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Abstract

The polynomials related with cubic Hermite-Padé approximation to the exponential
function are investigated which have degrees at most n, m, s respectively. A connection
is given between the coefficients of each of the polynomials and certain hypergeometric
functions, which leads to a simple expression for a polynomial in a special case. Contour
integral representations of the polynomials are given. By using of the saddle point method
the exact asymptotics of the polynomials are derived as n, m, s tend to infinity through
certain ray sequence. Some further uniform asymptotic aspects of the polynomials are also
discussed.
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1. Introduction

Hermite-Padé approximation to the exponential function was introduced by Hermite [5] who
considered expressions of the form

tk(x)eskx + tk−1(x)e
sk−1x + · · · + t1(x)e

s1x = O(xh), (1.1)

where t1(x), t2(x), · · · , tk(x) are polynomials, of specified degrees,chosen so that h is as large
as possible.

Included, of course, in expressions of type (1.1) are both the ordinary Padé approximations

P̂n(x)e−x + Q̂m(x) = O(xn+m+1) (1.2)

with deg(P̂n)≤ n, deg(Q̂m)≤ m, P̂n(0) 6= 0, and the quadratic Hermite-Padé approximations
[3,4]

P̃n(x)e−2x + Q̃m(x)e−x + R̃s(x) = O(xn+m+s+2) (1.3)

with deg(P̃n)≤ n,deg(Q̃m)≤ m,deg(R̃s)≤ s, P̃n(0) 6= 0.
In this paper, we wish to investigate a number of properties of the polynomials Pn, Tl, Qm

and Rs that arise from the solution of the following cubic Hermite-Padé approximations

Pn(x)e−3x + Tl(x)e
−2x +Qm(x)e−x +Rs(x) = O(xn+m+s+l+3), (1.4)

with deg(Pn)≤ n, deg(Tl)≤ l, deg(Qm)≤ m, deg(Rs)≤ s, Pn monic. But as is well known, if
we set x = y − a

3 , then any cubic equation x3 + ax2 + bx+ c = 0 can be transformed into the
following form

y3 + (b− a2

3
)y + (

2

27
a3 − 1

3
ab+ c) = 0.
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So without loss of generality, in this paper we only consider approximations to e−x generated
by finding polynomials Pn, Qm and Rs so that

Enms(x) := Pn(x)e−3x +Qm(x)e−x +Rs(x) = O(xn+m+s+2). (1.5)

The explicit formulae for these unique polynomials are known; in the super-diagonal case n =
m = s, they were obtained by Wang & Zheng [12] and for arbitrary n,m, s ∈ N, they can be
found in Zheng & Wang [13].

2. The Polynomials P
n
, Q

m
and R

s

The polynomials Pn, Qm and Rs with deg(Pn)= n, deg(Qm)= m, deg(Rs)= s, Pn monic,
that satisfy (1.5) are given by (cf. Zheng & Wang [13])

Pn(x) = n!

n
∑

j=0

pjx
j

j!
. (2.1)

where, for 0 ≤ j ≤ n,

pj = 2j−n

n−j
∑

k=0

(

2

3

)k (

n+m− k − j

m

)(

s+ k

s

)

; (2.2)

Qm(x) = −3s+1

2n
n!

m
∑

j=0

qjx
j

j!
, (2.3)

where, for 0 ≤ j ≤ m,

qj =

m−j
∑

k=0

(−2)k+j

(

n+m− k − j

n

)(

s+ k

s

)

; (2.4)

Rs(x) = (−1)m2m+13s−nn!
s

∑

j=0

rjx
j

j!
, (2.5)

where, for 0 ≤ j ≤ s,

rj = (−1)j

s−j
∑

k=0

1

3k

(

s+m− k − j

m

)(

n+ k

n

)

. (2.6)

We observe that each of the polynomials Pn, Qm, and Rs depends on all three positive integers
n,m, and s and the subscript merely denotes the degree of the polynomial in each case. Writing
Pn(x) = P (n,m, s;x), Qm(x) = Q(n,m, s;x),and Rs(x) = R(n,m, s;x).

