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Abstract

In this paper we propose the finite difference method for the forward-backward heat
equation. We use a coarse-mesh second-order central difference scheme at the middle
line mesh points and derive the error estimate. Then we discuss the iterative method
based on the domain decomposition for our scheme and derive the bounds for the rates of
convergence. Finally we present some numerical experiments to support our analysis.
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1. Introduction

In this paper, we consider the following boundary value problem of a forward-backward
parabolic equation:















a(x)ut − uxx = f(x, t), (x, t) ∈ Ω = (−1, 1) × (0, 1),
u(x, 0) = 0, 0 ≤ x ≤ 1,
u(x, 1) = 0, −1 ≤ x ≤ 0,
u(1, t) = 0, u(−1, t) = 0, 0 < t < 1,

(1.1)

where a(x) > 0 for x > 0, a(x) < 0 for x < 0 and a(0) = 0. For example, a(x) = x or a(x) = xm

with m the odd integer. The problem (1.1) arises in a variety of applications such as randomly
accelerated particle problem and fluid flow near a boundary where separation occurs, see [1, 2]
for the details. So far there are several numerical approach to this problem, for example, the
finite difference method[1], least square method[5] and Galerkin finite element method[3, 4, 7, 8].

The purpose of this paper is to present a finite difference scheme to equation (1.1). Unlike
the standard way in [1], we use a coarse mesh second-order central difference scheme at the mesh
points lie on the middle line x = 0, 0 < t < 1. We prove the error estimates O(τ +h2+H3) with
time mesh size τ and space mesh size h and coarse mesh size H . Then we discuss the iterative
method based on the domain decomposition method for our scheme and obtain bounds of the
convergent rate with 1−H , which is better than that 1−h in [1]. In the last section we present
some numerical results to support our analysis.

2. The Difference Scheme

We first specify the grids. Let h = 1/M and xi = ih for i = 0,±1,±2, · · · ,±M . Let
τ = 1/N and tj = jτ for j = 0, 1, · · · , N .
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We use the backward and forward difference scheme on domain x > 0 and x < 0 respectively
and second order central difference scheme on the line x = 0 with coarse mesh H = m0h for
some given positive integer m0. Denote zji (−M + 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1) is the
approximation solution for the exact solution at point (ih, jτ). Then



























ai
zj+1
i − zji

τ
−

zj+1
i−1 − 2zj+1

i + zj+1
i+1

h2
= f j+1

i , 1 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 2,

z0
i = 0, 1 ≤ i ≤ M − 1,

zjM = 0, 1 ≤ j ≤ N − 1;

(2.1)



























ai
zj+1
i − zji

τ
−

zji−1 − 2zji + zji+1

h2
= f ji , −M + 1 ≤ i ≤ −1, 1 ≤ j ≤ N − 1,

zNi = 0, −M + 1 ≤ i ≤ −1,

zj−M = 0, 1 ≤ j ≤ N − 1;

(2.2)

and

−
zjm0

− 2zj0 + zj−m0

H2
= f j0 , 1 ≤ j ≤ N − 1. (2.3)

Here ai = a(ih) and f ji = f(ih, jτ). For m0 = 1, it is the same method proposed in [1].
It is convenient to introduce the set of all mesh points by N ,

N = {(ih, jτ) | − M + 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1 }.

Further we split N = Nw ∪ Nv ∪ Nψ into three disjoint subsets as follows,

Nw = {(ih, jτ) | 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1 },

Nv = {(ih, jτ) | − M + 1 ≤ i ≤ −1, 1 ≤ j ≤ N − 1 },

Nψ = {(0, jτ) | 1 ≤ j ≤ N − 1 }.

We write the linear system (2.1)-(2.3) in the matrix form PZ = F with

P =





Avv 0 Avψ

0 Aww Awψ

Avψ Awψ Aψψ



 (2.4)

The vector Z = (Zv, Zw, Zψ)T with

Zv = (z1
−M+1, z

2
−M+1, · · · , z1

−1, · · · , zN−1
−1 )T ,

Zw = (z1
1 , z

2
1 , · · · , z1

M−1, · · · , zN−1
M−1)

T ,

and Zψ = (z1
0 , z

2
0 , · · · , zN−1

0 )T . And F the vector defined on the mesh points N of the function
f(x, t).

Let u be the exact solution of problem (1.1). Denote the error

Ej
i = u(ih, jτ) − zji , (ih, jτ) ∈ N .

We use the maximum norm
‖E‖N = max

(ih,jτ)∈N
|Ej
i |.

