To this end, let us define two (m + n) × (m + n) matrices H and K as follows:

H =

(
D C

−B −A

)
, K =

(
D −C

−B A

)
. (2)

We will focus on the exploration of the minimal nonnegative solution of the ARE(1) by making
use of the invariant subspace of the matrix H when K is a nonsingular M -matrix.

We have noticed that sensitivity analysis about other types of algebraic Riccati equations
were studied in depth in [17, 18, 10, 6], and direct methods about the linear matrix equations,
the special cases of the algebraic Riccati equations, were presented in detail in [8, 9].

This paper is organized as follows. After reviewing some basic notations and results as-
sociated with the nonsymmetric ARE(1) in section 2, we give a perturbation bound for the
minimal nonnegative solution of the ARE(1) in section 3. A structured condition number is
derived mathematically and verified numerically in section 4. Then, we present a matrix sign
function method for finding the minimal nonnegative solution in section 5; this method can also
be used to find the desired M -matrix solution of the quadratic matrix equation X2−EX−F = 0,
with E a diagonal matrix and F an M -matrix. Finally, in section 6 we use some numerical
examples to illustrate the correctness of our theory and the feasibility of our methods.
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2. Basic Notations and Results

Given two matrices A = (aij), B = (bij) ∈ R
m×n, we write A ≥ B (A > B) if aij ≥ bij

(aij > bij) hold for all i and j, and we call the matrix A positive (nonnegative), if A > 0
(A ≥ 0).

Let A ∈ R
n×n. It is called a Z-matrix if all of its off-diagonal elements are nonpositive.

Clearly, a Z-matrix A ∈ R
n×n can be represented as A = sI − B, with B ≥ 0. In particular,

when s > ρ(B), the spectral radius of the matrix B, A turns to a nonsingular M -matrix, and
when s = ρ(B), it turns to a singular M -matrix. We use λ(A) to denote the spectrum of the
matrix A, σmin(A) the smallest singular value of A, and R(A) the range space spanned by the
columns of the matrix A.

The open left (right) half plane is denoted by C< (C>), and the closed left (right) half plane
is denoted by C≤ (C≥), respectively. In addition, we use ‖ · ‖ to denote any consistent matrix
norm on C

n×n unless it is claimed explicitly. In particular, we use ‖ · ‖2 and ‖ · ‖F to denote
the spectral and the Frobenius norms of a matrix, respectively.

We recall that the separation of two matrices B ∈ R
n×n and C ∈ R

m×m can be defined as
follows. See [14].

sep(B, C) := inf{‖PB − CP‖ | B ∈ R
n×n, C ∈ R

m×m and P ∈ R
m×n, with ‖P‖ = 1}. (3)

When the norm in (3) is specified to be the Frobenius norm, we denote the separation sep(B, C)
by sepF (B, C).

The following properties about an M -matrix can be found in [1].

Lemma 2.1. [1] Given a Z-matrix A ∈ R
n×n. Then the following statements are equivalent:

(a) A is a nonsingular M -matrix;

(b) A−1 ≥ 0;

(c) Av > 0 holds for some vector v > 0;

(d) λ(A) ⊂ C>.

For the nonsymmetric ARE(1), from [2, 3] we know that the following results hold.

Lemma 2.2. If the matrix K defined in (2) is a nonsingular M -matrix, then the ARE(1)
has a minimal nonnegative solution S that satisfies that both matrices DC := D − CS and
AC := A − SC are nonsingular M -matrices.

Lemma 2.3. If the matrix K defined in (2) is a nonsingular M -matrix, then the matrix H

defined in (2) has n eigenvalues in C> and m eigenvalues in C<.

Lemma 2.4. If the matrix K defined in (2) is a nonsingular M-matrix and S is a minimal
nonnegative solution of the ARE(1), then

(
I 0
S I

)(
D C

−B −A

)(
I 0
−S I

)
=

(
D − CS C

0 −(A − SC)

)
.

