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Abstract

The Hermitian positive definite solutions of the matrix equation X − A∗X−2A = I

are studied. A theorem for existence of solutions is given for every complex matrix A. A
solution in case A is normal is given. The basic fixed point iterations for the equation
are discussed in detail. Some convergence conditions of the basic fixed point iterations to
approximate the solutions to the equation are given.
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1. Introduction

In this paper, we are concerned with the Hermitian positive definite solutions of the matrix
equation

X − A∗X−2A = I, (1)

where I is the n × n identity matrix and A is an n × n complex matrix. The equation has
been studied by several authors (see[6,8-11]) and some convergence conditions of the basic fixed
point iterations to approximate the solutions to the equation are given. For the application
areas in which the equation arises, see the references given in [6,8]. For the equation X ±
A∗X−1A = I, there are many contributions in the literature on the theory, applications, and
numerical solution(see,e.g.,[3-6,9-13]). Several authors[7,8,9,11,14] have studied the equation
X + A∗X−2A = I and they have obtained theoretical properties of the equation.

Throughout this paper we use Cn×n to denote the set of complex n×n matrices, and Hn×n

to denote the set of n × n Hermitian matrices. For M ∈ Cn×n , ‖M‖ stands for the spectral
norm and λi(M) represents the eigenvalues. For X, Y ∈ Hn×n, we write X ≥ Y (X > Y )
if X − Y is positive semi-definite (definite). For M ∈ Hn×n, let λmax(M) and λmin(M) be
maximal and minimal eigenvalue of M , respectively.

In Section 2 we discuss existence of solutions and their properties and consider the solutions
in case A is normal or unitary. In Section 3 we give an estimation on the solutions. In Section
4, we discuss the convergence behavior of the basic fixed point iterations to approximate the
solutions to Eq.(1). Some of results in [8,9,11] are improved. Several numerical examples are
given in Section 5.

2. Existence of Solutions

In the sequel, a solution always means a Hermitian positive definite one.

Lemma 1. [9,10] Eq.(1) has a solution for any A ∈ Cn×n.
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Theorem 1. For any invertible matrix A ∈ Cn×n, there exist unitary matrices P and Q and
diagonal matrices Γ > I and Σ > 0 with Γ − Σ2 = I such that

A = P ∗ΓQΣP.

In this case X = P ∗ΓP is a solution of Eq.(1).

Proof. For any A ∈ Cn×n, by Lemma 1 Eq.(1) has a solution. Suppose that X is a solution.
Then there exist a unitary matrix P and a diagonal matrix Γ such that X = P ∗ΓP . Hence,
the identity X = I + A∗X−2A gives

Γ − I = PA∗P ∗Γ−2PAP ∗.

Noticing that Γ > I, then we have

(

(Γ − I)−
1

2 PA∗P ∗Γ−1
)(

Γ−1PAP ∗(Γ − I)−
1

2

)

= I.

Let Q = Γ−1PAP ∗(Γ−I)−
1

2 , that is A = P ∗ΓQΣP with Σ = (Γ−I)
1

2 . Obviously, Q is unitary
and Γ − Σ2 = I. It is easy to verify that X = P ∗ΓP is a solution of Eq.(1).

Theorem 2. If A is normal, in other words, there exists a unitary matrix P such that A =
P ∗ΛP where Λ = diag(λ1, λ2, · · · , λn), λi, i = 1, 2, · · · , n are the eigenvalues, then Eq.(1) has
the following solution

X = P ∗diag(µ1, µ2, · · · , µn)P, (2)

where µi is the unique positive solution of the equation

µi − |λi|2µ−2
i = 1 (3)

for i = 1, 2, · · · , n.

Proof. Let Y = PXP ∗. Consequently, Eq.(1) has a solution if and only if the following
problem is solvable:

∃Y > 0, Y − Λ∗Y −2Λ = I. (4)

Note that the equation (3) has only one positive solution µi and µi ∈ [1, +∞). Let Y =
diag(µ1, µ2, · · · , µn). It is easy to verify Y is a solution of (4).