Our first result establishes a connection between the coefficients of Pn, Qm, Rs and certain

2F1 hypergeometric functions.We recall the definition of the Gauss function (cf.[1])

2F1(a, b; c; z) :=
∞
∑

k=0

(a)k(b)k

(c)kk!
zk, (2.7)

where

(α)k :=

{

α(α + 1) · · · (α+ k − 1) = Γ(α+ k)/Γ(α), if k ≥ 1,
1, if α 6= 0, k = 0.

(2.8)

If t ∈ N,it follows immediately from (2.8) that

(−t)k =

{

(−1)kt!/(t− k)!, for 0 ≤ k ≤ t,
0, for k > t.

(2.9)
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Therefore, the hypergeometric series 2F1(−t, b; c; z), t ∈ N, is a polynomial of degree t in z and,
from (2.8) and (2.9), we have for b, c ∈ N,

2F1(−t, b+ 1; c+ 1; z) :=

t
∑

k=0

(

t

k

)

(b+ k)!c!

b!(c+ k)!
(−z)k. (2.10)

Theorem 1. Let pj , qj , and rj be given by (2.2),(2.4), and (2.6), respectively. Then

pj = 2j−n

(

n+m− j

m

)

2F1(j − n, s+ 1; j − n−m;
2

3
), j = 0, 1, · · · , n; (2.11)

qj = (−2)j

(

n+m− j

n

)

2F1(j −m, s+ 1; j − n−m;−2), j = 0, 1, · · · ,m; (2.12)

rj = (−1)j

(

s+m− j

m

)

2F1(j − s, n+ 1; j − s−m;
1

3
), j = 0, 1, · · · , s. (2.13)

Another way of writing this is

pj = 2j−n

(

n+m+ s+ 1 − j

n− j

)

2F1(j − n, s+ 1;m+ s+ 2;
1

3
), j = 0, 1, · · · , n; (2.14)

qj = (−2)j

(

n+m+ s+ 1 − j

m− j

)

2F1(j −m, s+ 1;n+ s+ 2; 3), j = 0, 1, · · · ,m; (2.15)

rj = (−1)j

(

n+m+ s+ 1 − j

s− j

)

2F1(j − s, n+ 1;n+m+ 2;
2

3
), j = 0, 1, · · · , s. (2.16)

Proof. From (2.2) with n− j = t and (2.9) we have, for 0 ≤ t ≤ n,

pj = 2j−n
t

∑

k=0

(m+ t− k)!(s+ k)!

m!s!k!(t− k)!

(

2

3

)k

= 2j−n (m+ t)!

m!t!

t
∑

k=0

(−t)k(s+ 1)k

(−m− t)kk!

(

2

3

)k

, (2.17)

from which (2.11) immediately follows. The identities (2.12) and (2.13) follow from the same
method.

In general the function 2F1(a, b; c; z) is not defined if c = 0,−1,−2, · · · , but in (2.11)-(2.13)
the a-parameter equal also a non-positive integer value,with |a| ≤ |c|. In that case the F -function
is well-defined. We use a well-known transformation of the F -function to obtain (2.14)-(2.16),
where the c-parameter is a positive integer and which are more convenient representations. We
use [4]

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a+ b − c+ 1; 1 − z),

a = 0,−1,−2, · · · ; | arg(1 − z)| < π. (2.18)

Applying this formula to (2.11)-(2.13) we obtain that all arguments in the gamma functions
in front of the F -function in (2.18) become equal to non-positive integers.Hence some care is
needed in applying the transformation. To verify (2.11)→(2.14) we use the property (cf.[1])

Γ(z)

Γ(z − k)
= (−1)k Γ(k + 1 − z)

Γ(1 − z)
, k = 0, 1, 2, · · · (2.19)

and introduce a small parameter ε. That is, we write using a = j − n, b = s+ 1, c = j − n−m,

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
= lim

ε→0

Γ(c+ ε)Γ(c+ ε− a− b)

Γ(c+ ε− a)Γ(c+ ε− b)
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=
Γ(m+ 1)Γ(n+m+ s− j + 2)

Γ(n+m− j + 1)Γ(m+ s+ 2)
. (2.20)

This gives the result in (2.14). The results for qj and rj follow in a similar way.
As an immediate consequence of Theorem 1,we can express the coefficients pj , qj , and rj in

appropriate Jacobi polynomials.