It then follows that the column space of the matrix

(
I

−S

)

is the unique invariant subspace of the matrix H associated with its n eigenvalues in C>.
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Conversely, let U be an orthogonal matrix such that

G := UT HU

is a real Schur form of H , where all 1 × 1 or 2 × 2 diagonal blocks of H corresponding to the
eigenvalues in C> appear in the first n columns of G and all 1 × 1 or 2 × 2 diagonal blocks of
H corresponding to the eigenvalues in C< appear in the last m columns of G. If the matrix U

is partitioned as

U =

(
U11 U12

U21 U22

)
, with U11 ∈ R

n×n,

then U11 is nonsingular and S := −U21U
−1
11 is the minimal nonnegative solution of the ARE(1).

3. Perturbation Bounds

Throughout this section, we assume that the matrix K defined in (2) is a nonsingular
M -matrix. Hence, from Lemma 2.2 we know that the nonsymmetric ARE(1) has a minimal
nonnegative solution S and both matrices DC = D − CS and AC = A − SC are nonsingular
M -matrices.

To investigate the variation in the minimal nonnegative solution S of the ARE(1) with

respect to changes in the matrices A, B, C and D, we let Ã, B̃, C̃ and D̃ be nearby matrices
to A, B, C and D, respectively. Corresponding to (2) we define two matrices

H̃ =

(
D̃ C̃

−B̃ −Ã

)
, K̃ =

(
D̃ −C̃

−B̃ Ã

)
. (4)

And we assume that the matrix K̃ is also a nonsingular M -matrix. Let S̃ be the minimal
nonnegative solution of the nonsymmetric ARE

X̃C̃X̃ − X̃D̃ − ÃX̃ + B̃ = 0, (5)

and define

∆A = Ã − A, ∆B = B̃ − B, ∆C = C̃ − C,

∆D = D̃ − D, ∆S = S̃ − S, ∆H = H̃ − H. (6)

Then we are going to derive a bound on ‖∆S‖, which should be reasonably sharp in certain
sense.

To this end, we need the following results, which can be found in [11, 15, 16].

Lemma 3.1. [11] Let A, Â ∈ C
n×n and B, B̂ ∈ C

m×n. Assume that

Z =

(
A

B

)
and W =

(
Â

B̂

)

satisfy Z∗Z = I and W ∗W = I, where (·)∗ denotes the conjugate transpose of the corresponding
matrix. Let

X = R(Z), Y = R(W ),

and

Θ = arccos(Z∗WW ∗Z)
1

2 ≥ 0, dF (X ,Y) = ‖ sinΘ‖F .
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If the matrix A is nonsingular and dF (X ,Y) < 1√
2σmin(A)

, then the matrix Â is also nonsingular

and the matrices X = BA−1 and X̂ = B̂Â−1 satisfy

‖X̂ − X‖F ≤
√

2‖A−1‖2dF (X ,Y)

1 −
√

2‖A−1‖2dF (X ,Y)
·
√

1 + ‖X‖2
2.

Lemma 3.2. [16] Let S, E ∈ R
n×n with S being a positive stable matrix (i.e., λ(S) ⊂ C>).

Define an operator L : R
n×n → R

n×n by

L(X) = ST X + XS, ∀X ∈ R
n×n

and the norm of its inverse by

‖L
−1‖ = max

X∈R
n×n\{0}

‖L
−1(X)‖
‖X‖ .

If ‖L
−1‖‖E‖ < 1

2 , then the matrix S + E is positive stable.

Lemma 3.3. [15] Let the matrices H, H̃, K, K̃ and ∆H be defined as in (2), (3), (4) and (6),
respectively. Let U = (U1, U2) be an orthogonal matrix with R(U1) being an invariant subspace
of H associated with n eigenvalues in C>. That is to say, U is an orthogonal matrix such that

UT HU =

(
G11 G12

0 G22

)
,

where G11 ∈ R
n×n, G22 ∈ R

m×m, λ(G11) ⊂ C> and λ(G22) ⊂ C<. Let UT ∆HU be con-
formably partitioned as

UT ∆H U =

(
∆G11 ∆G12

∆G21 ∆G22

)
.