Theorem 3. If A is a unitary matrix, then Eq.(1) has only one solution X = δI, where δ is
the unique positive solution of the following equation

δ = 1 + δ−2.

Proof. It is easy to prove that X = δI is a solution of Eq.(1). Suppose that X is a solution
of Eq.(1). We prove X = δI. We know that there exist a unitary matrix U and a diagonal
matrix ∆ = diag(δ1, δ2, · · · , δn) such that X = U∗∆U . Hence, the identity X = I + A∗X−2A
gives

V (∆ − I) = ∆−2V,

where V = (vij) = UAU∗. Obviously, V is unitary. Hence detV 6= 0, then there exists a
permutation π of the n items {1, 2, · · · , n} such that

∏n
i=1 vi,π(i) 6= 0. By computation, one

derives for each i
vi,π(i)(δπ(i) − 1) = δ−2

i vi,π(i),

which implies
δπ(i) − 1 = δ−2

i , for i = 1, 2, · · · , n.
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Now we prove that δ1 = δ2 = · · · = δn = δ. Let τ(x) = 1 + x−2. Obviously, δi > 1, for i =
1, 2, · · · , n. Then δπ(i) = τ(δi) < τ(1) = 2. Therefore we have δπ(i) > τ(τ(1)) = 5/4. By

induction, we get δi ∈ (τ2k(1), τ2k−1(1)) for i = 1, 2, · · · , n and k = 1, 2, · · · . It is easy to prove
that limk→∞ τk(1) = δ. Hence, δi = δ, for i = 1, 2, · · · , n. Then ∆ = δI and X = U∗∆U = δI.

Theorem 4. There do not exist two comparable solutions to Eq.(1), that is, it is impossible
that for any two solutions X(1) and X(2) (X(1) 6= X(2)) of Eq.(1) X(1) ≤ X(2) or X(2) ≤ X(1).

Proof. We distinguish two cases.

Case 1. Suppose that A is invertible. Then we have

X =
√

A(X − I)−1A∗.

Let X(1) and X(2) are two solutions of Eq.(1). If X(1) ≤ X(2), then X(1) ≥ X(2) by
monotonicity of

√

A(X − I)−1A∗, a contradiction to X(1) 6= X(2). Similarly, X(1) ≥ X(2)

is impossible.

Case 2. Suppose that A is singular. If A = 0, then Eq.(1) has only one solution X = I. If
A 6= 0, then exists an unitary matrix T such that

A = T ∗

(

A11 0
A21 0

)

T

with A11 invertible by Schur triangularization theorem. Let Y = TXT ∗. Consequently,
Eq.(1) has a solution if and only if the following problem is solvable:

∃Y > 0, Y −
(

A∗
11 A∗

21

0 0

)

Y −2

(

A11 0
A21 0

)

= I. (5)

Let

Y =

(

Y11 Y12

Y21 Y22

)

, Y −2 =

(

K11 K12

K21 K22

)

.

Then (5) is equivalent with





Y11 − A∗
11K11A11 − A∗

21K21A11

−A∗
11K12A21 − A∗

21K22A21
Y12

Y21 Y22



 = I.

Hence we have

Y12 = 0, Y21 = 0, Y22 = I, Y =

(

Y11 0
0 I

)

, Y −2 =

(

Y −2
11 0
0 I

)

.

Therefore, (5) is solvable if and only if

∃Y11 > 0, Y11 − A∗
11Y

−2
11 A11 = I + A∗

21A21.