Corollary 1. For any n,m, s ∈ N,if P
(α,β)
k denotes the Jacobi polynomial of degree k with

parameter α and β, then

pj = (−6)j−nP
(j−n−m−1,j−n−s−1)
n−j (5), (2.21)

qj = (−1)m2jP
(j−n−m−1,n+s+1)
m−j (5), (2.22)

rj = (−1)j3j−sP
(n+m+1,j−n−s−1)
s−j (5). (2.23)

Proof. Firstly we have (cf.[1])

P
(α,β)
k (x) =

(

k + α

k

)

2F1(−k, α+ β + k + 1;α+ 1;
1 − x

2
). (2.24)

After applying the following relation (cf.[1])

2F1(a, b; c; z) = (1 − z)−a
2F1(a, c− b; c;

z

z − 1
) (2.25)

to (2.11),we have

pj = 6j−n

(

n+m− j

m

)

2F1(j − n, j −m− n− s− 1; j − n−m;−2). (2.26)

Through a few manipulations with binomial coefficients and gamma functions (again with
negative integer arguments), the proof of (2.21) follows from (2.26) and (2.24) with α = j −
n−m− 1, β = j − n− s− 1, k = n− j,and x = 5.

The relation (2.22) follows from (2.12) and (2.24) in the same manner. Finally by applying
(2.25) we have

rj = (−1)j3j−s

(

n+m+ s+ 1 − j

s− j

)

2F1(j − s,m+ 1;n+m+ 2;−2). (2.27)

Now we can easily prove (2.23) from (2.27) and (2.24). Especially,when m = s,the coefficient
pj can be expressed in appropriate Gegenbauer polynomial (cf.[1]).

Corollary 2. For any n,m = s ∈ N, if C
(γ)
k denotes the Gegenbauer polynomial of degree k

with parameter γ, then

pj = (−6)j−n (s+ n− j)!(n+ 2s+ 1 − j)!

s!(2n+ 2s+ 1 − 2j)!
C

(j−n−s−1/2)
n−j (5). (2.28)

Proof. We have (cf.[1])

C
(γ)
k (x) =

(2γ)k

(γ + 1/2)k
P

(γ−1/2,γ−1/2)
k (x).

It follows from (2.21) that

pj = (−6)j−n Γ(2j − 2n− 2s− 1)Γ(−s)
Γ(j − n− 2s− 1)Γ(j − n− s)

C
(j−n−s−1/2)
n−j (5).

A few manipulations with binomial coefficients and gamma functions (again with negative
integer arguments) gives the proof of (2.28).
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3. Contour Integral Representations and Asymtotics

The polynomials Pn, Qm, and Rs that satisfy (1.5), and are given by (2.1)-(2.6), admit
simple contour integral representations.
Theorem 2. Let n,m, s ∈ N and let C be a circle, centre at the origin,radius r ∈ (0, 1). Let
Pn(x), Qm(x), and Rs(x) be the polynomials given by (2.1),(2.3),and (2.5),respectively.Then

Pn(x) =
(−1)n3s+1n!

2n+s+12πi

∮

C

e−2xv

vn+1(v + 1)m+1(v + 3/2)s+1
dv, (3.1)

Qm(x) =
(−1)m+13s+1n!

2n+s+12πi

∮

C

e2xv

vm+1(v + 1)n+1(1/2 − v)s+1
dv, (3.2)

Rs(x) =
(−1)m+s3s+12m+1n!

2πi

∮

C

exv

vs+1(v + 1)m+1(v + 3)n+1
dv. (3.3)

Proof. We only prove (3.1). The other two relations can be proved in the same manner.
Expanding e−2xv in its Maclaurin series and using Cauchy’s integral theorem, we have

(−1)n3s+1n!