Define

δ = sepF (G11, G22) − (‖∆G11‖F + ‖∆G22‖F ) and ν = ‖∆G21‖F . (7)

If

δ > 4‖∆G21‖F (‖G12‖F + ‖∆G12‖F ),

then there exists a matrix P ∈ R
m×n, satisfying ‖P‖F ≤ 2ν

δ
, such that the columns of the

matrix

Ũ1 := (U1 + U2P )(I + P T P )−
1

2

span an invariant subspace of H̃.

We remark that, for the matrices U and P introduced in Lemma 3.3, if we define a matrix

Ũ := U

(
In −P T

P Im

)(
(I + P T P )−

1

2 0

0 (I + PP T )−
1

2

)
, (8)

then it is easy to verify that Ũ is an orthogonal matrix, and its first n columns span an invariant
subspace of H̃ . This fact is precisely described in the following lemma.
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Lemma 3.4. [14] Under the conditions of Lemma 3.3, there exists an orthogonal matrix Ũ

such that

ŨT H̃Ũ =

(
G̃11 G̃12

0 G̃22

)
. (9)

Furthermore, if we conformably partition the matrices U and Ũ into the block forms

U =

(
U11 U12

U21 U22

)
and Ũ =

(
Ũ11 Ũ12

Ũ21 Ũ22

)
, (10)

and denote

U1 =

(
U11

U21

)
and Ũ1 =

(
Ũ11

Ũ21

)
,

then it holds that dF (X ,Y) ≤ ‖P‖F , where X = R(U1) and Y = R(Ũ1).

It follows straightforwardly from (8) and (9) that

G̃11 = (I + P T P )
1

2 [G11 + ∆G11 + (G12 + ∆G12)P ](I + P T P )−
1

2 .

Hence,

‖G̃11 − G11‖F ≤ ‖(I + P T P )
1

2 G11(I + P T P )−
1

2 − G11‖F

+‖(I + P T P )
1

2 ‖2[‖∆G11‖F + ‖G12‖2‖P‖F + ‖∆G12‖F ‖P‖F ]

≤ ‖(I + P T P )
1

2 G11(I + P T P )−
1

2 − G11(I + P T P )
1

2 (I + P T P )−
1

2 ‖F

+
√

1 + ‖P‖2
F · [(1 + ‖P‖F )‖∆H‖F + ‖G12‖2‖P‖F ]

≤ ‖(I + P T P )
1

2 G11 − G11(I + P T P )
1

2 ‖F

+
√

1 + ‖P‖2
F · [(1 + ‖P‖F )‖∆H‖F + ‖G12‖2‖P‖F ]

≤ ‖(I + P T P )
1

2 G11 − G11 + G11 − G11(I + P T P )
1

2 ‖F

+
√

1 + ‖P‖2
F · [(1 + ‖P‖F )‖∆H‖F + ‖G12‖2‖P‖F ]

≤ 2‖G11‖2‖(I + P T P )
1

2 − I‖F

+
√

1 + ‖P‖2
F · [(1 + ‖P‖F )‖∆H‖F + ‖G12‖2‖P‖F ]

≤ 2
√

2‖G11‖2‖P‖2
F +

√
1 + ‖P‖2

F · [(1 + ‖P‖F )‖∆H‖F + ‖G12‖2‖P‖F ]

≤ 2
√

2‖G11‖2

(
2ν

δ

)2

+

√

1 +

(
2ν

δ

)2

·
[(

1 +
2ν

δ

)
‖∆H‖F + ‖G12‖2 ·

2ν

δ

]

:= µ. (11)

Since λ(G11) ⊂ C> implies that G11 is positive stable, we immediately know that the matrix

LG := I ⊗ GT
11 + GT

11 ⊗ I (12)

is also positive stable, where ⊗ denotes the Kronecker product. Therefore, the smallest singular
value of LG, say σmin(LG), is positive. Now, if we define an operator LG : R

n×n → R
n×n by

LG(X) = GT
11X + XG11, ∀X ∈ R

n×n,
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then LG is invertible and the ‖ · ‖F -norm of L
−1
G can be computed as follows:

‖L
−1
G ‖F = max

X∈R
n×n\{0}

‖L
−1
G (X)‖F

‖X‖F

= max
X∈R

n×n

, ‖X‖F =1

‖L
−1
G (X)‖F

= max
x∈R

n2

, ‖x‖=1

‖(I ⊗ GT
11 + GT

11 ⊗ I)−1x‖2 =
1

σmin(LG)
. (13)

Based upon the above argument, we can easily obtain the perturbation bound of the minimal
nonnegative solution of the nonsymmetric ARE(1) as follows.

