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Abstract

In this article we consider a two-level finite element Galerkin method using mixed
finite elements for the two-dimensional nonstationary incompressible Navier-Stokes equa-
tions. The method yields a H'-optimal velocity approximation and a L*-optimal pressure
approximation. The two-level finite element Galerkin method involves solving one small,
nonlinear Navier-Stokes problem on the coarse mesh with mesh size H, one linear Stokes
problem on the fine mesh with mesh size h << H. The algorithm we study produces an
approximate solution with the optimal, asymptotic in h, accuracy.
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1. Introduction

Two-level finite element Galerkin method is an efficient numerical method for solving non-
linear partial differential equations, e.g., see Xu [24, 25] for steady semi-linear elliptic equations,
Layton [14], Ervin, Layton and Maubach [5], Layton and Lenferink [15] and Layton and To-
biska [16] for the steady Navier-Stokes equations. This method is closely related to the nonlinear
Galerkin method [1,10, 17-19, 22] and recently developed in [7,21] to solve the nonstationary
Navier-Stokes equations. However,it is well known [1, 10, 17-19] that a defect of the nonlinear
Galerkin methods is needed to approximate solution u;, as the large eddy component y* and
the small eddy component 2" and solve the unknown components ¥y and z" simultaneously,
that is to solve a coupled nonlinear and linear equations and increase computing price.

In the case of the nonlinear evolution problem, the basic idea of the two-level method is to
find an approximation ug by solving a nonlinear problem on a coarse grid with grid size H
and find an approximation u” by solving a linearized problem about the known approximation
ug on a fine grid with grid size h. The semi-discretization in space of the 3D time-dependent
Navier-Stokes problem by the two-level method is considered in [7]. Furthermore, the fully
discretization in space-time of the 2D and 3D time-dependent Navier-Stokes problem by the
two-level method is analyzed in [21], where the local error estimates, stability and convergence
are proved, but the global error estimates do not provided. In fact, this scheme is of the global
first-order accurate with respect to the time step size 7.

In this report we consider continuity the two-level method used in [21] for the nonstationary,
incompressible Navier-Stokes equations and give the error estimates of optimal order for the
approximate velocity and pressure. If the equations is discreted by the standard finite element
Galerkin method, there will be a large system of nonlinear algebraic equations to be solved.
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To overcome this difficult, we will apply a two-level finite element Galerkin method for solving
the nonstationary Navier-Stokes equations in the framework of mixed finite elements. This will
yield a small system of nonlinear algebraic equations and a large system of linear algebraic to
be solved, i.e., this method can save some computational work. For the standard finite element
Galerkin method, the discrete velocity up(-,t) and pressure py(-,t) are determined in finite
element spaces denoted respectively by X} and M), which satisfy the so-called inf-sup condition
(' see [3,8,11] ). Our two-level finite element Galerkin method consists in

e Finding (um,pn) € (Xm, Mp) by solving the nonlinear Navier-Stokes problem on the
coarse mesh with width H;

e Finding (u”, p") € (X, My,) by solving the linear Stokes problem based on (ufr, prr) on
the fine mesh with width h << H.

In this paper, our main results are the following results:
Ju"(t) — un ()|l < K(OH® Yt >0, (1.1)
19" (8) = pu(t)||L> < K(8)H? VE>0, (1.2)

where (up, pr) is the standard finite element Galerkin approximation based on (X, M}p) which
satisfies the following error estimates:

lu(t) = un(®)|m < K(t)h,VE > 0, (1.3)
lp(t) — pu(t)[|L2 < K(E)h,VE > 0. (1.4)

These estimates indicate that the two-level finite element Galerkin method gives the same
order of approximation as the standard finite element Galerkin method if we choose H =
O(h1/2). However, in our method, the nonlinearity is only treated on the coarse grid and only
the linear problem needs to be solved on the fine grid. Of course, the comparison with the
standard finite element Galerkin method, the two-level finite element Galerkin method should
be made more precise by studying questions related to time discretization and computational
implementation. These will be addressed in the several continuations of this work.