2n+s+12πi

∮

C

e−2xv

vn+1(v + 1)m+1(v + 3/2)s+1
dv

=
(−1)n3s+1n!

2n+s+12πi

∮

C

1

vn+1(v + 1)m+1(v + 3/2)s+1

∞
∑

j=0

(−2x)j

j!
vjdv

=
(−1)n3s+1n!

2n+s+12πi







n−1
∑

j=0

(−2x)j

j!

∮

C

1

vn−j+1(v + 1)m+1(v + 3/2)s+1
dv

+
(−2x)n

n!

∮

C

1

(v + 1)m+1(v + 3/2)s+1

1

v
dv

+

∞
∑

j=n+1

(−2x)j

j!

∮

C

vj−n−1

(v + 1)m+1(v + 3/2)s+1
dv







= xn +
(−1)n3s+1n!

2n+s+1

n−1
∑

j=0

(−2x)j

j!

1

(n− j)!

[

1

(v + 1)m+1(v + 3/2)s+1

](n−j)
∣

∣

∣

∣

∣

∣

v=0

.

By using of Leibniz’ rule, we have

[

1

(v + 1)m+1(v + 3/2)s+1

](n−j)
∣

∣

∣

∣

∣

v=0

=

n−j
∑

k=0

(

n− j

k

) [

1

(v + 1)m+1

](n−j−k)
∣

∣

∣

∣

∣

v=0

[

1

(v + 3/2)s+1

](k)
∣

∣

∣

∣

∣

v=0

=

n−j
∑

k=0

(

2

3

)s+k+1 (

n− j

k

)

[−(m+ 1)][−(m+ 1) − 1] · · · [−(m+ 1) − (n− j − k) + 1]·

[−(s+ 1)][−(s+ 1) − 1] · · · [−(s+ 1) − k + 1]

=

n−j
∑

k=0

(

2

3

)s+k+1 (

n− j

k

)

(−1)n−j (m+ n− j − k)!(s+ k)!

m!s!
.
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A comparison of the coefficients of powers of x on the right side of (3.1) with (2.1) completes
the proof of (3.1).

In order to analyze the asymptotic behaviour of the polynomials Pn(x), Qm(x), and Rs(x)
given by (3.1), (3.2), and (3.3),respectively,we let

N = n+ 1,M = m+ 1, S = s+ 1, (3.4)

and assume that all these parameters are large.We write

M = αN, S = βN, (3.5)

where α, β are real, positive constants. We write (3.1) in the form

Pn(x) =
(−1)n3s+1n!

2n+s+12πi

∮

C

e−Np̂(v)e−2xvdv, (3.6)

where

p̂(v) := ln

[

v(1 + v)α

(

v +
3

2

)β
]

. (3.7)

To give the asymptotics, we need the following lemma
Lemma (Saddle Point Method)[7]. Let h, g be analytic function in a simply connected open
set ∆ and assume that g has no zeros in ∆. Let Γ be a smooth oriented path with a finite
length and endpoints a and b,lying in ∆. Moreover, let In =

∫

Γ h(z)/g(z)
ndz. Further assume

that a point z0 of Γ, different from an endpoint, is a nondegenerate critical point of g (i.e.,
g′(z0) = 0, g

′′

(z0) 6= 0)and let ω be the phase corresponding to the direction of the tangent to
the oriented path at z0. Suppose that minz∈Γ |g(z)| is attained at the point z0 only. Then, if
h(z0) 6= 0,

In =
√

2πg(z0)/g
′′(z0)

h(z0)√
ng(z0)n

(

1 +O

(

1

n

))

, (3.8)

as n → ∞, where the phase ω0 of g
′′

(z0)/g(z0) is chosen to satisfy |ω0 + 2ω| ≤ π/2.Since
g(z)− g(z0) ∼ (g

′′

(z0)/2)(z− z0)
2 as z → z0 along Γ, and |g(z)/g(z0)| ≥ 1, it is always possible

to choose ω0 uniquely in this way.
Applying the saddle point method to the integral in (3.6), a simple calculation shows that

for all real,positive values of α and β, p̂(v) has derivative equal to zero at a point,say v0,lying
in (−1, 0),and at another point to the left of −1. The contour C can be chosen to run through
v0. Moreover, p̂

′′

(v0) 6= 0 and, in fact, p̂
′′

(v0) is real and negative for all α, β > 0. Therefore, as
N → ∞, we deduce from (3.6) that

Pn(x) ∼ (−1)n3s+1n!