Theorem 3.1. Let all conditions of Lemma 3.3 be satisfied. If

µ

σmin(LG)
<

1

2
and

2‖∆H‖F

δ
<

1√
2σmin(U11)

,

then

‖S̃ − S‖F ≤ 2
√

2‖U−1
11 ‖2‖∆H‖F

δ − 2
√

2‖U−1
11 ‖2‖∆H‖F

·
√

1 + ‖S‖2
2,

where the quantities δ and µ are defined in (7) and (11), and the matrices LG and U11 are
defined in (12) and (10), respectively.

Proof. Because

µ

σmin(LG)
<

1

2
,

from (11) and (13) we have

‖L
−1
G ‖F ‖G̃11 − G11‖F <

1

2
.

According to Lemma 3.2, we know that the matrix G̃11 is positive stable, or in other words,
λ(G̃11) ⊂ C>. Let Ũ be partitioned as in (10). Then by making use of Lemmas 3.4 and 3.3 we
obtain

dF (X ,Y) ≤ ‖P‖F ≤ 2ν

δ
≤ 2‖∆H‖F

δ
<

1√
2σmin(U11)

.

Now, by Lemmas 3.1 and 2.4, we can immediately get that Ũ11 is nonsingular, S̃ = −Ũ21Ũ
−1
11

is the minimal nonnegative solution of the ARE(5), and

‖S̃ − S‖F ≤ 2
√

2‖U−1
11 ‖2‖∆H‖F

δ − 2
√

2‖U−1
11 ‖2‖∆H‖F

·
√

1 + ‖S‖2
2

holds.

Theorem 3.1 clearly shows that the stability property of the minimal nonnegative solution
of the ARE(1) is closely dependent on the quantity δF = sepF (G11, G22). When δF is relatively
large, the solution is insensitive to the perturbation of the matrix H , otherwise, it is very
sensitive. Furthermore, δF = ‖[GT

11 ⊗ I − I ⊗ G22]
−1‖−1

2 is computable.
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4. A Structured Condition Number

Consider the perturbed equation

(S + ∆S)(C + ∆C)(S + ∆S)

−(S + ∆S)(D + ∆D) − (A + ∆A)(S + ∆S) + (B + ∆B) = 0, (14)

where

∆A ∈ R
m×m, ∆B ∈ R

m×n, ∆C ∈ R
n×m, ∆D ∈ R

n×n and ∆S ∈ R
m×n

are perturbing increments to the matrices A, B, C, D and S, respectively.
We are going to measure the perturbation ∆S normwisely by the quantity

ρ(∆A, ∆B, ∆C, ∆D) :=

∥∥∥∥
[
∆A

α
,
∆B

β
,
∆C

γ
,
∆D

η

]∥∥∥∥
F

,

where α, β, γ and η are positive scalars. Similarly to Rice[12] we may define the condition
number κ(S) with respect to S by

κ(S) = lim
δ→∞

sup

{‖∆S‖F

ξδ
| K + ∆K is an M -matrix, ρ(∆A, ∆B, ∆C, ∆D) ≤ δ

}
, (15)

where ξ is a prescribed positive parameter, K is defined as in (2), and ∆K is defined by

∆K =

(
∆D −∆C

−∆B ∆A

)
.

Specializing

ξ = α = β = γ = η = 1

in (15) we get the absolute condition number, say κabs(S), and taking

ξ = ‖S‖F , α = ‖A‖F , β = ‖B‖F , γ = ‖C‖F and η = ‖D‖F

in (15) we obtain the relative condition number, say κrel(S).
Define κ∗(S) to be the scalar

κ∗(S) = lim
δ→∞

sup

{‖∆S‖F

ξδ
| ρ(∆A, ∆B, ∆C, ∆D) ≤ δ

}
. (16)

Then we can analogously obtain the numbers κ∗
abs(S) and κ∗

rel(S).
From (15) and (16) we easily know that

κ(S) ≤ κ∗(S).