2. The Navier-Stokes Equations

Let © be a bounded domain in R? assumed to have a Lipschitz-continuous boundary I' and to
satisfy a further condition stated in (2.5) below. We consider the time dependent Navier-Stokes
equations describing the flow of a viscous incompressible fluid confined in 2:

%_VAUHU.V)UJrvp:f inQ,t>0, (2.1)
divu=0 inQ,t>0, (2:2)
u=0 onl,t>0, (2.3)
w(0) =1 inQ, (2.4)

where u = (u1,u2) is the velocity, p is the pressure, f represents the density of body forces,
v > 0 is the viscosity and wg is the initial velocity.
In order to introduce a variational formulation, we set

X =Hy(2)?*,Y = L*(Q)?,

and

M = I3@) = {g € @) [ a(o)ds =0}
Q
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We denote by (-, ), |.| the inner product and norm on L?*(2) or L?(2)?. The space H}(Q2) and
X are equipped with their usual scalar product and norm

((u,v)) = (Vu, Vo), flull = ((u,u))"/?.
We define the continuous bilinear forms a(.,.) and d(.,.) on X x X and X x M respectively by
a(u,v) = v((u,v)), Vu,v€ X,

and
d(v,q) = (¢q,divv), Yve X,qe M.

Next, we introduce the closed subset V of X given by
V={veX;dv,qg =0, Vge M} ={ve X;dive=0 in Q},
and we denote by H the closure of V' in Y. One can show (see [3,8,11,13]) that
H={veY;divv=0inQandv-n=0o0nT},

where n denotes the unit outward normal to I'. Also, we denote by A the unbounded linear
operator on Y given by Au = —Au. We assume that  is such that the domain of A is given
by
D(A) =H*(Q)’nX. (2.5)
For instance, (2.5) holds if T is of class C? or if Q is a convex plane polygonal domain, see [9].
Moreover, we define the trilinear form

b(u,v,w) = ((u-V)v,w) + %((div u)v, w)

1 1
= 5((u Vv, w) — 5((U-V)w,v), Yu,v,w € X .

For a given f € L®(R";Y) and a given @y € H, the variational formulation of (2.1)-(2.4)
reads: find a pair (u,p) with

u € L®°(R"; HYNL*(0,T; V) ,us € L*(0,T,V'),p € D'(Q x (0,T)), VT >0,
such that
(ug,v) + alu,v) + b(u, u,v) — d(v,p) + d(u, q) = (f,v), V(v,q) € (X, M), (2.6)
u(0) = 4o . (2.7)
It is classical [8, 11, 13, 23] that (2.6)-(2.7) possesses a unique solution (u,p) which satisfies
the following regularity results Lemma 2.1 below.
Lemma 2.1. Let f € L®(R";Y), f € L®(R";Y) and o € D(A) NV be given. Then, the
solution (u,p) of (2.6)-(2.7) satisfies
[Aw(t)] + [|Jue(®)|| + |Aue(t)] < k(t) VE>0. (2.8)

Here k(t) denotes a generic constant depending on the data (Q,v,ug, foo,t) and is continuous
with respect to time,
if

foo = sup{I O]+ 1RO, fr = L
t>0

in the later case, such a constant which may stand for different values at its different occur-
rences.

Hereafter, we will denote by ¢ a generic constant depending on the data (Q,v, f) and
co,C1," -+, denote some positive constants depending only on 2. Finally, we also will use the
following Poincare inequality:

Al? < o2, Vo € X, (2.9)
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where A; is the first eigenvalue of the operator A.