2n+s+12πi
2e−Np̂(v0)

√

π

N

e−2xv0

√

2p̂′′(v0)
, (3.9)

where if p̂
′′

(v0) = −k2
0 say, k0 > 0, we choose the branch of

√

2p̂′′(v0) = i
√

2k0, in accordance
with [7]. In Theorem 3 more details are given for a special case.

Similarly, for Qm(x), we have from (3.2)

Qm(x) =
(−1)m+13s+1n!

2n+s+12πi

∮

C

e−Nq̂(v)e2xvdv, (3.10)

where

q̂(v) := ln

[

vα(1 + v)

(

1

2
− v

)β
]

(3.11)

Now for 0 < β < 4 we can choose C to run through two saddle points:q̂(v) has derivative equal
to zero at two distinct points, v1 ∈ (−1, 0), v2 ∈ (0, 1) for all α > 0, 0 < β < 4.
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Applying the saddle point method to the integral in (3.10), as N → ∞, we have

Qm(x) ∼ (−1)m+13s+1n!

2n+s+12πi

{

2e−Nq̂(v1)

√

π

N

e2xv1

√

2q̂′′(v1)
+ 2e−Nq̂(v2)

√

π

N

e2xv2

√

2q̂′′(v2)

}

. (3.12)

When β ≥ 4, we can choose C to run through one saddle point: q̂(v) has derivative equal to
zero at one point v1 ∈ (−1, 0) (at another point v2 ≤ −1) for all α > 0, β ≥ 4.

In this case, as N → ∞, we have

Qm(x) ∼ (−1)m+13s+1n!

2n+s+12πi
2e−Nq̂(v1)

√

π

N

e2xv1

√

2q̂′′(v1)
. (3.13)

For Rs(x), we have from (3.3)

Rs(x) =
(−1)m+s3s+12m+1n!

2πi

∮

C

e−Nr̂(v)exvdv, (3.14)

where
r̂(v) := ln[vβ(v + 1)α(v + 3)]. (3.15)

Then we can choose C to run through one saddle point: r̂(v) has derivative equal to zero at
one point v3 ∈ (−1, 0) (at another point to the left of −1) for all α, β > 0.

Applying the saddle point method,as N → ∞,we have

Rs(x) ∼
(−1)m+s3s+12m+1n!

2πi
2e−Nr̂(v3)

√

π

N

exv3

√

2r̂′′(v3)
. (3.16)

The asymptotic formulae for Pn, Qm,and Rs are rather cumbersome arithmetically for arbitrary
α, β > 0. We shall, therefore, restrict ourselves to the (rather natural) case when β = 2 in (3.5),
although the method works for all α, β > 0.
Theorem 3. Let Pn(x), Qm(x), and Rs(x) be given by (3.1),(3.2), and (3.3), respectively, and
assume that (3.5) holds with β = 2. Set

σ :=
√

9α2 + 30α+ 9 , (3.17)

ς :=

√

3α2 + 19α+
299

9
+

9

α
− σ

(

α

3
+ 2 +

3

α

)

, (3.18)

τ :=

√

3α2 + 19α+
299

9
+

9

α
+ σ

(

α

3
+ 2 +

3

α

)

, (3.19)

An,α :=
n!{(α+ 3)[3(α+ 3) − σ]}n+1

2m+3n+3
√

(n+ 1)π · ς

[

σ − (α+ 3)

α

]α(n+1)

, (3.20)

Bn,α :=
n!{(α+ 3)[3(α+ 3) + σ]}n+1

2m+3n+3
√

(n+ 1)π · τ

[

σ + (α+ 3)