Thus we get

Y11 =
√

A11(Y11 − I − A∗
21A21)−1A∗

11. (6)

Noting that Q(Y11) =
√

A11(Y11 − I − A∗
21A21)−1A∗

11 is a decreasing operator in [I +

A∗
21A21,∞), we know that it is impossible that there exist two solutions of (6) Y

(1)
11 and

Y
(2)
11 (Y

(1)
11 6= Y

(2)
11 ) such that Y

(1)
11 ≥ Y

(2)
11 or Y

(1)
11 ≤ Y

(2)
11 .
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3. Estimation of Solutions

Lemma 2. [10] If X is a solution to Eq.(1), then

I ≤ X ≤ I + A∗A. (7)

In the following theorem, we shall improve Lemma 2.
Define the sequence {αn} by

α0 = 1 + λmax(A∗A), αn = 1 +
λmax(A∗A)

(1 + λmin(A∗A)/α2
n−1)

2
, n = 1, 2, 3, · · · (8)

and the sequence {βn} by

β0 = 1, βn = 1 +
λmin(A∗A)

(1 + λmax(A∗A)/β2
n−1)

2
, n = 1, 2, 3, · · · . (9)

Obviously, the two sequences {αn} and {βn} can also be obtained by the following iterations

β0 = 1, αn = 1 +
λmax(A∗A)

β2
n

, βn+1 = 1 +
λmin(A∗A)

α2
n

, n = 0, 1, 2, · · · . (10)

Lemma 3. The sequences {αn} and {βn} have the following properties:

1. The sequence {αn} is convergent. Let α = limn→∞ αn. Then 1 ≤ α ≤ 1 + λmax(A∗A)
and α is the maximal positive solution of the following equation

(α − 1)

(

1 +
λmin(A∗A)

α2

)2

= λmax(A∗A). (11)

2. The sequence {βn} is convergent. Let β = limn→∞ βn. Then 1 ≤ β ≤ 1+λmin(A∗A) and
β is the minimal positive solution of the following equation

(β − 1)

(

1 +
λmax(A∗A)

β2

)2

= λmin(A∗A). (12)

3.
β ≤ α (13)

and we have
(α − 1)β2 = λmax(A∗A), (β − 1)α2 = λmin(A∗A). (14)

Proof. First prove that {αn} is monotone decreasing and is bounded below by induction
on n. It is easy to see that 1 ≤ α1 ≤ α0. Now assume that 1 ≤ αn ≤ αn−1. Noting

that the function f(x) = 1 + λmax(A∗A)
(1+λmin(A∗A)/x2)2 is monotone increasing over (0, +∞), we have

1 ≤ f(αn) ≤ f(αn−1), that is, 1 ≤ αn+1 ≤ αn. The result is proved. Hence the sequence {αn}
is convergent. By 1 ≤ αn ≤ α0 = 1+λmax(A∗A), let n → ∞, we have 1 ≤ α ≤ 1+λmax(A∗A).
By (8), let n → ∞, we know that α satisfies Eq.(11).

Now we prove that α is the maximal positive solution of Eq.(11). For any positive solution
x of Eq.(11), we have x ≤ 1 + λmax(A∗A) = α0. By x = f(x) and the monotonicity of f(x),
x = f(x) ≤ f(α0) = α1. Proceeding in this way, we readily see that we can establish the
inequality x ≤ αn for n = 0, 1, 2, · · · by induction on n. Letting n → ∞, we have x ≤ α.

The results on {βn} are proved similarly.
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For (13) it is sufficient to prove that βn ≤ αn, n = 1, 2, 3, · · · by induction. Now letting
n → ∞ on both sides of the equalities (10), we can get (14).

In the sequel, we always use α, β in the meaning of Lemma 3.

Theorem 5. For the solution X of Eq.(1), we have

I +
1

α2
A∗A ≤ X ≤ I +

1

β2
A∗A. (15)

Proof. First show that
βI ≤ X ≤ αI. (16)

By Lemma 2, we have I ≤ X ≤ (1 + λmax(A∗A))I, in other words, β0I ≤ X ≤ α0I. By
X = I + A∗X−2A, we have X = I + A∗(I + A∗X−2A)−2A. Hence






1 +

λmin(A∗A)
(

1 + λmax(A∗A)
λ2

min
(X)

)2






I ≤ X ≤






1 +

λmax(A∗A)
(

1 + λmin(A∗A)
λ2

max
(X)

)2






I. (17)

Since that β0I ≤ X ≤ α0I implies β0 ≤ λmin(X) and λmax(X) ≤ α0, we have β1I ≤ X ≤ α1I
by (17). Applying this argument inductively, we see that βnI ≤ X ≤ αnI for all n. Now letting
n → ∞, we get βI ≤ X ≤ αI.

