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Abstract

In this paper, a class of two-step continuity Runge-Kutta(TSCRK) methods for solving
singular delay differential equations(DDEs) is presented. Analysis of numerical stability of
this methods is given. We consider the two distinct cases: (i)τ ≥ h, (ii)τ < h, where the
delay τ and step size h of the two-step continuity Runge-Kutta methods are both constant.
The absolute stability regions of some methods are plotted and numerical examples show
the efficiency of the method.
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1. Introduction

Consider the following delay differential equations (DDEs):
{

y′(x) = f(x, y(x), y(x − τ(x))) a ≤ x ≤ b

y(x) = ϕ(x) xmin ≤ x ≤ a
(1.1)

where y, f , ϕ are n-vector functions, ϕ(x) is initial value function, τ(x) ≥ 0 is delay function.

Definition 1.1. DDEs (1.1) is singular at the point xα if the delay function satisfies τ(xα) = 0.
If there is no such point xα ∈ [a b], then the DDEs (1.1) is non-singular.

In the numerical solution of DDEs (1.1) by a continuous explicit Runge-Kutta method, we
suppose that we have an approximation yn to y(x) at xn and wish to compute an approximation
at xn+1 = xn + h. For i = 1, 2, · · · , s, the stages fni = f(xni, yni, ỹ(xni − τ(xni))) are defined
in terms of xni = xn + cih and 0 ≤ ci ≤ 1. Continuous explicit Runge-Kutta method is















yni = yn + h
i−1
∑

j=1

aijfni

yn+σ = ỹ(xn + σh) = yn + h
s

∑

i=1

bi(σ)fni

(1.2)

When DDE is singular or has a vanishing delay, a delay may fall in the span of the current step
where there is no available approximation for the solution value at the delayed argument. This
situation can also arise particularly at relaxed tolerance when the delay does not vanishing but
actual optimal step size is larger than the size of the delay. In such case, xni − τ(xni) > xn

for some xni. Since no approximation for ỹ(xni − τ(xni)) is available, the explicit Runge-Kutta
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formulae (1.2) become implicit. For solving singular delay differential equations several authors
have adopt the iteration scheme [1], [3]. However iteration is a computationally expensive
approach. In this paper we relax the effect of delay when computing the Runge-Kutta stages in
the span of the current step and construct a class of two-step continuity Runge-Kutta (TSCRK)
methods. This class of methods keeps the explicit process of computing the Runge-Kutta stages
and avoids iteration, then reduces the computing workload. Numerical stability analysis of the
methods is given, and the regions of absolute stability for this class of methods are plotted.
The numerical results show the efficiency of the TSCRK methods. The vanishing delay can
be handled automatically by the methods so the users do not need to know where the delay
vanishes.

2. TSCRK Methods

For the numerical solution of DDEs (1.1) we construct the TSCRK methods. These methods
have the form























yni = αiyn−1 + (1 − αi)yn + h
s

∑

j=1

(aijfn−1j + bijfnj)

yn+σ = Q(xn + σh) = θ̃(σ)yn−1 + (1 − θ̃(σ))yn

+ h
s

∑

i=1

(vi(σ)fn−1i + wi(σ)fni)

(2.1)

where fni = f(xni, yni, Q(xni − τ(xni))), Q(xn + σh) is an approximation to y(xn + σh),
0 ≤ σ ≤ 1, Q(xn + h) = yn+1, Q(xn) = yn, xni = xn + cih, bij = 0, for j ≥ i. Assume that

c1 ≡ 0. θ̃(σ), vi(σ), wi(σ) are polynomials in σ of degree p∗, p∗ ≥ p, p is the order of the
methods. θ̃(0) = vi(0) = wi(0) = 0, θ̃(1) = θ, vi(1) = vi, wi(1) = wi, i = 1, · · · , s. We define
Q(x) = ϕ(x) when x ≤ a. Methods (2.1) are not self-starting and we use the continuous RK
method of the same order as the TSCRK methods (2.1) to compute the required approximations,
y1, y01, y02, · · · , y0s and yσ, 0 ≤ σ ≤ 1. When delay falls in the first interval [x0, x1], we use
the iteration scheme constructed in [1] to compute the approximations. When DDEs is singular
or has a vanishing delay, a delay may fall in the current step. We relax the effect of delay
when computing the Runge-Kutta stages in the span of the current step and assume that
w2(σ) ≡ w3(σ) ≡ · · · ≡ ws(σ) ≡ 0, for all 0 ≤ σ ≤ 1, we have