Now we will prove the following error estimates.
Theorem 2.1. Suppose that 1

2 |∂
2u/∂t2| and 1

12 |∂
4u/∂x4| are bounded by constant C0 on Ω̄,

the closure of Ω. Then

‖E‖N ≤
1

2
C0(τ + h2 + H3). (2.5)
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Proof. It is easy to see that from Taylor’s series, we have the truncation error in (2.1)-(2.3)

Rj
i = (PE)ji =







Kj
i (τ + h2), (ih, jτ) ∈ Nv ∪ Nw,

Kj
0H2, (0, jτ) ∈ Nψ,

(2.6)

where |Kj
i | ≤ C0 and |Kj

0 | ≤ C0. As in [1], it is not difficult to see that the matrix P has positive
diagonal entries, nonpositive offdiagonal entries, and is irreducibly diagonally dominant. Hence
P is an M matrix[10]. That is all the entries of the inverse of matrix P are nonnegative. It is
equivalent to the maximun principle in the finite difference method and it is useful to derive
the error estimates.

Borrow the trick of [9], we construct

αji = 1 −
i2

M2
, βji = H(1 −

|i|

M
) (2.7)

for −M +1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1. Obviously |αji | ≤ 1 and |βji | ≤ H . Then we can verify
that

(Pα)ji ≥ 2, (2.8)

and

(Pβ)ji ≥ 0, i 6= 0 (2.9)

(Pβ)j0 = −
H(1 − m0

M ) − 2H + H(1 − m0

M )

H2
= 2. (2.10)

Putting

ξji =
1

2
C0(τ + h2)αji +

1

2
C0H

2βji , (2.11)

then we can prove

(P(ξ ± E))ji ≥ 0.

Thus by the M matrix property of P , we have

|Ej
i | ≤ ξji ≤

1

2
C0(τ + h2) +

1

2
C0H

3, −M + 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1.

It completes the proof.
This result is not surprising for the presence of the H3 term. In [9], they first derive

the similar result for the numerical approximation of heat equation by domain decomposition
method–an explicit forward difference formula on the coarse mesh at the interface mesh points,
and implicit backward difference formula on the fine mesh in sub-domains. So they weaken the
condition τ ≤ 1

2h2 to τ ≤ 1
2H2. Here we use the coarse mesh to improve the convergent rate of

the iterative algorithm discussed in next section.

3. Iterative Method

In this section, we discuss the iterative method based on the domain decomposition method
to our scheme (2.1)-(2.3). To express the idea, we use the matrix form (2.4). We first give an

initial guessing value at grid points on the line x = 0 with Z0
ψ = (z1,0

0 , z2,0
0 , · · · , zN−1,0

0 )T , then
we solve the problem separately in domain x > 0 and x < 0 by

AvvZ
1
v = Fv − AvψZ0

ψ, (3.1)

AwwZ1
w = Fw − AwψZ0

ψ, (3.2)

and update Z1
ψ by

AψψZ1
ψ = Fψ − AvψZ1

v − AwψZ1
w. (3.3)
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Repeating above procedure we have the following iterative algorithm. For initial guess value
φj,0, (1 ≤ j ≤ N − 1), let k = 1, 2, · · · , we solve the two subsystems as follows:











































ai
zj+1,k
i − zj,ki

τ
−

zj+1,k
i−1 − 2zj+1,k

i + zj+1,k
i+1

h2
= f j+1

i , 1 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 2,

zj,k0 = φj,k−1, 1 ≤ j ≤ N − 1,

z0,k
i = 0, 1 ≤ i ≤ M − 1,

zj,kM = 0, 1 ≤ j ≤ N − 1;
(3.4)











































ai
zj+1,k
i − zj,ki

τ
−

zj,ki−1 − 2zj,ki + zj,ki+1

h2
= f ji , −M + 1 ≤ i ≤ −1, 1 ≤ j ≤ N − 1,

zj,k0 = φj,k−1, 1 ≤ j ≤ N − 1,

zN,ki = 0, −M + 1 ≤ i ≤ −1,

zj,k−M = 0, 1 ≤ j ≤ N − 1;

(3.5)

and

φj,k =
1

2

(

zj,km0
+ zj,k−m0

+ H2f j0

)

, 1 ≤ j ≤ N − 1. (3.6)

The linear system (3.4) is easy to solve. We only need to solve a tridiagonal linear system

for (z1,k
1 , z1,k

2 , · · · , z1,k
M−1), then for (z2,k

1 , z2,k
2 , · · · , z2,k

M−1) and so on. Thus we need solve N − 1

tridiagonal linear systems for (3.4). Equation (3.5) is the same as (3.4) but from zN−1,k to z1,k.
Remark 3.1. We can also use the relaxation method [1], replacing (3.3) by







AψψZ̃1
ψ = Fψ − AvψZ1

v − AwψZ1
w,

Z1
ψ = ωZ0

ψ + (1 − ω)Z̃1
ψ, 0 < ω ≤ 1.

(3.7)

In [11], they proposed an algorithm which is similar to above algorithm by the non-overlap
domain decomposition method. They derived some convergent rate in some different norm.