Again, by X = I + A∗X−2A, we have I + 1
λ2

max
(X)A

∗A ≤ X ≤ I + 1
λ2

min
(X)

A∗A. Noting

(16), we get(15).

Remark 1. (16) is proved in [9]. Obviously, (15) improves (16).

4. Iterative Methods

Lemma 4. Let
F (X) = I + A∗X−2A. (18)

Then
F ([βI, αI]) ⊆ [βI, αI]. (19)

Proof. If βI ≤ X ≤ αI, then

F (X) ≤ I +
λmax(A∗A)

λ2
min(X)

I ≤
(

1 +
λmax(A∗A)

β2

)

I = αI

and

F (X) ≥ I +
λmin(A∗A)

λ2
max(X)

I ≥
(

1 +
λmin(A∗A)

α2

)

I = βI,

that is βI ≤ F (X) ≤ αI.

Remark 2. By Lemma 4 and Brouwer’s fixed point theorem, we get that Eq.(1) has a solution
in [βI, αI] for every A ∈ Cn×n.

Theorem 6. If
β > 3

√

2λmax(A∗A), (20)

Then

1. Eq.(1) has a unique solution X and the solution satisfies βI ≤ X ≤ αI.
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2. The solution can be obtained by the following matrix sequence:

Xn+1 = I + A∗X−2
n A, n = 0, 1, 2, · · · (21)

for any X0 ∈ [βI, αI].

3. The estimates

‖Xn − X‖ ≤ qn

1 − q
‖X1 − X0‖, (22)

and

‖Xn − X‖ ≤ q

1 − q
‖Xn − Xn−1‖, (23)

hold where q = 2‖A∗A‖
β3 < 1.

Proof. Let

F (X) = I + A∗X−2A,

Ω = {X : βI ≤ X ≤ αI}

Obviously, Ω is a nonempty convex closed set and F (X) is continuous in Ω. By Lemma 4, we
know that F (Ω) ⊆ Ω.

We prove that F is a contraction operator on Ω. For X1, X2 ∈ Ω, we have

‖F (X1) − F (X2)‖
= ‖A∗(X−2

1 − X−2
2 )A‖

= ‖A∗[X−1
1 (X1 − X2)X

−2
2 + X−2

1 (X1 − X2)X
−1
2 ]A‖

≤ (‖X−1
1 (X1 − X2)X

−2
2 + X−2

1 (X1 − X2)X
−1
2 ‖)‖A∗A‖

≤ (‖X−1
1 ‖‖X−2

2 ‖ + ‖X−2
1 ‖‖X−1

2 ‖)‖A‖2‖X1 − X2‖

≤ 2‖A∗A‖
β3

‖X1 − X2‖

= q‖X1 − X2‖.

Noting that q = 2‖A∗A‖
β3 < 1, we know that F is a contraction operator. By Banach’s fixed

point principle[1], we get the theorem.

Theorem 7. (20) holds if and only if

1

2
λmax(A∗A) +

3

4
3

√

4λ2
max(A∗A) − 1 < λmin(A∗A) ≤ λmax(A∗A) < 4. (24)

Proof. We proceed in two steps.