yni = αiyn−1 + (1 − αi)yn + h
s

∑

j=1

(aijfn−1j + bijfnj)

yn+σ = Q(xn + σh) = θ̃(σ)yn−1 + (1 − θ̃(σ))yn

+ h
s

∑

i=1

vi(σ)fn−1i + hw1(σ)fn1

(2.2)

Methods (2.2) keep the explicit process when solving singular delay differential equations and
vanishing delay differential equations. Introducing the vectors
zn,σ = z(xn, σh) = (y(xn + σh), y(xn), B(Φ1, y(xn)), · · · , B(Φs, y(xn)))T

zn = z(xn, h) = (y(xn + h), y(xn), B(Φ1, y(xn)), · · · , B(Φs, y(xn)))T

un,σ = (yn+σ, yn, yn,1, · · · , yn,s)
T

un = (yn+1, yn, yn,1, · · · , yn,s)
T

Then the methods (2.1) can be written in the form
{

u0,σ = Ψ(σh)
un+1,σ = Run + hΦ̄(xn+1, un, σ; Q(x))

(2.3)

Here Ψ(σh) specifies the ”starting procedure”, the matrix R is given by

R =





1 − θ̃(σ) θ̃(σ) 0

1 0 0

1 − α α 0



 , 1 =











1
1
...
1











, α =











α1

α2

...
αs











, and the increment function
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Φ̄(x, u, σ; Q(x)) is implicitly defined by (2.1).
The method (2.3) is stable if ‖Rn‖ is uniformly bounded. Namely, the methods (2.3) is

stable if −1 < θ̃(σ) ≤ 1, for all 0 ≤ σ ≤ 1[5]. This will be assumed throughout the paper.

Definition 2.1. The local truncation error of the method (2.3) is defined by
{

d0,σ = z0,σ − Ψ(σh)
dn+1,σ = zn+1,σ − Rzn − hΦ̄(xn+1, zn, σ; y(x)) 0 ≤ σ ≤ 1

(2.4)

Denoting F = (1 + θ̃(σ))−1





1
1
1



 (1, θ̃(σ), 0, · · · , 0), we give the definition of order[3] of

the method (2.3).

Definition 2.2. The method (2.3) is of order p (consistent of order p), if for all problems (1.1)
with p times continuously differentiable f , the local truncation error satisfies

dn,σ = O(hp), Fdn+1,σ = O(hp+1) for all 0 ≤ σ ≤ 1 (2.5)

If we assume f is p-times continuously differentiable then, in general, Ψ(σh), Φ̄(x, z, σ; y(x)),
z(x, σh) and z(x, h) are also smooth, so that the local truncation error (2.4) can be expended
into a Taylor series in h:

d0,σ = γ0(σ) + γ1(σ)h + · · · + γp−1(σ)hp−1 + O(hp)
dn+1,σ = δ0(xn+1, σ) + δ1(xn+1, σ)h + · · · + δp(xn+1, σ)hp + O(hp+1)

(2.6)

So if the TSCRK methods (2.3) are consistent of order p then Fδp(x, σ) = 0, for all 0 ≤ σ ≤ 1.