α

]α(n+1)

. (3.21)

Then, as n→ ∞, we have

Pn(x) ∼ An,αe
3(α+3)−σ

2(α+3) x, (3.22)

Qm(x) ∼ −An,αe
−

α+3+σ

2(α+3)
x + (−1)m+1Bn,αe

−
α+3−σ

2(α+3)
x, (3.23)

Rs(x) ∼ (−1)mBn,αe
−

3(α+3)−σ

2(α+3)
x. (3.24)

The asymptotics are uniform with respect to x on compact subset of C.
Proof. Putting β = 2 in (3.7) and differentiating with respect to v, we see that p̂′(v) = 0

when v = − 3
4 ± σ

4(α+3) .
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Setting

v0 := −3

4
+

σ

4(α+ 3)
, (3.25)

it follows from (3.7) with β = 2 that

e−Np̂(v0) =
(−1)N

9N2M
{(α+ 3)[3(α+ 3) − σ]}N

[

σ − (α+ 3)

α

]M

, (3.26)

and
2p̂

′′

(v0) = −ς2. (3.27)

Therefore from (3.9), as N → ∞, recalling that N = n + 1, we deduce (3.22) from (3.26) and
(3.27).

Turning to the polynomial Qm(x), with β = 2 in (3.11). Then q̂′(v) = 0 when v = − 1
4 ±

σ
4(α+3) , so that the integral in (3.10) has two (simple) saddle points inside C at the real axis

given by

v1 := −1

4
− σ

4(α+ 3)
, v2 := −1

4
+

σ

4(α+ 3)
. (3.28)

Moreover, from (3.11) with β = 2, we have

2q̂
′′

(v1) = −ς2, 2q̂
′′

(v2) = −τ2, (3.29)

while
e−Nq̂(v1) = (−1)M+Ne−Np̂(v0), (3.30)

e−Nq̂(v2) =
1

9N2M
{(α+ 3)[3(α+ 3) + σ]}N

[

σ + (α+ 3)

α

]M

. (3.31)

We must choose the branches of
√

2q̂′′(v1) and
√

2q̂′′(v2) in accordance with [7], namely,
√

2q̂′′(v1) = iς,
√

2q̂′′(v2) = −iτ. (3.32)

Then,from (3.12) together with (3.30)-(3.32), we deduce (3.23).
Now we investigate the polynomial Rs(x) with β = 2.Then r̂′(v) = 0 when v = − 3

2 ± σ
2(α+3) .

Setting

v3 = −3

2
+

σ

2(α+ 3)
, (3.33)

it follows from (3.15) with β = 2 that

e−Nr̂(v3) =
{(α+ 3)[3(α+ 3) + σ]}N

9N22M+3N

[

σ + (α+ 3)

α

]M

, (3.34)

and
8r̂

′′

(v3) = −τ2. (3.35)

In accordance with [7],we choose
√

2r̂′′(v3) =
i

2
τ. (3.36)

Then,from (3.16) together with (3.34) and (3.36), we deduce (3.24).
The results hold uniformly with respect to x on compact subsets of C, because we assume

that x is independent of the large parameter n(cf.[7]).
The contour integrals for the polynomials Pn, Qm, Rs, and Enms can be written in the form

Pn(x) = − 3s+1n!e2x

2n+s+12πi

∮

C1

e−2xw

(1 − w)n+1wm+1(w + 1/2)s+1
dw, (3.37)
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Qm(x) = − 3s+1n!

2n+s+12πi

∮

C0

e−2xw

(1 − w)n+1wm+1(w + 1/2)s+1
dw, (3.38)

Rs(x) = − 3s+1n!e−x

2n+s+12πi

∮

C
−

1
2

e−2xw

(1 − w)n+1wm+1(w + 1/2)s+1
dw, (3.39)

Enms(x) = − 3s+1n!e−x

2n+s+12πi

∮

C

e−2xw

(1 − w)n+1wm+1(w + 1/2)s+1
dw, (3.40)

where Cν is a circle, center at w = ν, radius r ∈ (0, 1/2), and C is a circle, center at the
origin,radius r > 1. The result for the remainder Enms defined in (1.5) follows from adding
up the results in (3.37)-(3.39). So, in fact, we have the same integral representation for the
quantities Pn, Qm, Rs, and Enms, but with different contours of integration. Of course, all
contours can be deformed without crossing the poles.