3. Finite Element Galerkin Approximation

From now on, h will be a real positive parameter tending to 0. We let 74,(Q) be a uniformly
regular mesh of 2 made of n-simplices K with mesh size h. We construct velocity-pressure
finite element spaces (Xp, Mp) C (X, M) based upon the mesh 7,,(Q) and define the subspace
Vi, of X}, given by

Vi = {vn € X5 d(vn,qn) =0, Vg, € My}. (3.1)

Let P, : Y — X}, and pp, : M — Mj, denote the L?-orthogonal projections defined respectively
by

(Pho,vp) = (v,v1), YveY , v, € Xy,
and

(Pnaan) = (¢,qn), Vg€ M, qn € M.

We assume that the couple (X}, M}y) satisfies the following approximation properties:
for each v € D(A) and ¢ € H'(2) N M, there exist approximations Iv € X} and J,q € My,
such that
lv = Inol|| < ch|Av|, |g — Jnq| < chllqll1, (3:2)

together with the inverse inequality
lonll < ch™Honl, Vo € X, (3.3)
and the so-called inf-sup inequality: for each q, € M}, there exists v, € Xy, v, # 0 such that

d(vn,qn) > Blan||lvall » (3.4)

where 3 > 0 is a constant independent of h, where ||.||; denotes the usual norm of the Sobolev
space H'(Q).

The following properties which are classical consequences of (3.2)-(3.4) (see [1, 3, 8]) will be
very useful

1Pwoll < cljoll, Wo € X, (3.5)
|[v — Pyv| < chljv]], YveX, (3.6)
|v — Ppo| + h|lv — Ppo|| < ch®|Av|, Vo € D(A). (3.7)
It is well known that b(-, -, -) satisfies the following properties (see [1,8, 11, 16, 18]):
b(u,v,w) = —b(u,w,v), (3.8)

[b(u, v, w)] < colul 2 |lull/2||oll|w]*/ lw]|*/*
+ collulllo[*2lloll 2 w] 2 [w]|'?, Vu, v,w € X, (3.9)
[b(u, v, w)| < collulll|vfl[lwl]l, Vu, v, w € X. (3.10)

The Galerkin approximation of (2.6)-(2.7) based on (X, M},) reads: find (up,pr) € H(0,T;
Xp) xL2(0,T; My), VT > 0, such that

(wh,e,vn) + a(un, va) + b(wn, un, vn) — d(vn, pr) + d(un, qn)
= (f,vn), V(0n,qn) € (Xn, M), (3.11)
uh(O) = Pyug . (3.12)

The following error estimates are classical (see [1, 3,11,20]).
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Theorem 3.1. Under the assumptions (3.2)-(3.4), let f € L*(RT;Y) , ft € L®(R";Y)
and g € D(A) NV be given. Then, (3.11)-(3.12) possesses a unique solution (up,pp) and the
following error estimates hold:

u(t) — un(t)] + [ue(t) — une ()] + hllut) —un ()] < k(R VE>0, (3.13)
lp(t) — pr(t)| < K(t)h, Vt>0. (3.14)

We conclude this section by giving some examples of subspaces X and M}, such that the
assumptions (3.2)-(3.4) are satisfied. Let © be a polygonal domain and let {m,},h > 0, be a
uniformly regular family of triangulations of {2 made of n-simplices K with diameters bounded
by h. For any integer I, we denote by P,(K) the space of polynomials of degree less than or
equal to !l on K.

Example 3.1 (Girault-Raviart[8]). We set

Xh:{thCO(ﬁ)zﬁX;vHKEPQ(K)2, VKETh},
Mh:{thM;qh|KEP0(K), VKETh}.

Example 3.2 (Bercovier-Pironneau[2]). We consider the triangulation 1j,/5 obtained by
dividing each triangle of T, in four triangles (by joining the mid-sides). We set

X ={on €C°(0)’NX; vp|x € PL(K)?, VK €1y},
My ={qn € C°Q)NM; qn|k € PI(K), VK €}.