Theorem 2.1. [6] The method (2.1) is consistent of order p if






























σρ(t) = θ̃(σ)(−1)ρ(t) +
s

∑

i=1

(vi(σ)(e−1Φi)
′(t) + wi(σ)(Φi)

′(t))

for ρ(t) ≤ p

Φi(t) = αi(−1)ρ(t) +
s

∑

j=1

(aij(e
−1Φi)

′(t) + bij(Φi)
′(t))

for ρ(t) ≤ p − 1, i = 1, · · · , s

(2.7)

where e−1(t) = (−1)ρ(t), for all trees t ∈ T .
When solving singular delay differential equations or vanishing delay differential equations

we assume w2(σ) ≡ w3(σ) ≡ · · · ≡ ws(σ) ≡ 0, for all 0 ≤ σ ≤ 1. We can construct s-stage
TSCRK methods of order p and stage-order q by using the order condition equations (2.7). After
satisfying the appropriate order and stage conditions we choose the remaining free parameters
trying to minimize the norm of the coefficients of the principal part of the local truncation
error. Then we choose the other free parameters to maximize the area of absolute stability.
When solving nonvanishing delay differential equations we construct continuous methods based
on the TSRK methods constructed in [2]. The coefficients of TSCRK methods for singular
delay differential equations of s = 2, p = 2, q = 1; s = 2, p = 2, q = 2; s = 3, p = 3, q = 2 and
s = 4, p = 4, q = 4 are listed in Table 2.1, Table 2.2, Table 2.3 and Table 2.4 respectively. We
assume θ̃(σ) ≡ 0, 0 ≤ σ ≤ 1, when construct the TSCRK methods.

The coefficients of the TSCRK methods for nonvanishing delay differential equations with
s = 2, p = 2, q = 1; s = 3, p = 3, q = 2 are listed in Table 2.5 and Table 2.6 respectively.

We assume that there is no derivative discontinuities in DDEs (1.1), and f satisfies a Lips-
chitz condition

‖f(x, ỹ, z̃) − f(x, y, z)‖ ≤ L max(‖ỹ − y‖, ‖z̃ − z‖)

We use the continuous RK method with the order same as the TSCRK methods (2.1) or methods
(2.2) to start the integration, i.e., ‖d0,σ‖ = O(hp), for all 0 ≤ σ ≤ 1.
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Theorem 2.2. [6] Consider a stable method (2.1) or (2.2) and assume that the local truncation
error satisfies (2.6) with δp(x) continuously differentiable. If method (2.1) or (2.2) is consistent
of order p and the step size h used satisfies (2.8) then ‖y(x)−Q(x)‖ = O(hp), for all a ≤ x ≤ b.

hL max
i

(

s
∑

j=1

|aij | +

i−1
∑

j=1

|bij |) ≤ 1 (2.8)

Table 2.1: The TSCRK method with s = 2, p = 2, q = 1 (method a)

a11 = 0.12 a12 = 0.28 a21 = 0.465

a22 = 0.21 b21 = 0.725 α1 = 0.4

α2 = 0.4 w1 = 1.405325 w2 = 0

w1(σ) = 153σ/169 + σ2/2 w2(σ) = 0 v1 = −0.5

v1(σ) = −σ2/2 v2 = 0.094674556 v2(σ) = 16σ/169

Table 2.2: The TSCRK method with s = 2, p = 2, q = 2 (method b)

a11 = 0.2 a12 = 0.2 a21 = −0.55

a22 = −0.11 b21 = 1.56 α1 = 0.4

α2 = −0.1 w1 = 1.61 w2 = 0

w1(σ) = 61σ/100 + σ2 w2(σ) = 0 v1 = −0.5

v1(σ) = −σ2/2 v2 = −0.11 v2(σ) = 39σ/100 − σ2/2

Table 2.3: The TSCRK method with s = 3, p = 3, q = 2 (method c)

a11 = 0.22 a12 = −0.14 a13 = 0.22

a21 = 0.43 a22 = −0.97 a23 = 0.62

a31 = 0.66 a32 = −1.23 a33 = 0.64

b21 = 0.56 b31 = 0.14 b32 = 0.14

α1 = 0.3 α2 = 0.14 v2(σ) = −2σ2
− 4σ3/3

w1 = 1.48 w2 = 0 v3(σ) = σ + 7133σ2/10000 − 799σ3/30000

v1 = 1.1667 v2 = −3.3333 v1(σ) = σ2/2 + 2σ3/3

v3 = 1.6867 α3 = 0.15 w3 = 0

w2(σ) = 0 w3(σ) = 0 w1(σ) = 7867σ2/10000 + 6933σ3/10000

Table 2.4: The TSCRK method with s = 4, p = 4, q = 4 (method d)

