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Abstract

Regular assumption of finite element meshes is a basic condition of most analysis of
finite element approximations both for conventional conforming elements and nonconform-
ing elements. The aim of this paper is to present a novel approach of dealing with the
approximation of a four-degree nonconforming finite element for the second order elliptic
problems on the anisotropic meshes. The optimal error estimates of energy norm and L2-
norm without the regular assumption or quasi-uniform assumption are obtained based on
some new special features of this element discovered herein. Numerical results are given
to demonstrate validity of our theoretical analysis.

Mathematics subject classification: 65N30,65N15.
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1. Introduction

It is well known that Carey’s element [1] is a very famous four-degree triangle nonconforming
membrane element. Numerous studies have been advocated to its convergence analysis (see
[2],[3] and [4] for details). However, one of the drawbacks of the analysis of convergence of
above studies is that the regular assumption of the finite element meshes should be satisfied
, i.e. there exists a constant C > 0, such that for all element K, hK/ρK ≤ C, where hK

and ρK are the diameter of K and the biggest circle contained in K respectively. Therefore,
this restriction limits the applications of many elements of practical problems. In practice, the
solution of elliptic boundary problem may have anisotropic behavior in parts of the domain,
i.e. it varies significantly only in certain direction. In such cases it is an obvious idea to reflect
this anisotropy in the discretization by using anisotropic meshes with small mesh size in the
direction of rapid variation of solution and a larger mesh size in the perpendicular direction.

In recent years, some researchers have been interested in the study of theoretical analysis
and computations without the above regular assumption, i.e. anisotropic behavior, and paid
more attention to the interpolation error estimate of conforming Lagrange type elements [5,6,10]
and nonconforming C-R type element [7] with narrow edges or having anisotropic properties. In
these cases, the key problem is that the usual Sobolev theories (for example, Hilbert-Bramble
Lemma) can not be used directly. An example is given in [7].

In this paper, we focus on the study of convergence analysis of Carey’s element with the
narrow edges or anisotropic properties. The optimal error estimates are obtained by using
Lagrange interpolation results for conforming elements and some new properties discovered
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herein. The results and the approach of this paper are also valid for some other elements, such
as the Wilson element [4], the arbitrary quadrilateral quasi-Wilson element [8,9] and five-node
element [12] and so on . At the same time, we also present some computational results which
demonstrate the validity and coincidence of our theoretical analysis very well.

2. Carey’s Element and Some Lemmas

Let K be a triangle with vertices pi = (xi, yi), 1 ≤ i ≤ 3 , and λi be the area coordinate
corresponding to the vertices pi, `i = −−−−−→pi+1pi+2, (i = 1, 2, 3, mod(3)) be the three sides. Let S
denote the area of the triangle K and set the following remarks







ξ1 = x2 − x3, ξ2 = x3 − x1, ξ3 = x1 − x2,
η1 = y2 − y3, η2 = y3 − y1, η3 = y1 − y2,
ξ2
i + η2

i = `2
i , `2 = `2

1 + `2
2 + `2

3.

Then, the shape function on element K may be found by

u =

3
∑

i=1

uiλi + t(u)ϕ, (1)

where

ϕ = λ1λ2 + λ2λ3 + λ3λ1, (2)

and ui denotes the functional value of u at the vertex pi (i=1,2,3) of K respectively, and the
parameter t(u) is taken as

t(u) =
−4S

`2

∫

K

∆udxdy. (3)

Obviously, this element is a nonconforming membrane element and it is continuous at each
vertex of the element K. Let

u = u1λ1 + u2λ2 + u3λ3, u1 = t(u)ϕ. (4)

Then, u = ū + u1 , i.e. ū and u1 are the conforming part and nonconforming part of u
respectively.

Let Ω be the polygonal domain, Jh be a family of decomposition of Ω with Ω =
⋃

K∈Jh

K,

and diam(K) ≤ h ,∀ K ∈ Jh. For a given element K ∈ Jh, let −−→p1p2 be the longest edge of K.
Then we denote h1 = h1,K = meas(−−→p1p2) its length and by h2 = h2,K = 2S

h1,K
the thickness of

K perpendicularly to −−→p1p2. We assume that the element satisfies the maximum angle condition
and a coordinate system condition [11], but it is not necessary to satisfy the regular assumption
or quasi-uniform assumptions on meshes [4]. Let FK be an affine mapping from K̂ to K

FK :















x =
3
∑

j=1

x(pj)λj ,

y =
3
∑

j=1

y(pj)λj .