4. Two-Level Finite Element Galerkin Method

In this section, we choose a coarse mesh width H and a fine mesh width h with H >> h > 0,

and construct associated conforming finite element spaces (Xg, My) and (Xp, Mp), where
(Xg,Mpy) C (Xp, Mp). Now find (u”,p") as follows:

e Step I: Solve nonlinear problem on coarse mesh

Find (ug,pr) € (X, Mg) such that, for all (v,q) € (Xu, Mp)
(um,,v) + a(um,v) + b(un, un,v) — d(v, pr) + d(um, q) = (f,v), (4.1)
UH(O) = Pguyg . (4.2)

e Step II: Update on fine mesh with linear Stokes problem

Find (u”,p") € (X, My,) such that, for all (v, q) € (Xp, Mp,)
(u?)U) + a(uh,v) + b(tuuHav) - d(v>ph) + d(uha q) = (f> U)) (43)
u"(0) = Pyip. (4.4)

Remark 4.1. According to the results stated in section 1, the two-level finite element Galerkin
method and the standard finite element Galerkin method have the convergence rates of same
order. But, the two-level finite element Galerkin method is more simple than the standard finite
element Galerkin method. If fact, the two-level finite element Galerkin method only consists in
dealing with the nonlinearity on coarse mesh and the linearity on fine mesh and coarse mesh;
while the standard Galerkin method need to deal with the nonlinearity on fine mesh. Due to
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h << H, our method can save much more computational time than the standard finite element
Galerkin method.

The existence and uniqueness of a solution (u”,p") of the two-level finite element Galerkin
approximate problem (4.1)-(4.4) will be proved in the next theorem.
Theorem 4.1. Under the assumptions (3.2)-(3.4), let f € L°(R*;Y) , fy € L®(R*;Y) and
o € H*(Q)2 NV be given. Then, for h < H < 1, the problem (4.1)-(4.4) possesses a unique
solution (u”,p") defined for t > 0 with

ut € C®(0,T; Xp,), p" € C=(0,T; My,) for all T > 0.

Proof. From Theorem 3.1, problem (4.1)-(4.2) admits a unique solution (ugr,pr) € (Xg, Mp).
Moreover, we can prove that ug satisfies the following priori estimates:

t
lur (D) + "/ e lup (s)|Pds < Mg, (4.5)
0

where My is a positive constant.
Next, we will prove that problem (4.3)-(4.4) admits a unique solution (u”,p") € (Xp, Mp).
We associate problem (4.3)-(4.4) to the following problem: find u” € V}, such that

(ul',v) + a(u,v) + blug, um,v) = (f,v), Yv € Vi, (4.6)
u"(0) = Puug . (4.7)

Clearly, if (u",p") is a solution of (4.3)-(4.4), then u” is a solution of (4.6)-(4.7).
Now, let us denote by N the dimension of V3. We consider a basis {e1,---,en} of V}, such

that {er,---,en} is a basis of V}, with respect to the scalar product (-,-). We look for a solution
of (4.6)-(4.7) of the form

N
ul(t) =Y gjnlt)e; .
j=1
Then (4.6)-(4.7) re-writes

N
d
P + ]z:;gj,h(t)a(ej:ei) = (f,ei) = blug,um,e;), 1 <i <N,

N
9i,n(0) = gi,no if Pruo = Zgj,h,()ej .
i=1

Therefore, the system (4.6)-(4.7) is equivalent to an ODE for the g;p, 1 < j < N. The
existence and uniqueness of a solution of this problem defined on a maximal interval [0, T},)
follow promptly from standard theorems on the Cauchy problem for ODEs. Also, this solution
is of class C'"*° on its domain of definition.

We aim now to show that T}, = oo, thanks to some a priori estimates.