To derive an explicit expression for κ∗(S), we expand (14) obtaining

(A − SC) ∆S + ∆S (D − CS) = −∆A S − S ∆D + S ∆C S + ∆B + O(%2). (17)

Here, we have abbreviated ρ(∆A, ∆B, ∆C, ∆D) by %. By using the vec operator, which stacks
the columns of a matrix into one long vector, and considering the property

vec(AXB) = (BT ⊗ A) · vec(X),
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we can express (17) as the following:

P · vec(∆S) = −(ST ⊗ I) · vec(∆A) − (I ⊗ S) · vec(∆D)

+(ST ⊗ S) · vec(∆C) + vec(∆B) + O(%2)

= [−α(ST ⊗ I), βIn2 , γ(ST ⊗ S),−η(I ⊗ S)]~∆α,β,γ,η + O(%2). (18)

Here, we have adopted the notations

P = I ⊗ (A − SC) + (D − CS)T ⊗ I,

~∆α,β,γ,η =




vec(∆A)
α

vec(∆B)
β

vec(∆C)
γ

vec(∆D)
η


 .

Noticing that P is nonsingular. Hence, by premultiplying by P−1 and then taking the 2-norm
on both sides of the equality (18), we obtain

κ∗(S) =
1

ξ
· max

%6=0

‖∆S‖F

%

=
1

ξ
· max

%6=0

‖P−1[−α(ST ⊗ I), βIn2 , γ(ST ⊗ S),−η(I ⊗ S)]~∆α,β,γ,η‖2

‖~∆α,β,γ,η‖2

=
1

ξ
‖P−1[−α(ST ⊗ I), βIn2 , γ(ST ⊗ S),−η(I ⊗ S)]‖2,

where we have used the fact ‖vec(X)‖2 = ‖X‖F . Now, by letting

ξ = ‖S‖, α = ‖A‖, β = ‖B‖, γ = ‖C‖, η = ‖D‖,

based on (18) we can get the following estimate about the relative perturbation with respect
to the solution S:

‖∆S‖
‖S‖ ≤ κ∗

rel(S)% + O(%2).

The following example shows the tightness of the above-derived perturbation bounds.

Example 4.1. Consider the nonsymmetric ARE(1), for which

A = D = Tridiag(−I, T,−I) ∈ R
n×n

are block tridiagonal matrices,

B = C =
1

50
· tridiag(1, 2, 1) ∈ R

n×n

are tridiagonal matrices, where

T = tridiag(−1, 4 + ch2,−1) ∈ R
m×m

is a tridiagonal matrix, I the m-by-m identity matrix , n = m2, and h = 1
m+1 .

Let A, B, C and D be perturbed to Ã, B̃, C̃ and D̃, respectively, where

Ã = A + 10−jC, B̃ = B, C̃ = C, D̃ = D,
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and j is an integer. Assume that S and S̃ are the minimal nonnegative solutions of the ARE(1)
and the ARE(5), respectively. The numerical results in Table 1 shows that the relative pertur-
bation bounds and the condition numbers derived in this section are quite feasible.

Table 1: Relative perturbation bounds and condition numbers for Example 4.1

j
‖S̃−S‖F

‖S‖F

κ∗
rel(S)ρ κ∗

rel(S)

-2 4.1987e-005 9.0991e-005 1.8739

-4 4.1987e-007 9.0991e-007 1.8739

-6 4.1987e-009 9.0991e-009 1.8739

-8 4.1793e-011 9.0991e-011 1.8739

-10 4.0789e-013 9.0991e-013 1.8739

5. Numerical Methods

Let H and K be the matrices defined in (2). If K is a nonsingular M -matrix, then by
Lemma 2.3 we know that the matrix H has n eigenvalues in C> and m eigenvalues in C<.
Based on Lemma 2.4, we can compute the minimal nonnegative solution of the nonsymmetric
ARE(1) by the Schur decomposition of the matrix H .

