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Abstract

In this paper, we discuss the convergence of the Broyden algorithms with revised search
direction. Under some inexact line searches, we prove that the algorithms are globally
convergent for continuously differentiable functions and the rate of local convergence of the
algorithms is one-step superlinear and n-step second-order for uniformly convex objective
functions.
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1. Introduction

The Broyden family of algorithms remains a standard workhorse for minimization. These
methods share the properties of finite termination on strictly convex quadratic functions, a
superlinear rate of convergence on general strictly convex functions, and no need to store or
evaluate the second derivative matrix. (see [2,4, 1, 5, 6, 7]). However, there are several unsolved
problems for the Broyden algorithms. In this paper we propose a new class of variable metric
algorithms with revised search directions. We prove that the algorithms are convergent for
the continuously differentiable objective functions. Also the new algorithms are superlinear
and n-step second order convergent for uniformly convex functions when the line searches are
inexact, but satisfy some search conditions.

These algorithms are iterative. Given a starting point z; and an initial positive definite
matrix By, they generate a sequence of points {z} and a sequence of matrices of {Bj} which
are given by following (1) and (2)

Tht1 = T + Sp = Tk + apdy (1)
where ay > 0 is the step factor, dj, is the search direction satisfying
—dr = Hpgr + ||QuHrgrl| Rigr,

where g, is the gradient of f(z) at xy, Hy, is the inverse of By, {Qr} and { Ry} are two sequences
of positive definite matrices which are uniformly bounded. All eigenvalues of these matrices are
included in [g,7], 0 < ¢ < r, i.e., for all k and © € R",z # 0

dllz|l® < 2T Qua < rllall®;  gllall® < & Ryw <rllall®.
If gr = 0, the algorithms terminate, otherwise let

BisesFBe  ywyl

Byy1 = By, — + ¢(s§ Brsk)vrvj, (2)

T T
sy, Brsk S Yk
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where yr = gr+1 — Gk, vk = Yk(styr) ' — Bisk(si Bisk) ' and ¢ € [0,1]. In the above
algorithms, if ¢ = 0 we call it revised BFGS algorithm, or RBFGS algorithm and if ¢ = 1 we
call it revised DFP algorithm, or RDFP algorithm.

The matrix Hyy1 denotes the inverse of Bj1, the recurrence formula of Hyy4 is

Hyyryt He  sipst pupd

Hyi 1 = Hy —
yl Hyys, styr  yi Heyr'

where .
H
i = Hiyr, — ykTikykSk (4)
Sk Yk
and p € [0, 1], the relationship of p and ¢ is

Q- pew?
(1 —p)(stye)? + pyi Hryesi Besk

QS:

In this paper, the line searches are not required to be exact. In order to guarantee descentness
of the objective function values and the convergence of the algorithms, we must give some
conditions for determining ayj. We use Wolfe conditions on line searches,

f(@r) = f(@rs1) > Co(—gisk) (5)

and
gt 18] < Oo(—gi s1), (6)

where (p and 6y be two constants satisfying 0 < (o < 8y < 1/2. We always try o = 1 first in
choosing the step length.

Using the mathematical induction it is easy to imply that By and Hy are positive definite
matrices if H; and B, are positive definite matrices.

If no ambiguities are arisen we may drop the subscript of the characters, for example, g, z,
R denote g, xr, R, and use subscript * to denote the amounts obtained by the next iteration,
.., g, T«, R, denote gi+1, T41, Ri+1, respectively.

For simplicity we let

 —9fHwye ., ylHeyr _—gldr  —glsk
Uw = 7 —iVe="7p—3 Wi=—7—=-7—;
Vi Heyr S, Yk Vi . S, Yk
—alTH
kYK
Zy = Hka‘#MSk
Sk Yk
T
cHrgr |y, Regr
= ool Fasi o 0, ty el Rige. ™)

T
Sk Yk

The paper is outlined as follows: Section 2 gives several convergence results without the
convexity assumption. Section 3 gives some results for convex objective functions. In Sections
4, we prove that the algorithms are linearly convergent for ¢ € [0,1) in detail. In Section 5,
we prove that our algorithms are one-step superlinearly convergent, then give the quadratical
convergence of the algorithms without detail proof.

Throughout this paper the vector norms are Euclidian.

2. Results Without Convexity Assumption

In this section, we assume:
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1. f(z) € CY1, i.e., there exists an L > 1 such that for any z,y € R", ||g(z) — g(y)|| <
Liiz -yl

2. For any z; € R", the level set S(z,) = {z| f(z) < f(z1)} is bounded.

3. We may assume, for simplicity (cf. [9]), f(0) = min f(z) = 0.

By the properties of R and @, these is a ¢; such that for all &

1l (1 = erfll]) < [[Hgll < lldlI(T + exlf])- (8)

The following holds for all &.