By taking v = u” in (4.6), we obtain

(ug, u") + vl + bl up, u) = (f,u").
Hence, by using Poincare inequality (2.9), (3.8)-(3.9) and (4.5), we see that

1d 2
5 g VI P bl wer, u) < S| < G P+ 1A



A Two-Level Finite Element Galerkin Method for ... 27

b, wr, u")| < colullfumlllu® | + coluwr V2 ([up |/ ||u"|*/2
¢ h
<eo(l+ W)WHHWHHHU I
v
< glluhll2 +e(L+ H Y Junl].
Therefore, we obtain
d 1 _
Eluhl2 + v fut? + §V||uh||2 <clf? + e+ HYlunl?, (4.8)
which yields
d 1
a(euklt|uh|2) + 5’/el/)\ltHuh”Z
< e+ H e (P + [luml?). (4.9)
By integrating (4.9) and using (4.5), we get that for ¢ > 0,
1 t
lu (t)]? + §V/ e M=) |lyh|Pds < e MY Prao)® + ¢(1+ HY). (4.10)
0

This estimate guarantees that the solution of (4.6)-(4.7) can not blow up in finite time, so that
Th = Q0.
Once u” is obtained as the solution of (4.6)-(4.7), there remains to solve: find p" such that

d(v,p") = (uf,v) + a(u”,v) + b(um,um,v) — (f,v), VYve X,. (4.11)

Here, the right-hand side of (4.11) is a functional on X, which, due to the definition of u”",
vanishes on V},. It is classical that the inf-sup condition (3.4) guarantees that (4.11) is uniquely
solvable in the space Mj,. This concludes the proof of Theorem 4.1.

5. Error Estimates

In this section, we aim to derive error estimates for the two-level FE Galerkin method
presented in section 4. First, we need to introduce the discrete analogue Ay, : X — X}, of the
Laplace operator given by

(Ahuh,vh) = ((uh,vh)), Vuh, vp € Xy, .

We will need the following estimates for the trilinear form b.
Lemma 5.1. The trilinear form b satisfies the following estimate:

|b(uh17vh27wh3)| + |b(vh25uh17wh3)| < cl||uh1||1/2|Ah1uh1 |1/2||Uh2|||wh3| ) (51)
|b(Uh1,’Uh2,wh3)| + |b(uh17wh3vvh2)| < cl|uh1|||vh2|||Ah3wh3|1/2”wh3||1/27 (52)

for any up, € Xp,,vp, € Xp,, Why € Xpy, where Xy, , Xp, and Xy, are three finite element
spaces corresponding to grid parameters hy, ho and hsz, respectively.

Proof. To prove (5.1), we will need the discrete analogues of several Sobolev inequalities
borrowed from Heywood-Rannacher [11], namely for any h > 0,

lonllee <clignll, Von € Xa, (5.3)
gnlloe + IV énlls < cllonll Il Andnll'?,  Vou € Xn. (5.4)
Moreover, we note that for any up, € Xp,,vn, € Xp, and wp, € Xp,

|b(Why s Vhys Why )| < el|tuny || Loo ||V, [[|whs | + el Vun, || Ls]|vas || s [whs |,
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|6(Vhs s Uny, Wy )| < cllvny || Lol Vun, || L2 [wng| + cllvn[|[wn, |lLe|whs |,
|b(uh17vh27wh3)| < c|uh1|||vh2||||wh3||lz°° + c|uh1|||vwh3||L3||Uh2||L67
|b(uh17wh3avh2)| < c|uh1|||vwh3||L3||Uh2||L6 + c|uh1|||vh2||||wh3||lz°°v

which and (5.3)-(5.4) imply (5.1)-(5.2).

Moreover, the following estimates are borrowed from Ait Ou Ammi and Marion [1] .
Lemma 5.2. Under the assumptions of Theorem 4.2, the solution (up,pn) of (3.11)-(3.12)
satisfies

fun(®)] + lun ()| + llung (Ol + | Anun (D] + | Anundl < 5(1), V>0, (5.5)

(I = Py)unl| < w(t)H. (5.6)

Theorem 5.3. Under the assumptions of Theorem 4.1, the solution (u”,p") of problem (4.1)-

(4.4) satisfies
lun(t) —u" (O] < K(HH?,Vt 20, (5.7)

pa(t) = p" ()] < o(t)™PK()H?,VE > 0. (5.8)

where o(t) = min{1,t}.
Remark 5.1. By combining (3.13)-(3.14) and (5.7)-(5.8), we obtain that

u(t) — u" ()] + hllu(t) — u" (O] < w(O){h* + H*},Vt >0, (5.9)
Ip(t) = p"(B)] < o ()7 2R(t){h + H?} VE>0, (5.10)

which is an asymptotic error estimate for the two-level finite element Galerkin method. It
indicates that the scheme provides the same order of approximation as the standard finite
element Galerkin method if we choose H = O(h'/?).