Let Vh be the associated Carey’s finite element space.

Vh = { v : v|K = v̂ ◦ F−1
K , v̂ ∈ PK , v(a) = 0, ∀ node a ∈ ∂Ω },

where PK = span{λ1, λ2, λ3, ϕ} is the shape function space.
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Now, let us consider the following Poisson problem

{

−4u = f, in Ω,
u|Γ = 0, on Γ = ∂Ω.

(5)

Let V = H1
0 (Ω) , then the weak form of (5) is

{

Find u ∈ V, such that,
a(u, v) = f(v), ∀ v ∈ V,

(6)

where

a(u, v) =

∫

Ω

∇u · ∇vdxdy, f(v) =

∫

Ω

fvdxdy.

The approximation of (6) reads as follows

{

Find uh ∈ Vh, such that,
ah(uh, vh) = f(vh), ∀ vh ∈ Vh,

(7)

where

ah(uh, vh) =
∑

K∈Jh

∫

K

∇u · ∇vdxdy.

Define ‖ · ‖h = (
∑

K

| · |21,K)
1

2 , then it is easy to see that ‖ · ‖h is the norm over Vh . By

Lax-Milgram theorem, (6) and (7) has an unique solution u and uh respectively. In order to
estimate ‖u − uh‖h and ‖u − uh‖0 , we first prove the following very useful lemmas.
Lemma 1. For ∀ wh ∈ Vh,

∫

K

∂w1
h

∂x
dxdy = 0, (8)

∫

K

∂w1
h

∂y
dxdy = 0. (9)

Proof. By (2) and (4),

w1
h = t(wh)ϕ = t(wh)(λ1λ2 + λ2λ3 + λ3λ1).

So
∫

K

∂w1

h

∂x
dxdy = t(wh)

∫

K

3
∑

i=1

∂ϕ
∂λi

∂λi

∂x
dxdy

= t(wh)
2S

∫

K
[η1(λ2 + λ3) + η2(λ1 + λ3) + η3(λ1 + λ2)]dxdy

= t(wh)
2S

2∆(η1+η2+η3)
3

= 0.

(10)

Similarly,
∫

K

∂w1
h

∂y
dxdy = 0, (11)

thus lemma 1 is proved.
Lemma 2. For ∀ wh ∈ Vh, there holds

‖w1
h‖h ≤ C‖wh‖h, (12)

‖w1
h‖0 ≤ Ch‖wh‖h. (13)
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Here and later C > 0 denotes a constant independent of hK/ρK , ∀ K ∈ Jh and the function
under considered.

Proof. By the equalities (8) and (9) of lemma 1, since ∂w̄h

∂x
and ∂w̄h

∂y
are two constants, we

can deduce that

|wh|
2
1,K =

∫

K
[(∂wh

∂x
)2 + (∂wh

∂y
)2)]dxdy

=
∫

K
[( ∂

∂x
(w̄h + w1

h))2 + ( ∂
∂y

(w̄h + w1
h))2]dxdy

=
∫

K
[(∂w̄h

∂x
)2 + (∂w̄h

∂y
)2]dxdy +

∫

K
[(

∂w1

h

∂x
)2 + (

∂w1

h

∂y
)2]dxdy

= |w̄h|
2
1,K + |w1

h|
2
1,K .

(14)

And using the definition of ‖ · ‖h, we have

‖wh‖
2
h = ‖w̄h‖

2
h + ‖w1

h‖
2
h.

So, (12) follows.

To prove (13), we only need prove

‖w1
h‖0 ≤ Ch‖w1

h‖h.