—g's = alg" Hg + |QHgllg"Rg] > Clgltllsl, 9)
— L+r2lgll
Then the following theorem can be given (cf. [9]).
Theorem 2.1. The algorithms are globally convergent, i.e.,
lim g = 0. (10)
k—o0

By taking the trace of both sides of (2), we get

Iyl | dllyl*s"™Bs  24y"Bs [|Bs]”
B,) =tr(B — —(1- . 11
() = () + -+ I BT gyl ()
By taking the trace of both sides of (3), we obtain
_ 1=yl | Isl® |, pllul®
tr(H,) = tr(H) JTHy sty T yTHy (12)
By calculating, we get (see [6])
Hg.=U+p(W-U)lp+Z+(1-W)s
= [(=p)U+pWip+2Z+(1-W)s. (13)
Let
mi(p) = [(1 = p)Ur + pWi] ", (14)
then we get
p=m(p)[Hvgs —Z —(1-W)s], (15)
where the subscript & of ny1(p) is dropped, and
Hy=p+Vs=m(p)[Higs —Z— (1 —-W)s]+ Vs. (16)

3. Results for Convex Functions

In this section, we assume:

1. The objective function f(x) is uniformly convex and there exist M and m, M > m > 0,
such that, for all z,y € R™, m||z||> < 27G(y)x < M||z||?, where G(y) is the Hessian of f(x) at
Y.

2. G(z) satisfies the Lipschitz condition, i.e., there exists an L > 1 such that, for all
z,y € R", [|G(x) = G(y)ll < Lz —yl.
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For simplicity, we assume (cf. [9])
3. £(0) = min f(x) =0 and G(0) = I,,xn, i.e., the n=t" order unit matrix.
Let

—/Masly, = /1 Gk + tsy)dt (17)
Co = m m ) k= 0 T Sk )
and let (G)~! denote the inverse of G. We get (see [6])
o lyll> _ o
max{m; 1—esl|z||} < 5Ty < min{M; 1+ elz||}. (18)
and
ma L 1—eollz|| p < [l < min 1 1+ eol|z|] (19)
x{—; 1— —; .
M’ 2 - sty — m’ 2

The Quasi-Newton H,y = s implies that g7's = g7 H,y and
|97 Has — (1= W)|1s|I| < 2call|||| Hxg|llls]]. (20)
(7) and (8) imply that there is a constant ¢z > 0 such that for all k,
1Z|| < eslld]]]|z]]. (21)
(15), (20) and (21) imply
|s"ul < m(p)l|2|ll|sl|(2c2]| Hegul| + eslld])).- (22)
By (16) and (22), we obtain

[Hyl? = pllul® _ VIsI® . A= p)llpll® | 25"

yTHy sty yTHy sty

A =p)llell® — 2mo)ll=lllIsll(2¢al| Hegell + eslldl])
yTHy sTy

> V(1 =2ell) + (23)

(21) implies 2|ZT H.g.| < c3||z||(||Hegs||? + ||d]|?), (15) and (22) imply that there exists a ¢4 > 0
such that for all &,

Il > nf(p)[1Hegsl P (1 = callzll) = callzllld]l”

—(1=W)g/'s(L + callz]])]. (24)
We may get the follows
dTy(1 = es||z])) < —g"Hy < d"y(1 + cs|lz])), (25)
and
yTHy > (1= 60)*(1 — 2c5/|z])y" d. (26)

Without loss of generality, we may assume that (25)-(26) hold for all k. Substituting (24)
and (26) into (23), then given any p € [0,1) and v € (0,1 — p], we know that there exists
ce = cg(7y, p) > 0 such that for all £,

|Hyll* — pllpll?
yTHy

Y1 ()2 || Heg|I? (1 = cez]])
yTHy

Cm(p)* (1 =W)gls(1 + collzl])
yTHy

> V(1 —cgllel]) +

col|2]- (27)
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Lemma 3.1. Let {Dy.} be a sequence of positive numbers, and let t1,t2,t3,t4 and ts5 be positive
numbers. If the following holds for all k:

k k
ti+ Y Di(1—tollzyl) <tz +tak + > tsllall,
£ =

then there exists a positive number tg > 0 such that for oll k,

k k
t1 +ZD]' St4k‘+zt6||$j”. (28)
j=1 j=1

4. Linear Convergence

In this section, we assume the assumptions 1-3 in Section 3 hold. We discuss the linear
convergence of our algorithms for ¢ € [0,1). The following Lemma 4.1 holds for any ¢ € [0, 1).
Lemma 4.1. Given any ¢ € [0,1), there exists c; > 0 such that, for all k,