In a different way, in this section we will present a new method for computing the minimal
nonnegative solution of the nonsymmetric ARE(1) through the matrix sign function method,
and we will use this new method to find the nonsingular M -matrix solution of the quadratic
matrix equation X2 − EX − F = 0, where E is a diagonal matrix and F is an M -matrix.

5.1 The matrix sign function method

For a complex z ∈ C satisfying Re(z) 6= 0, we define its sign by

sign(z) =

{
1, if Re(z) > 0,

−1, if Re(z) < 0.

Similarly, for a matrix Z ∈ R
n×n satisfying Re(λ) 6= 0, ∀λ ∈ λ(Z), let T be a nonsingular

matrix such that

Z = T

(
J1 0
0 J2

)
T−1

is the Jordan decomposition of Z, where the Jordan blocks J1 corresponding to eigenvalues in
C> and J2 corresponding to those in C<, respectively, of the matrix Z. Then we can define the
sign function of the matrix Z by

sign(Z) = T

(
I1 0
0 −I2

)
T−1,

where I1 and I2 are identity matrices of the same sizes as J1 and J2, respectively.

The following theorem shows how to use this matrix sign function to find the minimal
nonnegative solution of the nonsymmetric ARE(1) when the matrix K defined in (2) is a
nonsingular M -matrix.
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Theorem 5.1. Let

W =

(
W11 W12

W21 W22

)
:= sign(H),

and

W 1 =

(
W11 − In

W21

)
, W 2 =

(
W12

W22 − Im

)
.

Then W 2 is of full column rank and the minimal nonnegative solution S of the ARE(1) is the
unique least-squares solution of the matrix equation W 2S = W 1.

Proof. Denote by

T :=

(
In 0
−S Im

)(
In Y

0 Im

)
=

(
In Y

−S Im − SY

)
,

where S is the minimal nonnegative solution of the nonsymmetric ARE(1) and Y is the solution
of the Sylvester equation

DCY + Y AC + C = 0,

with
DC = D − CS and AC = A − SC.

See Lemma 2.2. Then we easily have

T−1HT =

(
DC 0
0 −AC

)
.

It then follows that

sign(H) = T

(
In 0
0 −Im

)
T−1 ≡

(
W11 W12

W21 W22

)
.

Therefore,
(

W11 W12

W21 W22

)
T = T

(
In 0
0 −Im

)
,

or equivalently,
(

W11 W12

W21 W22

)
T = T

(
0 0
0 −2Im

)
+ T

(
In 0
0 Im

)
.

This clearly shows that
(

W11 − In W12

W21 W22 − Im

)
T = T

(
0 0
0 −2Im

)
.

By substituting the actual expression of T into this equality, we get
(

W11 − In W12

W21 W22 − Im

)(
In Y

−S Im − SY

)
=

(
In Y

−S Im − SY

)(
0 0
0 −2Im

)
. (19)

Evidently, the first n columns of the matrix equation (19) satisfy

(
W11 − In W12

W21 W22 − Im

)(
In

−S

)
= 0,
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which implies

(
W12

W22 − Im

)
S =

(
W11 − In

W21

)
,

or

W 2S = W 1. (20)

We can further demonstrate that the matrix W 2 is of full column rank, and hence, the
matrix equation (20) has a unique least-squares solution. In fact, from (19) we have

(
W11 − In W12

W21 W22 − Im

)
=

(
−2Y S −2Y

−2S + 2SY S −2 + 2SY

)
.

This implies that

(
W12

W22 − Im

)
= −2

(
Y

Im − SY

)
,

and hence, W 2 is of full column rank.
The matrix sign function method can be algorithmically described as follows.

Algorithm 5.1. The algorithm consists of the following three steps:

(i) Let

H =

(
D C

−B −A

)
.

Compute the matrix sign function

W = sign(H) ≡
(

W11 W12

W21 W22

)
;

(ii) Let

W 1 =

(
W11 − In

W21

)
and W 2 =

(
W12

W22 − In

)
;

(iii) Solve the linear matrix equation W 2S = W 1.