a11 = 0.058833 a12 = 0.23533 a13 = 0

a14 = 0.058833 a21 = −0.10717 a22 = 1.82133

a23 = −3 a24 = 1.871533 a31 = −0.334271

a32 = 3.609792 a33 = −5.9875 a34 = 3.121979

a41 = −0.67667 a42 = 6.12 a43 = −9.85333

a44 = 4.48 b21 = 0.2713 b31 = 0.45

b32 = 0.2 b41 = 0.71 b42 = 0.28

b43 = 0.2 α1 = 0.353 α2 = 0.357

α3 = 0.310 α4 = 0.26 v1(σ) = −σ2/6 − 2σ3/3 − 2σ4/3

w1 = 1.81 w2 = 0 v2(σ) = 2σ2 + 20σ3/3 + 4σ4

w3 = 0 w4 = 0 v3(σ) = −16σ2/3 − 32σ3/3 − 16σ4/3

v1 = −1.5 v2 = 12.6667 v4(σ) = 44σ/25 + 93σ2/100 + 17σ3/3 + σ4

v3 = −21.33333 v4 = 9.35667 w1(σ) = −19σ/25 + 257σ2/100 − σ3 + σ4

w2(σ) = 0 w3(σ) = 0 w4(σ) = 0
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Table 2.5: The TSCRK method with s = 2, p = 2, q = 1 (method e)

a11 = 0.692385 a12 = 0.219172 v1(σ) = 219σ/2000 − 1363σ2/5000

a22 = 0.235132 b21 = 0.730872 α1 = 0.911557

α2 = 0.601892 w1 = 0.892098 w2(σ) = 219σ/2000 + 1137σ2/5000

v1 = −0.163152 w2 = 0.336848 w1(σ) = 737σ/1000 + 1551σ2/10000

a21 = 0.63588 v2 = −0.065794 v2(σ) = 11σ/250 − 1099σ2/10000

Table 2.6: The TSCRK method with s = 3, p = 3, q = 2 (method f)

a11 = 0.26445 a12 = −0.50751 a13 = 0.264446

a21 = 0.24029 a22 = −0.63147 a23 = 0.597963

a31 = 0.09693 a32 = −0.57815 w3(σ) = 0.0000219σ − 0.5σ2 + 0.61586σ3

b21 = 0.39233 b31 = 0.582927 w2(σ) = 1.926159σ2
− 1.305112σ3

α1 = 0.02138 α2 = 0.099 v2(σ) = 0.000175σ − 0.22152σ2
− 0.32178σ3

w1 = 0.0867 w2 = 0.621047 v3(σ) = −0.00013σ + 0.60393σ2
− 0.08228σ3

v1 = 0.19797 v2 = −0.54313 v1(σ) = 0.07384σ2 + 0.124195σ3

v3 = 0.52151 α3 = 0.353437 w3 = 0.115883

b32 = 0.26228 a33 = 0.98944 w1(σ) = σ − 1.882405σ2 + 0.9691199σ3

3. Stability Analysis of the TSCRK Methods

We apply the methods (2.1) to the linear delay differential test equation

y′(x) = λy(x) + µy(x − τ), x ≥ a (3.1)

where λ, µ are complex numbers, τ = (N + η)h, 0 ≤ η < 1, N is a natural number. When
delay falls in the span of the current step, N = 0. If η ≤ ci, we define δi = 1, γi = 0, εi =
ci − η. Alternatively, if η > ci, we define δi = 0, γi = 1, εi = ci − η + 1, i = 1, · · · , s. Let
δ = [δ1, · · · , δs]

T , γ = [γ1, · · · , γs]
T , ∆ = diag(δ1, · · · , δs), Γ = diag(γ1, · · · , γs), W (ζ) =

[wj(εi)], V (ζ) = [vj(εi)], i, j = 1, · · · , s. θ̃(ζ) = diag(θ̃(ε1), · · · , θ̃(εs)), vT = [v1, · · · , vs], wT =

[w1, · · · , ws], A =







a11 · · · a1s

...
. . .