k T k
(1—9)|1B;s;l? ¢)s- B;s;
tr(Bry1) +Z T}_L' il L= <k+ Y erllll. (29)
j=1 i85; S] Yi j=1
Proof. we have
T ¢llyl®>s"™Bs _ 1 3cajlll Bs|*s"
then the following is implied by (11) and (30).
(1 - ¢ —3col|lz[DIIBs|* | ¢s"Bs
B, <tr(B 1 . 1
tr(B.) + TBs + o tr(B) + 1 + co|z]| (31)
Adding both sides of (31) over j =1,2,---,k, we get
k T
(L= ¢ = 2¢s)l2;DIIBjsill* | 93 Bisi
tr(Bry1) +
Jz:; szBjsj s Y
k
< (B +k+ Y collzll. (32)
j=1
Lemma 4.1 can be implied by Lemma 3.1 and (32).
Lemma 4.2. For ¢=0, there exists a constant cg > 0 such that for all k,
k k
t(Hie)/2+ 3V <k + 3 eslayl. (33)

j=1 j=1
Proof. (8) implies that there exists a constant ¢ > 0 such that for all ¥ and ¢ =0 (p = 1),

| Hogl® < a1+ colll)?lldell” < m™ (1 + eolll)*y de

< co(9 Hage + [|Hagellls]])- (34)
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So, we get

T 2 2
H.qg. H.q.lllls Colls Col|S
oTHeg | e lllsl | alsl? _ oy collsl®

H** < * *
g sl < 2 : — E

(35)

On the other hand, taking the inner product of both sides of (13) with g. for p = 1, we obtain,
by (6) and (25), that

9:Hege  _ —glsg Hy  (=g"s)y'Hygss (9.9  Z7g:
sTy (sTy)? (sTy)? (sTy)? Ty
-1 -1 -2 Z"g.
< (1=6) "M+ es|lzNa™t +(1—0p)°V +1+ Ty (36)
(21) implies that there exists a constant ¢1p > 0 such that for all k
127 g.| < eslielllldllllg-ll < ewollsllllll.
By (26), we may obtain the following for sufficiently large k
V> L (37)
~ 4o

and 71 (1) = W=t < 1+ 6, (cf. the definition in (14)). Combining (35)-(37), we get for all k,

2 (1) |l[[[[ ]| (2col| Hage|| + cslld]])

STy < cnllzl|(V + Vi +1), (38)

where ¢;1 > 0 is a constant. Substituting (23) and (38) into (12), we obtain for all k&,

C X
w(H.) + V(1= 2(es + enllel) — enfloll - 2 < ey 14 eallell. 39)
The following holds for sufficiently large k:
T
y'Hy Vv 1 1
tr(H) > > > > — 40
H 2 2 T el = dal + ol = 8a (0

Without loss of generality, we may assume that (40) and 1 — 4(2¢» + 4¢q1)]|z|| > 0 hold for all
k. Adding both sides of (39) for j =1,2,---, k, then, by (39) and (40), we obtain

k
tr(Hp1)/2+ Y Vi[L = 2¢a|z5]| = 2610 (25| + 2j4011)]
j=1

k
< )+ Y (2 + el (41)
j=1

Lemma 3.1 and (41) implies that the lemma is true.
Lemma 4.3. There exists a c1o > 0 such that for all k, and ¢ € [0,1)

k

Z a;l S C12k‘.

=1
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Proof. Lemma 4.2 implies that this lemma holds for p = 1 (or ¢ = 0). So we only need
to prove this result for p € (0,1) or ¢ € (0,1). By the definition (14) of n;(p), (6), (25) and
(26), we know that there exists a constant ¢13 > 0 such that for sufficiently large k& and given
0<p<l,

m(p)(—g"Hy) _ 1

<
0< yTHy < 1 —p = C13 (42)
and
sTy (1+ 6p)
0 < < < . 43
<m (p) = p(—gTs) =~ P S C13 ( )

(25) (42) and (43) imply that there exists a constant ¢4 > 0 such that for sufficiently large k
and any given p € (0, 1),

ni(p)(1 = W)gl's(1 + cql|]))
yTHy

< L te” Tt ellel)

p(1—p)(—g"Hy)(sTy) —

So for given p € (0,1) and v < 1/(4c14), (27) implies that there exists a ¢g > 0 such that

1 Hyl* — pllpl®

JTHy > V(1 = collzl]) — coll|| — /4. (44)

Substituting (44) into (12), then add both sides of the resulting expressions for j = 1,2,--- k
we get

k
tr(Hier) + Y [Vi(L = coll;ll) — exllall - /4]
J=1

k
< tr(H1)+ZCQ||£Uj||+k. (45)
j=1

Because ||B;s;l|||s;ll >s7 Bjs; and (s1 Bjs;/a;)? > sT Bjsjg] Hjg; > (s} y;/2)?, add both
sides of (29) and (45) respectively, the following is obtained

i (1= co)llzjll + (1/2 = eallz;ll = 1/4)a;]

M;r

]:1
k
< tr(Hy+ Bi) +2k+ Y (ea + o + )l (46)
j=1

Clearly, this lemma holds by Lemma 3.1 and (46).