To obtain the asymptotic behavior of the remainder,we cannot simply use the results in
(3.22)-(3.24). Adding up these results gives

Enms(x) = Pn(x)e−3x +Qm(x)e−x +Rs(x) ∼ 0,

which does not give useful information,but is in agreement with the approximating property of
the Hermite-Padé method. A better estimate for Enms follows from (3.40), by taking into the
account the exponential function when computing the saddle point.

Theorem 4. Let Enms be defined by (3.40); assume that n,m, s tend to ∞ and x = o(n+m+s).
Then

Enms =
(−1)m+s3s+12m+1n!

(n+m+ s+ 2)!
e−xxn+m+s+2[1 + o(1)]. (3.41)

Proof. We write (3.40) in the form

Enms(x) =
(−1)n3s+1n!e−x

2n+s+12πi

∮

C

e−2xw

wn+m+s+3
t(w)dw, (3.42)

where

t(w) =
1

(1 − 1
w )n+1(1 + 1

2w )s+1
.

The function e−2xw/wn+m+s+3 has a saddle point at w0 = −n+m+s+3
2x ,which tends to infinity,

and t(w) = 1 + 2n−s−1
2w + · · · = 1 + o(1) in a neighborhood of the saddle point, and in fact on a

circle with radius |w0|. This proves the theorem.

4. Some Aspects of Uniform Asymptotic Method

The asymptotic estimates given in (3.22)-(3.24) and (3.41) cannot be used to obtain detailed
information on the zeros, because the zeros occur outside compact sets as the orders n,m, s
tend to infinity.

As explained at the end of the previous section,the four quantities Pn, Qm, Rs, and Enms

all have the same integral representation
∮

e−φ(w) dw

w(1 − w)(1
2 + w)

, (4.1)

with different contours and with

φ(w) = 2zw + n ln(1 − w) +m lnw + s ln(
1

2
+ w), (4.2)
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where we now write z instead of x, to underline that the argument is complex. The saddle points
of the integrand are the zeros of the derivative of φ. There are three saddle points defined by
the cubic equation

ψ(w) := 2zw3 + (m+ n+ s− z)w2 − (
m

2
− n

2
+ s+ z)w − m

2
= 0. (4.3)

Obvoiusly, ψ(− 1
2 ) = 3

4s, ψ(0) = −m
2 , ψ(1) = 3

2n, so the saddle points are real when z is real.
When z > 0, the saddle points occur in (−∞,− 1

2 ), (− 1
2 , 0),and (0, 1).When z < 0,the saddle

points occur in (− 1
2 , 0), (0, 1),and (1,+∞).

For certain complex values of z, two or three saddle points may coincide. It is known from
uniform asymptotic (cf.[7] or [10])that Airy functions can describe the asymptotic behaviour of
the integrals when two saddle points coincide. It is also known that in the z-plane strings of
zeros arise near z-values that make the saddle points coalesce.

In the case s = 2n, when the resultant expression of ψ(w) and ψ′(w) equals zero, namely
Res(ψ, ψ′, w) = 0, two saddle points coincide. It is easy to prove that z solves the equation

36z4 + (132n− 36m)z3 + (189n2 + 306mn− 27m2)z2 + (162n3 + 270mn2

+126m2n+ 18m3)z + 81n4 + 324mn3 + 270m2n2 + 84m3n+ 9m4 = 0. (4.4)

When s = 2n = 4m and

z4 + 23mz3 + 189m2z2 + 637m3z + 686m4 = 0 (4.5)

three saddle points coincide at

w = −1

4
±

√
33

12
. (4.6)

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and

Mathematical Tables, NBSAS 55, Washington, DC: U.S.Government Printing Office, 1964.
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