We next derive the convergent rate for the iterative algorithm (3.4)-(3.6).
Theorem 3.1. Let φj,k (1 ≤ j ≤ N−1, k = 0, 1, 2, · · · ) be the solutions of equations (3.4)-(3.6),
zj0 (1 ≤ j ≤ N − 1) be the solution of equations (2.1)-(2.3). Then

max
1≤j≤N−1

(|zj0 − φj,k+1|) ≤ (1 − H) max
1≤j≤N−1

(|zj0 − φj,k|). (3.8)

So φj,k converge to zj0 with the rate 1 − H as k → ∞.
Proof. Let the iteration error

εj,ki = zji − zj,ki , −M ≤ i ≤ M, i 6= 0, 1 ≤ j ≤ N − 1.

Then the error εj,ki satisfies:










































ai
εj+1,k
i − εj,ki

τ
−

εj+1,k
i−1 − 2εj+1,k

i + εj+1,k
i+1

h2
= 0, 1 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 2,

εj,k0 = zj0 − φj,k−1, 1 ≤ j ≤ N − 1

ε0,k
i = 0, 1 ≤ i ≤ M − 1,

εj,kM = 0, 1 ≤ j ≤ N − 1;

(3.9)
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









































ai
εj+1,k
i − εj,ki

τ
−

εj,ki−1 − 2εj,ki + εj,ki+1

h2
= 0, −M + 1 ≤ i ≤ −1, 1 ≤ j ≤ N − 1,

εj,k0 = zj0 − φj,k−1, 1 ≤ j ≤ N − 1

εN,ki = 0, −M + 1 ≤ i ≤ −1,

εj,k−M = 0, 1 ≤ j ≤ N − 1;

(3.10)

and

zj0 − φj,k =
1

2

(

εj,km0
+ εj,k−m0

)

, 1 ≤ j ≤ N − 1. (3.11)

Denote
Sk = max

1≤j≤N−1
(|zj0 − φj,k|).

For the error linear system (3.9), we again write (3.9) in the matrix form GΥk = R. Here

Υk = (ε1,k
1 , ε2,k

1 , · · · , ε1,k
M−1, · · · , εN−1,k

M−1 )T

and

R = (
z1
0 − φ1,k−1

h2
, · · · ,

zN−1
0 − φN−1,k−1

h2
, 0, 0, · · · , 0)T .

Similar to the proof of theorem 2.1, the matrix G also has positive diagonal entries, non-
positive off-diagonal entries, and is irreducibly diagonally dominant. So G is M matrix. We
construct

ηj,ki = Sk−1(1 − |i|/M), 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1.

Thus we can obtain

(G(η ± ε))j,ki ≥ 0, 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1.

So we have the inequality

|εj,ki | ≤ ηj,ki , 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1. (3.12)

As the same way we obtain

|εj,ki | ≤ ηj,ki , −M + 1 ≤ i ≤ −1, 1 ≤ j ≤ N − 1. (3.13)

Finally from the relation (3.11), we get for all 1 ≤ j ≤ N − 1

|zj0 − φj,k| ≤ 1
2

(

|εj,km0
| + |εj,k−m0

|
)

≤ 1
2

(

Sk−1(1 − |m0|/M) + Sk−1(1 − | − m0|/M)
)

≤ (1 − H)Sk−1.

(3.14)

It is the result (3.8) and it completes the proof.
Remark 3.2. From theorem 2.1, we would expect to choose τ ≈ h2 ≈ H3. If such choices
are made, H3 = h2 for example, then we will see the convergent rate of iterative method is
1 − h2/3. It is better than 1 − h in [1].
Remark 3.3. We can also use different mesh size in Nv and Nw parts as long as H = m1h1 =
m2h2 for some integers m1 and m2. We refer to the paper of [12] for parabolic problems.

4. Numerical Experiments

In this section we present some numerical results for the convergent rate of the iterative
method (3.4)-(3.6) with a(x) = x. From the equation (3.9)-(3.11), we test the limit of

r = lim
k→∞

max1≤j≤N−1(|z
j
0 − φj,k+1|)

max1≤j≤N−1(|z
j
0 − φj,k|)
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for the random initial error z0
j − φj,0. See Table 1 and Table 2. We only report the case for

fixed time mesh size N = 10. The numerical result is the same as the case m0 = 1 in [1] and is
confirmed by our analysis in our paper r ≈ 1 − H .

Table 1: The convergent rate of iterative method for N=10
r m0 = 1 m0 = 2 m0 = 3 m0 = 4 m0 = 5

M = 10 0.8940 0.7886 0.6841 0.5810 0.4797

M = 20 0.9470 0.8941 0.8413 0.7887 0.7363

M = 30 0.9647 0.9294 0.8941 0.8589 0.8237

M = 40 0.9735 0.9470 0.9205 0.8941 0.8677

M = 50 0.9788 0.9576 0.9364 0.9153 0.8941

M = 60 0.9823 0.9645 0.9470 0.9294 0.9117

Table 2: The convergent rate of iterative method for H=1/10

m0 = 1, M = 10 m0 = 5, M = 50 m0 = 15, M = 150 m0 = 20, M = 200

r 0.8940 0.8941 0.8941 0.8941
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