Proof. The proof of the Theorem 5.3 will consist of several steps. We set

E =uy —u n=p, —p", where E(0) = 0.

(a) Estimates of the velocity (I)
The next lemma gives estimates on E.
Lemma 5.4. Under the assumptions of Theorem 5.3, the following estimates hold for t > 0,

[E®) < k(t)H*, (5.11)

| iBGPds < s (5.12)

Proof. We combine (3.11)-(3.12) with (4.5)-(4.6) to obtain

d
(%E,U) +a(E,v) + b(up — ug, up,v) + blug,up — ug,v)
- d(”ﬂ?) + d(qu) = O,V(U,q) € (Xh)Mh)' (513)
By taking v = E,q =7 in (5.13), we have
1d
§%|E|2 +V||E|)? + b(un — g, un, E) + b(ug, up —ug, E) =0. (5.14)

Next, we estimate the trilinear terms in (5.14). Thanks to (3.8), (5.1)-(5.2) and Theorem
3.1, we find that

b(un — wm, un, E)| < e1lun — walllunl|*/| Anun| /2| E||

v 2
< gIIEII2 + ;(J?IluhlllAhUhIIUh —unl’, (5.15)
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v 2
o(um, un —um, E)| < gIIEII2 + EC?IIUHIIIAHUHIIM —unl’, (5.16)

lun — upr| < |u—up| + |u— up| < K(t)H?. (5.17)
Combining (5.14) with (5.15)-(5.17) and applying Lemma 5.2 yield

d
E|E|2 +v||E|* < k(t)H*. (5.18)

Integrating (5.18) from 0 to ¢, we derive (5.11) and (5.12).
(b) Estimates of the velocity (IT)
Lemma 5.5. Under the assumptions of Theorem 4.1, the following estimates hold for t > 0,

IB®)I* < w(t)H*, (5.19)

t
|E;|2ds < k(t)H*. (5.20)

to
Proof. From (5.13), we derive
d(E,q) =0,d(E;,q) = 0,Yq € My,
Thus, by taking v = E;, ¢ = n in (5.13), we find that
vd

E2
B+ 53

||E||2 + b(uh — uH,uh,Et) + b(uH,uh —ug, Et) =0. (521)
Using the identity

d
b(up, — up,un, By) = ab(uh —upg,un, E) —b(up — um, une, B) — b(uns — wm e, un, E),

d
b(um,un —um, Ey) = —b(um,un —up, E) —b(ums,un —un, E) — b(um,uns —umy, E),

dt
we re-write (5.21) as follows:
vd d d
E> + =—||E|? + —b —up, E) + —b -
| t| + th” || +dt (uh)uh UH, )+dt (uH,uh uH>E)

= b(uns — um, Un, E) + b(up — um, upy, E)

—l—b(uH,t,uh—uH,E)+b(uH,uh7t—uH7t,E). (5.22)