Because the method which gives the recurrence formula of By, from By, is the same as the
Broyden update formula, we may use the proof of Lemma 4.2 in Byrd et al (1987) almost word
by word almost to prove the following Theorem 4.1 (cf. [8, 9]).

Theorem 4.1. There exists a constant §, 0 < § < 1, such that, for ¢ € [0,1) and sufficiently
large k,

f(@rs1) < 8% f(z). (47)
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5. Superlinear Convergence

In this section we assume the assumptions 1-3 in Section 3 hold. First, we discuss the
superlinear convergence of the algorithms for ¢ € [0,1]. Lemma 4.1 implies that the following
lemma holds for any ¢ € [0,1) immediately.

Lemma 5.1. Given any there ezists a constant c15 > 0 such that, for all k,

k sTB
tr{(Bg+1) + Z ] < k+cis. (48)
j=1 S] yJ

Lemma 5.2. There ezists a ci7 > 0 such that for all k,

k
”"(HkH)JFZVj <k+ecrr. (49)
j=1

Proof. (40) infers that, for sufficiently large k, ||d|| < 8tr(H)||s|| and ||H.g.|| < tr(H.)|g«l|
< tr(H,)tr(B)(M/m)3/?||Hg||. So Lemma 4.1 implies that given p € [0,1), there exists a
constant ¢yg > 0 such that for all &,

Z 1 (p )II%||||8;||(202||Hy+1gy+1|| + cslld; ) . (50)
i=1 579
By (23) and (50), then adding both sides over j =1,2,3,--- k, we get

k

k
tr(Her) + ) Vi(1 = esllagl) — ers < te(Hy) +k + Y eslla]].
o =1

Now it is easy to see that the lemma holds.
Theorem 5.1. The algorithms presented in this paper are one-step superlinearly convergent
for uniformly objective functions, i.e.,

i {lgerl/llgell = 0.
— 00

Proof. Adding both sides of (48) and (49) respectively, we get

k Tr7r.0\1/2(TR.o.\1/2
(yj Hjy;)'/*(sj Bjs;)
tr(Bk+1+Hk+l)_+_22 j 19 - .] J1°7 1
=1 5jYi
TH N\1/2 _ STBS 1/272
[(yg iYi) ~ ( j i i) < s + i, (51)
55 Y5

As y] Hjy;s| Bjs; > (s] y;)?, we have
tr(Hg+1 + Brt1) < 15 + 17

and

T T
lim |YeHkye _ Sp Busk| _ (52)
k—o00 SkTyk S{yk
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By (52), we can get (cf. [8])
di g(r, +di) = o|ldi||*) = o(—gy di) (53)
and
f(ze) — f(zr + di)

di||> — Li|dy|?
> M —df g(xx + di) > Cogi Hegr (54)

(53) and (54) show that aj = 1 must satisfy (5) and (6) for sufficiently large k. So we can take
a = 1 for sufficiently large k. (53) and (52) imply

gl
eoe el

This completes the proof of Theorem 5.1.

We list the superlinear convergence of the RDFP algorithm and the quadratic convergence
of the RBroyden algorithms without detail proof.

Theorem 5.2. If we replace 19 by nr, = no min{1, 1/ay} in line search conditions (5) and (6)
then the RDFP algorithm is one step superlinearly convergent.

Theorem 5.3. If we replace ng by n = no min{1, ||gr||} in line search conditions (5) and (6)
then the algorithms presented in this paper are n-step quadratically convergent.

We have done some preliminary computational experiments for the revised Broyden algo-
rithms, which indicates that these algorithms are quite promising. Some testing results are listed
in Table 1, in which LS=the number of line searches, NF= the number of function evaluation,
MGH is the function in [3]. Parameters and other testing results are referred in [8, 9].

Table 1

BFGS RBFGS
Problem Reference | LS | NF | LS | NF
Helical and Valley3 MGH1 31 35 27 32
Powell badly Scaled2 MGH4 159 | 193 | 120 | 149
Wood4 MGH17 88 | 107 | 69 93
Box three-dimensional MGHb 18 38 20 32
Waton6 MGHT7 37 39 25 38
Trigonometric of Spedicatol0 | MGH13 55 67 36 61
Gaussian3 MGH3 8 8 9 10
Chebyquad8 MGH18 23 31 20 27
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