In Algorithm 5.1 we need to compute W = sign(H). There are several methods to do this.
Below we only introduce two of them which is particularly effective to solve our problem.

First, by adopting the expression sign(H) = H(H2)−
1

2 introduced in Higham [4], we can

obtain sign(H) through solving the linear matrix equation sign(H)(H2)
1

2 = H . Noticing that

H2 has no nonpositive real eigenvalues, we know that the matrix (H2)
1

2 is well defined and can
be computed through the Schur decomposition method[5].

Second, we can obtain sign(H) through the Newton iteration

Xk+1 =
1

2
(Xk + X−1

k ), k = 0, 1, 2, . . . ,

where X0 = H is the initial guess and sign(H) = limk→∞ Xk. Kenney and Laub have proved
in [7] that this Newton iteration method is quadratically convergent and is also stable.



316 X.X. GUO AND Z.Z. BAI

From the above investigation, we see that Algorithm 5.1 is stable with low cost. However, the
Schur decomposition method proposed in [3] needs ordering according to the matrix eigenvalues
which may lead to large cost, and the matrix U11 involved in it may be nearly singular even
the matrix H is strongly nonsingular. See Lemma 2.4 for the definitions of the matrices U11

and H . This observations will be further validated by Examples 6.1 and 6.2.

5.2 Application to the quadratic matrix equation
Consider the quadratic matrix equation (QME)

X2 − EX − F = 0, (21)

where E is an n-by-n diagonal matrix and F is an n-by-n nonsingular M -matrix.
From [3] we know that the QME(21) has the following property.

Lemma 5.1. [3] Let E, F ∈ R
n×n, with E being a diagonal matrix and F a nonsingular

M -matrix. Then the QME(21) has a unique nonsingular M -matrix solution.

In [3], the Schur decomposition method (see Lemma 2.4) was used to compute the M -matrix
solution of the QME(21). In a quite different way, in the following we will use the matrix sign
function method described in section 5.1 to find the M -matrix solution of the QME(21).

To this end, for a given parameter α > 0, we let Y = αI − X and rewrite (21) as

Y 2 − Y (αI) − (αI − E)Y + (α2I − αE − F ) = 0. (22)

Hence, the QME(21) is equivalent to the nonsymmetric ARE(1) with the following specific
choices of the involved matrices:

A = αI − E, B = α2I − αE − F, C = I and D = αI.

Now, the matrices H and K defined in (2) possess the specific forms

H := Hα =

(
αI I

−α2I + αE + F −(αI − E)

)

and

K := Kα =

(
αI −I

−α2I + αE + F αI − E

)
,

respectively.
Let ei and fi be the i-th diagonal elements of the matrices E and F , respectively. Then for

α ∈ [α0, +∞), with

α0 = max
1≤i≤n

ei +
√

e2
i + 4fi

2
> 0,

we have

α > 0 and α2I − αE − F ≥ 0.

Moreover, from [3] we know that Kα is a nonsingular M -matrix. Therefore, by Lemma 2.2
the nonsymmetric ARE(22) has a minimal nonnegative solution Sα which satisfies that both
matrices αI −Sα and αI −E −Sα are nonsingular M -matrices. And by Lemma 2.3 the matrix
Hα has n eigenvalues in C> and n eigenvalues in C<. Clearly, αI−Sα is the M -matrix solution
of the QME(21).
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Denote by

W =

(
0 I

F E

)
.

Because
(

I 0
−αI I

)−1

Hα

(
I 0

−αI I

)
= W,

we see that the matrices Hα and W have the same eigenvalues. Therefore, if X is the M -matrix
solution of the QME(21), then

W

(
I 0
X I

)
=

(
I 0
X I

)(
X I

0 E − X

)
,

which implies that the column space of the matrix
(

I

X

)

is the unique invariant subspace of W associated with the n eigenvalues of the matrix Hα in
C>.

Now, through a similar discussion to Theorem 5.1, we can obtain the following theorem.

Theorem 5.2. Let

W =

(
0 I

F E

)

and denote

sign(W ) =

(
V11 V12

V21 V22

)
.