(i) Prove that (24) is rational, in other words, there exists A ∈ Cn×n satisfying (24). It is
sufficed to prove

1

2
λmax(A∗A) +

3

4
3

√

4λ2
max(A∗A) − 1 < λmax(A∗A).

that is

λ
1

3

max(A∗A) + 2λ
− 2

3

max(A∗A) >
3
3
√

2
.
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Noting that λmax(A∗A) < 4, we have that 1
2λ

1

3

max(A∗A) 6= 2λ
− 2

3

max(A∗A). By geometric-mean
inequality, we have

λ
1

3

max(A∗A) + 2λ
− 2

3

max(A∗A) =
1

2
λ

1

3

max(A∗A) +
1

2
λ

1

3

max(A∗A) + 2λ
− 2

3

max(A∗A)

> 3
3

√

1

2
λ

1

3

max(A∗A) · 1

2
λ

1

3

max(A∗A) · 2λ
− 2

3

max(A∗A)

=
3
3
√

2
.

(ii) Now we prove that (24) ⇔ (20). Note that β is the minimal positive solution of the
following equation

(x − 1)

(

1 +
λmax(A∗A)

x2

)2

= λmin(A∗A). (25)

Let

f(x) = (x − 1)

(

1 +
λmax(A∗A)

x2

)2

− λmin(A∗A). (26)

Then

f ′(x) =

(

1 +
λmax(A∗A)

x2

)

λmax(A∗A)

x2

(

x2

λmax(A∗A)
+

4

x
− 3

)

. (27)

First prove (24) ⇒ (20). By geometric-mean inequality and λmax(A∗A) < 4, we have

x2

λmax(A∗A)
+

4

x
=

x2

λmax(A∗A)
+

2

x
+

2

x
≥ 3 3

√

4

λmax(A∗A)
> 3

as x > 0. Then f ′(x) ≥ 0 as x > 0. Thus, f(x) is monotone increasing over (0, +∞), and
therefore f(x) = 0 has a unique positive solution. Noting that

f( 3

√

2λmax(A∗A))

= ( 3

√

2λmax(A∗A) − 1)

(

1 +
3

√

λmax(A∗A)

4

)2

− λmin(A∗A)

=
1

2
λmax(A∗A) +

3

4
3

√

4λ2
max(A∗A) − 1 − λmin(A∗A) < 0

and f(∞) > 0, we get (20).
Second, we prove that (20) ⇒ (24). Assume, on the contrary, that

λmax(A∗A) < 4,
1

2
λmax(A∗A) +

3

4
3

√

4λ2
max(A∗A) − 1 ≥ λmin(A∗A)

or

λmax(A∗A) ≥ 4

For the first case, since that f(x) = 0 has a unique positive solution, f(x) is monotone
increasing over (0, +∞) and f( 3

√

2λmax(A∗A)) ≥ 0, then β ≤ 3

√

2λmax(A∗A), a contradiction
to (20).

For the second case, by

f(1) = −λmin(A∗A) ≤ 0
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and

f(2) =

(

1 +
λmax(A∗A)

4

)2

− λmin(A∗A) ≥ λmax(A∗A) − λmin(A∗A) ≥ 0,

we have 1 ≤ β ≤ 2 ≤ 3

√

2λmax(A∗A), a contradiction to (20).

Remark 3. By Theorem 6 and 7, we can easily get the following result in [9]: if λmax(A∗A) < 1
2 ,

then the statements 1, 2 and 3 in Theorem 6 hold.

Remark 4. The condition (24) has been found by M.Reurings[11], but the proof in [11] is very
complicated.

Theorem 8. If

4 < λmin(A∗A) ≤ λmax(A∗A) < (γ − 1)

(

1 +
λmin(A∗A)

γ2

)2

, (28)

where γ is a unique positive solution in (1, +∞) of the equation

2γ(γ − 1)2 = λmax(A∗A), (29)

then

1. Eq.(1) has a unique solution satisfying

ηI ≤ X ≤ ξI, (30)

where η ∈ (γ,
√

λmin(A∗A)) satisfies

(η − 1)(1 +
λmin(A∗A)

η2
)2 = λmax(A∗A) (31)

and

ξ = 1 +
λmin(A∗A)

η2
. (32)

2. The solution can be obtained by the following matrix sequence:

Xn+1 =
√

A(Xn − I)−1A∗, n = 0, 1, 2, · · · (33)

for any X0 ∈ [ηI, ξI].