...

as1 · · · ass






, B =











0 0 · · · 0

b21 0 · · · 0
...

. . .
. . .

...

bs1 · · · bss−1 0











, I = diag(1, · · · , 1)s×s,

I1 = diag(1, · · · , 1)(2s+2)×(2s+2), α = [α1, · · · , αs]
T , e = [1, · · · , 1]T , S = (I − hλB)−1, z = hλ,

z1 = hµ, T1 = z1v
T + zz1w

T SA, T2 = z1w
T S, T3 = zz1SA, T4 = z1S, T5 = z1SA, T6 = z1SB.

If we let Ψn+1 = [yn+1, yn, Yn1, · · · , Yns, hY ′

n1, · · · , hY ′

ns]
T then we have

Ψn+1 = A1Ψn + A2Ψn−N+1 + A3Ψn−N + A4Ψn−N−1 + A5Ψn−N−2 (3.2)

where A1 =









1 − θ + zwT S(e − u) θ + zwT Su zvT + z2wT SA 0

1 0 0 0

S(e − u) Su zSA 0

zS(e − u) zSu z2SA 0









,

A2 =











0 T2(I − θ̃(ζ))δ 0 T2∆W (ζ)

0 0 0 0

0 T6(I − θ̃(ζ))δ 0 T6∆W (ζ)

0 T4(I − θ̃(ζ))δ 0 T4∆W (ζ)











,
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A3 =











0 T2θ̃(ζ)δ + T2(I − θ̃(ζ))γ + T1(I − θ̃(ζ))δ 0 T2∆V (ζ) + (T2Γ + T1∆)W (ζ)

0 0 0 0

0 T6θ̃(ζ)δ + T6(I − θ̃(ζ))γ + T5(I − θ̃(ζ))δ 0 T6∆V (ζ) + (T6Γ + T5∆)W (ζ)

0 T4θ̃(ζ)δ + T4(I − θ̃(ζ))γ + T3(I − θ̃(ζ))δ 0 T4∆V (ζ) + (T4Γ + T3∆)W (ζ)











,

A4 =











0 T1θ̃(ζ)δ + T1(I − θ̃(ζ))γ + T2θ̃(ζ)γ 0 (T1∆ + T2Γ)V (ζ) + T1ΓW (ζ)

0 0 0 0

0 T5θ̃(ζ)δ + T5(I − θ̃(ζ))γ + T6θ̃(ζ)γ 0 (T5∆ + T6Γ)V (ζ) + T5ΓW (ζ)

0 T3θ̃(ζ)δ + T3(I − θ̃(ζ))γ + T4θ̃(ζ)γ 0 (T3∆ + T4Γ)V (ζ) + T3ΓW (ζ)











,

A5 =











0 T1θ̃(ζ)γ 0 T1ΓV (ζ)

0 0 0 0

0 T5θ̃(ζ)γ 0 T5ΓV (ζ)

0 T3θ̃(ζ)γ 0 T3ΓV (ζ)











.

Theorem 3.1. If we let ξn = Ψn, then TSCRK methods (2.1) is stable if and only if all the
zeros of

Sh(λ, µ, ξ) = det[ξN+3I1 − ξN+2A1 − ξ3A2 − ξ2A1 − ξA4 − A5]

satisfy root condition.

We plot the stability regions of the TSCRK methods we have given in last section. z = hλ,
z1 = hµ in the figures.

The stability regions of the TSCRK method (a) (dashed line) and RK method with order
2(solid line) are plotted in Figure 3.1 respectively, where the test equation is

y′(x) = λy(x), x ≥ a. (3.3)

The stability regions of TSCRK method (a) are plotted in Figure 3.2, where the test equation
is

y′(x) = λy(x) + µy(x − 0.25h). (3.4)

The stability regions of the TSCRK method (b) are plotted in Figure 3.3 where the test equation
is (3.4) and the stability regions of the improved Euler method (the smaller regions in the
middle) are plotted in Figure 3.3 where the test equation is

y′(x) = λy(x) + µy(x − h). (3.5)