We compute ‖w1
h‖0 and ‖w1

h‖h as follows

‖w1
h‖

2
0 =

∫

K
|w1

h|
2dxdy

= t2(wh)
∫

K
(λ1λ2 + λ2λ3 + λ3λ1)

2dxdy
= t2(wh)

∫

K
[(λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1) + 2(λ2

1λ2λ3 + λ2
2λ3λ1 + λ2

3λ1λ2)]dxdy
= t2(wh)( S

30 + S
30 )

= t2(wh) S
15 ,

(15)

|w1
h|

2
1,K =

∫

K
[(

∂w1

h

∂x
)2 + (

∂w1

h

∂y
)2]dxdy

= t2(wh)
4S2 (

∫

K
[η1(λ2 + λ3) + η2(λ1 + λ3) + η3(λ1 + λ2)]

2dxdy
+

∫

K
[ξ1(λ2 + λ3) + ξ2(λ1 + λ3) + ξ3(λ1 + λ2)]

2dxdy)

= t2(wh)
4S2 (

∫

K
[(η1λ1 + η2λ2 + η3λ3)

2 + (ξ1λ1 + ξ2λ2 + ξ3λ3)
2]dxdy

= t2(wh)
4S2 (

∫

K
[λ2

1`
2
1 + λ2

2`
2
2 + λ2

3`
2
3

+ 2λ1λ2(ξ1ξ2 + η1η2) + 2λ2λ3(ξ2ξ3 + η2η3) + 2λ3λ1(ξ3ξ1 + η3η1)]dxdy)

= t2(wh)
48S

`2.

(16)

Thus,

‖w1
h‖

2
0 ≤ Ch2‖w1

h‖
2
h,

and (13) follows.

3. Estimates of ‖u − uh‖h and ‖u − uh‖0

Let γ = (γ1, γ2) be the multi-index, and |γ| = γ1 + γ2, Dγv = ∂γv
∂xγ1∂yγ2

.

Theorem 1. Let u and uh be the solution of (5) and (7) respectively, u ∈ H1
0 (Ω) ∩ H2(Ω),

then, under the anisotropic meshes, we have the following estimates

‖u − uh‖h ≤ Ch|u|2,Ω, (17)

‖u − uh‖0 ≤ Ch2|u|2,Ω. (18)
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Proof. By Strang second lemma [4], we have

‖u − uh‖h ≤ C{ inf
vh∈Vh

‖u − vh‖h + sup
wh∈Vh\{0}

ah(u, wh) − f(wh)

‖wh‖h

}. (19)

Let Πh:H2(Ω) → Vh be the linear interpolation operator defined by

Πhu = u1λ1 + u2λ2 + u3λ3.

Then by the similar argument of [5,6], the first term on the right hand of (19) can be estimated
as

inf
vh∈Vh

‖u − vh‖h ≤ ‖u − Πhu‖h ≤ Ch|u|2,Ω. (20)

Now,we begin to estimate the second term on the right hand of (19), i.e. the consistency
error. This is the key point of our estimates.
∀ wh ∈ Vh, wh = w̄h + w1

h, then, w̄h ∈ C0(Ω) ∩ H1
0 (Ω).

ah(u, w̄h) − f(w̄h) = a(u, w̄h) − f(w̄h) = 0,

thus,

|ah(u, wh) − f(wh)| = |ah(u, w̄h + w1
h) − f(w̄h + w1

h)|
= |ah(u, w1

h) − f(w1
h)|

≤ |ah(u, w1
h)| + |f(w1

h)|.
(21)

Define the zero order operator P0 as follows

P0~v =
1

|K|

∫

K

~vdxdy, ∀ ~v ∈ H1(K)2, K ∈ Jh.

Let ~v = ∇u, from lemma 1, we get

∫

K

∇w1
hdxdy = 0,

hence,

|ah(u, w1
h)| = |

∑

K∈Jh

∫

K
∇u · ∇w1

hdxdy|

= |
∑

K∈Jh

∫

K
(∇u − P0∇u) · ∇w1

hdxdy|

= |
∑

K∈Jh

∫

K
(~v − P0~v) · ∇w1

hdxdy|

≤
∑

K∈Jh

‖~v − P0~v‖0,K‖∇w1
h‖0,K

≤ (
∑

K∈Jh

‖~v − P0~v‖
2
0,K)

1

2 (
∑

K∈Jh

‖∇w1
h‖

2
0,K)

1

2 .

(22)

Since

P0v =
1

|K|

∫

K

vdxdy =
1

|K̂|

∫

K̂

v̂dx̂dŷ = P̂0v̂,
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we know that P0 is affine-equivalent.

‖~v − P0~v‖
2
0,K = ‖~̂v − P0~̂v‖

2
0,K̂

|K|

|K̂|

≤ |~̂v|2
1,K̂

|K|

|K̂|

=
∑

|α|=1

‖D̂α~̂v‖2
0,K̂

|K|

|K̂|

=
∑

|α|=1

(
∫

K
h2α|Dα~v|2dxdy)

≤ Ch2
∑

|α|=1

‖Dα(∇u)‖2
0,K

≤ Ch2|u|2,K .