3. The estimates

‖Xn − X‖ ≤ pn

1 − p
‖X1 − X0‖ (34)

and
‖Xn − X‖ ≤ p

1 − p
‖Xn − Xn−1‖ (35)

hold, where p = ‖A∗A‖
2η(η−1)2 < 1.

Proof. We proceed in seven steps.
(i) Prove that Eq.(29) in (1, +∞) has only a solution and the solution γ ∈ (2,

√

λmax(A∗A)).
Let h(x) = 2x(x−1)2−λmax(A∗A). By h′(x) = 2(x−1)(3x−1) > 0 as x ∈ (1, +∞) and h(2) =
4−λmax(A∗A) < 0, h(

√

λmax(A∗A)) =
√

λmax(A∗A)(2
√

λmax(A∗A)−1)(
√

λmax(A∗A)−2) >
0, we get the statement.
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(ii) Prove that (31) has one solution η ∈ (γ,
√

λmax(A∗A)). Let g(x) = (x − 1)(1 +
λmin(A∗A)

x2 )2 − λmax(A∗A). By

g(γ) > 0,

g(
√

λmax(A∗A)) = (
√

λmax(A∗A) − 1)(1 + λmin(A∗A)
λmax(A∗A) )

2 − λmax(A∗A)

≤ 4(
√

λmax(A∗A) − 1) − λmax(A∗A)

= −(2 −
√

λmax(A∗A))2 < 0

and the continuity of g(x), we get the statement.
(iii) Prove that the solution η ∈ (γ,

√

λmax(A∗A)) for Eq.(31) is unique and η ≤
√

λmin(A∗A).
By computation, we have

g′(x) =
(

1 + λmin(A∗A)
x2

)

1
x3

(

x3 − 3λmin(A∗A)x + 4λmin(A∗A)
)

=
(

1 + λmin(A∗A)
x2

)

1
x3

(

x(x2 − λmin(A∗A)) + 2λmin(A∗A)(2 − x)
)

.

Obviously, g′(x) < 0 as x ∈ (2,
√

λmin(A∗A)]. Then g(x) is monotone decreasing over

(2,
√

λmin(A∗A)). For any x ∈ [
√

λmin(A∗A),
√

λmax(A∗A)], we have

g(x) ≤ (
√

λmax(A∗A) − 1)(1 +
λmin(A∗A)

(
√

λmin(A∗A))2
)2 − λmax(A∗A)

= −(2 −
√

λmax(A∗A))2 < 0.

Then
γ <

√

λmin(A∗A)

and η ∈ (γ,
√

λmin(A∗A)) is unique.

(iv) Prove p < 1. By 2 < γ < η <
√

λmin(A∗A), we have 2η(η − 1)2 > 2γ(γ − 1)2 =
λmax(A∗A).

(v) Prove η ≤ ξ. Note that 2 < η <
√

λmin(A∗A) and ξ = 1 + λmin(A∗A)
η2 > 2. By (31) and

(32), we get ξ2(η−1) = λmax(A∗A) ≥ λmin(A∗A) = η2(ξ−1). Therefore, ξ2(η−1) ≥ η2(ξ−1),
that is (ξ − η)ξη(1 − 1

ξ − 1
η ) ≥ 0. Noting that η > 0, ξ > 0 and 1 − 1

ξ − 1
η > 0, we get η ≤ ξ.