Then the M -matrix solution X of the QME(21) is the unique least-squares solution of the matrix
equation

(
V12

V22 − In

)
X = −

(
V11 − In

V21

)
,

where the matrix
(

V12

V22 − In

)

is of full column rank.

We remark that the above-mentioned matrix sign function method can also be used to
compute the following Wiener-Hopf factorization of Markov chains[13, 2]:

(
A B

−C −D

)(
I Π2

Π1 I

)
=

(
I Π2

Π1 I

)(
Q̃ 0

0 Q̂

)
, (23)

where A and D are square matrices such that

Q =

(
A B

C D

)
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is a nonsingular Q-matrix associated with an irreducible continuous-time finite Markov chain,
and Q̃ and Q̂ are Q-matrices, too.

As a matter of fact, noticing that (23) is equivalent to

(
0 I

I 0

)(
A B

−C −D

)(
0 I

I 0

)(
0 I

I 0

)(
I Π2

Π1 I

)(
0 I

I 0

)

=

(
0 I

I 0

)(
I Π2

Π1 I

)(
0 I

I 0

)(
0 I

I 0

)(
Q̃ 0

0 −Q̂

)(
0 I

I 0

)
,

or

(
−D −C

B A

)(
I Π1

Π2 I

)
=

(
I Π1

Π2 I

)(
−Q̃ 0

0 Q̂

)
,

after a similar discussion to Theorem 5.1, we can demonstrate that Π1 and Π2 are the unique
least-squares solutions of the matrix equations

(
Z11 + In

Z21

)
Π1 = −

(
Z12

Z22 + Im

)

and
(

Z12

Z22 − Im

)
Π2 = −

(
Z11 − In

Z21

)
,

respectively, provided

(
Z11 Z12

Z21 Z22

)
= sign

(
−D −C

B A

)
.

6. Numerical Examples

We now compare computational accuracy and effectiveness of the matrix sign function
(MSF) method and the Schur decomposition (SD) method [3] in terms of the residual er-
ror (RES) and the CPU timing (CPU) of the ARE(1) and the QME(21). All results are
produced by using MATLAB 6.5.

Example 6.1. We consider the nonsymmetric ARE(1) generated by the following process:
Firstly, generate a 100× 100 random matrix with no zero elements and save it as R; Secondly,
let W = diag(R · e) − R, where e = (1, 1, . . . , 1)T ∈ R

n; And finally, for α = 1, 5, 9, define

K :=

(
D −C

−B A

)
≡ αI + W.

Then K is a nonsingular M -matrix, and the nonsymmetric ARE(1) with the matrices A, B, C

and D described above has a unique minimal nonnegative solution.

From the results in Table 2, we clearly see that the matrix sign function method is more
accurate and effective than the Schur decomposition method, as the former always yields smaller
residual error and computing time than the latter for all of our tested cases.

A matrix is called a Q-matrix if it has nonnegative off-diagonal elements and nonpositive row sums.
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Table 2: Numerical Results for Example 6.1

Method α = 1 α = 5 α = 9

SD RES 0.16e-11 0.17e-11 0.24e-11
CPU 0.359 0.359 0.344

MSF RES 0.73e-12 0.75e-12 0.66e-12
CPU 0.297 0.313 0.312

Example 6.2. We consider the QME(21) generated by the matrices

E =

[
−In

2
0

0 3In

2

]
∈ R

n×n and F =




2 −1
2 −1

. . .
. . .

. . . −1
−1 2



∈ R

n×n.

As F is a nonsingular M -matrix, the QME(21) has a nonsingular M -matrix solution.

Table 3: Numerical Results for Example 6.2

Method n = 64 n = 96 n = 128

SD RES 0.50e-12 0.83e-12 0.11e-11
CPU 0.672 4.344 15.016

MSF RES 0.27e-12 0.38e-12 0.48e-12
CPU 0.593 1.375 2.875

Again, from the results in Table 3, we see that the matrix sign function method is more
accurate and effective than the Schur decomposition method, as the former always yields smaller
residual error and computing time than the latter for all of our tested cases.
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