(23)

Using (14), we have

‖∇w1
h‖

2
0,K =

∫

K
[(

∂w1

h

∂x
)2 + (

∂w1

h

∂y
)2]dxdy

= |w1
h|

2
1,K

≤ C|wh|
2
1,K .

(24)

Substituting (23) and (24) into (22), we get

|ah(u, w1
h)| ≤ Ch(

∑

K∈Jh

|u|22,K)
1

2 (
∑

K∈Jh

|wh|
2
1,K)

1

2

≤ Ch|u|2,Ω‖wh‖h.
(25)

Using (13) yields

|f(w1
h)| = |

∫

Ω
(−∆u)w1

hdxdy|
≤ ‖ −4u‖0,Ω‖w

1
h‖0

≤ Ch|u|2,Ω‖wh‖h.
(26)

Substituting (25) and (26) into (21), we obtain

|ah(u, wh) − f(wh)| ≤ Ch|u|2,Ω‖wh‖h.

Therefore the consistency error term can be estimated as

sup
wh∈Vh

|ah(u, wh) − f(wh)|

‖wh‖h

≤ Ch|u|2,Ω. (27)

Thus substituting (20) and (27) into (19) follows (17). Applying Aubin-Nitsche duality argu-
ment ( refer to [4] ) yields (18), the proof of this theorem is completed.
Remark 1. The approach proposed in this paper is novel and is very different from the analysis
of C-R element on anisotropic meshes of [7].
Remark 2. It has been shown in [8,9,13] that of any vh ∈ Vh for quasi-Wilson arbitrary
quadrilateral element or Wilson rectangular element, both lemma 1 and lemma 2 are satisfied
and thus the above results are valid for these elements.
Remark 3. It has been proved in [8,9] that for any vh ∈ Vh of quasi-Wilson element, there
holds,

∫

K

w1
hdxdy = 0,

∫

K

q1(x, y)
∂w1

h

∂x
dxdy = 0,

∫

K

q1(x, y)
∂w1

h

∂y
dxdy = 0 (28)

where q1(x, y) ∈ P1(the set of all linear polynomials on K). At the same time, we have obtained
the super-convergence property of consistency error, that is, when the exact solution of (6)
u ∈ H3(Ω)∩H1

0 (Ω), then the consistency error is of the order O(h2), which is one order higher
than that of Wilson element. But now we find that (28) does not hold for Carey’s element
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and therefore the super-convergence analysis of it on anisotropic meshes is certainly a great
challenge.

4. Numerical Examples

In order to investigate the numerical behavior of anisotropic Carey’s element, we still
consider the second order problem (5) with f(x, y) = 4 − 2x2 − 2y2 ∈ L2(Ω), and Ω =
(−1, 1) × (−1, 1). It can be verified that the exact solution of problem (5) is u(x, y) =
(1−x2)(1−y2). Denote the triangulation of Ω as Jh, h = max

K∈Jh

hK , ρ = max
K∈Jh

ρK , hK = diam(K),

ρK = max
M

diam(M), and M is an arbitrary circle contained in K. Define the norm ‖u − uh‖0

and ‖u − uh‖h as follows:

‖u − uh‖0 = (
∑

K∈Jh

‖u − uh‖
2
0,K)

1

2

‖u − uh‖h = (
∑

K∈Jh

|u − uh|
2
1,K)

1

2

where u and uh are the exact solution and the Carey’s element solution of problem (5) and (7)
respectively.

We consider the above three triangulation types of Ω: mesh 1, mesh 2, and mesh 3 ( see
Figure 4.1, Figure 4.2 and Figure 4.3 ).

To obtain mesh 1, we subdivide the boundary of Ω into m and n equal intervals along
the x − axis and y − axis respectively, and then triangulate the rectangular with diagonal
parallel lines. For mesh 2, the subdivision along the y − axis is as same as mesh 1, but (m +1)

points cos( (m+1−i)π
m

)(i = 1, 2, · · · , m + 1) are taken along the x − axis. And as for mesh 3, we

take (m + 1) points cos( (m+1−i)π
m

)(i = 1, 2, · · · , m + 1) along the y − axis and (n + 1) points

sin( (3n+2−2j)π
2n

)(j = 1, 2, · · · , m + 1) along the y − axis respectively.
For mesh 1, h/ρ ≈ m/n, we carry out the numerical computing with respect to the mesh

with m
n

= 10 and m
n

= 20 respectively. The numerical results are listed in Table 4.1 and Table
4.2. Herein, α denotes the convergence order.