Let
G(X) =

√

A(X − I)−1A∗, X ∈ Γ = [ηI, ξI]. (36)

(vi) Prove that G(Γ) ⊆ Γ. For all X ∈ Γ, we have 1
ξ−1I ≤ (X − I)−1 ≤ 1

η−1I. Then

ηI =

√

λmin(A∗A)

ξ − 1
≤
√

A(X − I)−1A∗ ≤
√

λmax(A∗A)

η − 1
I = ξI,

that is, G(X) ∈ Γ.
(vii) Prove that G : Γ → Γ is a p-contraction. For Y1, Y2 ∈ Γ, let P1 = A(Y1 − I)−1A∗ and

P2 = A(Y2 − I)−1A∗. Then P1 ≥ η2I and P2 ≥ η2I. By a classical result(see Theorem X.3.8
in[2],p.304), we have

‖G(Y1) − G(Y2)‖ = ‖
√

P1 −
√

P2‖
≤ 1

2η‖P1 − P2‖
≤ 1

2η‖A‖2‖(Y1 − I)−1 − (Y2 − I)−1‖
= 1

2η‖A‖2‖(Y1 − I)−1(Y2 − Y1)(Y2 − I)−1‖
≤ 1

2η‖A‖2‖(Y1 − I)−1‖‖Y2 − Y1‖‖(Y2 − I)−1‖
≤ ‖A‖2‖

2η(η−1)2 ‖Y1 − Y2‖
≤ p‖Y1 − Y2‖.
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By Banach’s fixed point theorem [1] we obtain the convergence and the error estimates.

5. Numerical Examples

We now use simple numerical examples to illustrate our results. All computations were
performed using MATLAB, version 6.0.

Example 1. Consider Eq.(1) with

A =

(

0 6
√

2
8 0

)

.

It is easy to know λmax(A ∗ A) = 72, λmin(A ∗ A) = 64. Let us consider diagonal positive
definite solutions. Let X = diag(x1, x2). Then we have

{

x1 = 1 + 64/x2
2,

x2 = 1 + 72/x2
1.

The system has three positive solutions. One of them is x1 = β, x2 = α. Hence we know that
with α, β the inequalities (15) and (16) in Theorem 5 are sharp. By computation, we can get
at least the following three solutions:

X =

(

1.012619 0
0 71.216726

)

,

(

4.827975 0
0 4.088890

)

,

and
(

62.720012 0
0 1.018303

)

.

Example 2. Consider Eq.(1) with

A =





0.12525491782700 −0.76991965836417 0.46747345506882
0.88788502515975 0.17638000655582 0.20977698164743

−0.35556154646883 0.40861155116318 0.81618623751850





By computation, we get

λmax(A∗A) = 1, λmin(A∗A) = 0.75,
α = 1.59722868268156, β = 1.29398627960329,
q = 0.92308348565281.

The matrix A satisfies the conditions of Theorem 6 and 7. Then Eq.(1) has a unique solution
satisfying

βI ≤ X ≤ αI

Choose X0 = 1.4I. With the iterative method (21), after 178 iterations we obtain the following
result

X178 =





1.52381998957013 −0.05077203374296 −0.00391727224933
−0.05077203374296 1.34137319253121 0.01866946845041
−0.00391727224933 0.01866946845041 1.44272036829284





whose error ‖X178 − X‖ is less than 10−14.



418 Y.H. ZHANG

Example 3. Consider Eq.(1) with

A =





2.03480656930046 −7.76558407441603 −2.56864825089238
5.29358053743931 3.34249802779581 −5.41476349037101
5.85290165142532 −0.08493435128064 5.49360438671923



 .

By computation, we get λmax(A∗A) = 72 and λmin(A∗A)=64, γ=4, and η=4.08889007016108,
ξ=4.82797510390027. The matrix A satisfies the conditions of Theorem 8. Then Eq.(1) has a
unique solution X satisfying

ηI ≤ X ≤ ξI

Choosing X0 = 4.2I, 202 iterations with the iterative method (33) yield

X202 =





4.50211434339476 −0.09933738565402 −0.10626059612285
−0.09933738565402 4.44069140329871 0.01187341828058
−0.10626059612285 0.01187341828058 4.38964314270634





with the error ‖X202 − X‖ less than 10−14.
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