The stability regions of the TSCRK method (c) (the left one) and RK method with order 3(the
right one) are plotted in Figure 3.4 respectively, where the test equation is (3.3).
The stability regions of the TSCRK method (c) are plotted in Figure 3.5, where the test equation
is

y′(x) = λy(x) + µy(x − 0.5h). (3.6)

The stability regions of the TSCRK method (e) (the larger one) and the stability regions of the
improved Euler method (the smaller one) are plotted in Figure 3.6 respectively, where the test
equation is

y′(x) = λy(x) + µy(x − 5.25h). (3.7)

The stability regions of the TSCRK method (f) (the larger one) and the stability regions of
the 4-stage continuous RK method with order 3 (the smaller one) are plotted in Figure 3.7
respectively, where the test equation is equation (3.7).
The stability regions of the TSCRK method (f) (the larger one) and the stability regions of
the 4-stage continuous RK method with order 3 (the smaller one) are plotted in Figure 3.8
respectively, where the test equation is equation (3.5).
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Figure 3.1: The stability regions of the TSCRK method (a) (dashed line) and RK method with order
2(solid line), where the test equation is (3.3).
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Figure 3.2: The stability regions of TSCRK method (a), where the test equation is (3.4).
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Figure 3.3: The stability regions of the TSCRK method (b) where the test equation is (3.4) and
the stability regions of the improved Euler method (the smaller regions in the middle) where the test
equation is (3.5).
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Figure 3.4: The stability regions of the TSCRK method (c) (the left one) and RK method with order
3(the right one), where the test equation is (3.3).
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Figure 3.5: The stability regions of the TSCRK method (c), where the test equation is (3.6).
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Figure 3.6: The stability regions of the TSCRK method (e) (the larger one) and the stability regions
of the improved Euler method (the smaller one), where the test equation is (3.7).
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Figure 3.7: The stability regions of the TSCRK method (f) (the larger one) and the stability regions of
the 4-stage continuous RK method with order 3 (the smaller one), where the test equation is equation
(3.7).
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Figure 3.8: The stability regions of the TSCRK method (f) (the larger one) and the stability regions of
the 4-stage continuous RK method with order 3 (the smaller one), where the test equation is equation
(3.5).

We can find in Figure 3.6, Figure 3.7, and Figure 3.8 that the stability regions of the TSCRK
methods are obviously larger than the stability region of the continuous RK methods of the
same order when solving nonvanishing delay differential equations.

4. Numerical Results

We tested the methods we have given in Table 2.1 and Table 2.4 on two examples. The
first test problem is an asymptotically vanishing delay differential equation, where h > τ on
almost every step when x > 3 and the solutions increase significantly. We apply the TSCRK
methods with s = 4, p = 4, q = 4 to the first example. We apply the TSCRK methods with
s = 2, p = 2, q = 1 to the second example. We list the results in Table 4.1 and Table 4.2
respectively. The error is the maximum absolute error over mesh points, ‖yn − y(xn)‖, on the
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whole integration interval.
Example 1.[3] (Asymptotically vanishing delay)

y′(x) = (1 + e−x)y(x − e−x)exp(e−x+e−x

), x ∈ [0.6, 4]

y(x) = ex−e−x

, x ∈ [0, 0.6]

The exact solution is y(x) = ex−e−x

.
Example 2.[1] (constant delay)
y′(x) = −y(x) − y(x − π) + 3cos(x) + 5sin(x), x ∈ [0, 10]
y(x) = 3sin(x) − 5cos(x), x ≤ 0
The exact solution is y(x) = 3sin(x) − 5cos(x).

Table 4.1: The maximum absolute error on the interval [0, 4] for example 1

Stepsize h = 0.1 h = 0.05

error 7.141310195351025e − 004 4.455799361124946e − 005

Table 4.2: The maximum absolute error on the interval [0, 10] for example 2

Stepsize h = 0.01 h = 0.005

error 3.521952101568360e − 004 8.776590240078264e − 005

The numerical results confirm our analysis of the order of our methods and show that the
TSCRK methods is efficient in solving singular delay differential equations and vanishing delay
differential equations.
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