Table 4.1

n × m ‖u − uh‖0 α ‖u − uh‖h α

2 × 20 1.9960394275 / 3.1130196548 /

4 × 40 0.4897561470 2.020047131 1.5577242956 0.9988747754

8 × 80 0.1219088342 2.0062609245 0.7797570461 0.9983433215

16 × 160 0.0304447136 2.0015390292 0.3900143110 0.9994976217

32 × 320 0.0076091568 2.0003832442 0.1950248846 0.9998688432

Table 4.2

n × m ‖u − uh‖0 α ‖u − uh‖h α

2 × 40 1.9974853754 / 3.1108349141 /

4 × 80 0.4903037853 2.0264371357 1.5566062993 0.9988977353

8 × 160 0.1220588906 2.0060985169 0.7791902179 0.9983566298

16 × 320 0.0304830769 2.0014969448 0.3897297498 0.999501503

32 × 640 0.0076188012 2.0003726168 0.1948824551 0.9998698497
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Figure 4.1 : mesh 1
Figure 4.2 : mesh 2

Figure 4.3 : mesh 3

From the above two tables, we can see that the error between u and uh is indeed independent
of hK/ρK . It means that we can get the same order of error estimates whether the subdivision
satisfies the regular assumption or not.

We take m
n

= 20 for mesh 2; and m
n

= 20, m
n

= 40 for mesh 3. The results are listed in the
following Table 4.3-Table 4.5 respectively.
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Table 4.3

n × m max(hK/ρK) ‖u − uh‖0 α ‖u − uh‖h α

2 × 40 324.394506 1.9973710247 / 3.1112169145 /

4 × 80 648.538915 0.4902484469 2.02652 1.5567211777 0.99896945

8 × 160 1296.952848 0.1220435313 2.00612 0.7792379074 0.9983748

16 × 320 2593.843135 0.0304791456 2.0015 0.3897523661 0.999506087

32 × 640 5187.655019 0.0076178127 2.00037374 0.1948936094 0.999870996

Table 4.4

n × m max(hK/ρK) ‖u − uh‖0 α ‖u − uh‖h α

4 × 80 917.172529 0.9667297974 / 2.0299411894 /

8 × 160 1985.289424 0.2550953155 1.922076304 1.0471878693 0.9549176

16 × 320 4048.269539 0.0645291267 1.983013999 0.5273885898 0.9895820266

32 × 640 8135.665760 0.0161800230 1.99573684224 0.2641668114 0.997417133

Table 4.5

n × m max(hK/ρK) ‖u − uh‖0 α ‖u − uh‖h α

2 × 80 1297.072830 1.9978186102 / 3.1103841296 /

4 × 160 2593.905636 0.4904269107 2.023155511 1.5563553786 0.9989212396

8 × 320 5987.686269 0.12209257477 2.00606268 0.7790603672 0.9983644952

16 × 640 10375.310038 0.0341916872 2.0014875770 0.3896642317 0.9995036142

We note that for mesh 2 and mesh 3, max
K∈Jh

{hK/ρK} increases rapidly with the increase of

the element number. In particular, max
K∈Jh

{hK/ρK} increases sharply for mesh 3. Hence, both

the condition of regularity and quasi-uniform can not be satisfied. Nevertheless, the error order
α of ‖u − uh‖0 and ‖u − uh‖h approach to 2 and 1 respectively, which is as same as the result
obtained under the regular condition.

From the above numerical results, we can also conclude that Carey’s element is reliable and
very stable with respect to the increasing of anisotropy of the meshes. The error between u and
uh is really independent of hK/ρK , ∀K ∈ Jh, which coincides with the theoretical analysis of
this paper. Besides, we find another very interesting fact, i.e, the Carey’s finite element solution
approaches to the exact solution more exactly with the increasing of anisotropy of meshes (see
Table 4.5). Thus, it is of importance of using anisotropic Carey’s element to deal with the
second order elliptic problems.

Acknowledgement. The authors thank the anonymous referees for their valuable suggestions.
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