We aim to estimate the trilinear terms in (5.23). Thanks to (3.8), (5.1)-(5.2), Theorem 3.1 and
Lemma 5.2, we find that

|b(un,e — wm e, un, B)| + [b(um, unt — v, E)|
< er(um 1" A + lunll 2| Anun] ) une — w1 B||
< ZIIBIP + s()H", (5.23)
Ib(u, — g, e, E) + b(ugs, up — ugr, E)| < §||E||2 + k(t) H*. (5.24)
Combining (5.22) with (5.23)-(5.24) yields

d d
E,|? —|E|? < —2— - E
| B | +'/dtH II* < dtb(uh WH,Uup, E)

d
— 22 b(unr,un — unr, B) + Z||E||2+n(t)H4. (5.25)
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By integrating (5.25) between 0 and ¢, we obtain that

t
/ B, ()Pds + VIE@IP < 21b(un — ugz, un, )|
0

¢
+ 2|b(up, up —up, E)| + / |E(s)||*ds + w(t)H* . (5.26)
0
Moreover, by using some trilinear estimates as (5.23)-(5.24), we derive that
|b(un — wrr, un, B) + b(ur, un — um, E)| < gllE(t)ll2 +r(t)H?, (5.27)
which and (5.26) give
¢ y s
[ B Ras+ SIEQP < 5 [ 156 Pds + )" (5.25)
0 0

This yields readily (5.19)-(5.20) by applying the Gronwall Lemma.

(c) Estimate of the pressure

We aim now to derive (5.2). For this purpose, we will need a further estimate on the time
derivative of E.
Lemma 5.6. Under the assumptions of Theorem 4.1, the following estimate holds for t > 0,

\E,(t)|? <t Lw(t)H* . (5.29)

Proof. Differentiating (5.13) with respect to time gives that
(Eet,v) + a(Ey,v) — d(v,ne) + d(E, q)
+ b(up,t — wrt, Up, ) + D(up — WH, Upt, V)
+ b(up g, un — wi,v) + b(wm, Unt — UL, V)
=0,Y(v,q) € (Xp, Mp). (5.30)
By taking v = E;, q = 1 in (5.30), we obtain
1d

E.|? E;|?
2dt| t|° 4+ V|||
= —b(uns — v, un, Bt) — b(up,, un —upy, Eyr)
— b(uh — ’U,H,’Ulh’t, Et) — b(’U,H,th — UH,t;Et)- (531)

We aim to bound the trilinear terms in the right-hand side of (5.31). First, according to
(3.8), (5.1)-(5.2) and Theorem 3.1 and Lemma 5.2, we have

|b(wn,t — e, un, Ee) + b(um, une — wm, Bt

< etlune — wae|(lunll| Anun| 7 + lumll | Agum|'/?)|| Bl
< ZIB? + RO H!, (5.32)
14
|b(wrr e, un — wm, ) + b(un — wm, upe, Br)| < §||Et||2 + n(t)H4 . (5.33)

Combining (5.31) with (5.32)-(5.33) enables us to say that

d
£|Et|2 +V[|B? < w(t)H. (5.34)
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Multiplying (6.37) by ¢, we see that
d
%(t|Et|2) < |Ef? +w(t)TH*. (5.35)

By integrating this inequality, we find that
t

HE(®)2 < / By (s)|2ds + w(t) H* (5.36)
0

which and Lemma 5.5 provides (5.29). #
We are now ready to conclude the proof of Theorem 5.3 by deriving the estimate (5.8). The
inf-sup condition (3.4) guarantees that

5 d(v,p, — p"
Blpn — p"| < sup dlv,pn —p7)

, 5.37
Sl (5:37)

where, due to (5.13),
d(U,ph - ph) = (Etav) + G’(E7U) + b(u’h - UH,Uh,'U) + b(UH,Uh - ’U,H,’U),V’U € Xh . (538)

Let us derive some estimates of the terms in the right-hand side of (5.38). According to (3.8),
(5.1)-(5.2), Theorem 3.1 and Lemma 5.2, we see that

(Bt,0)| < |Eello] < A7V2 B o]l (5.39)
la(E,v)| < V||E]|v]l, (5.40)
|b(up, —ug,un, E) + b(ug,un —ug, E)| < &(t)|un, —ugll|E|| (5.41)

Combining (5.37) with (5.38)-(5.41) yields
Blon —p"| < &(O(|E:| + | EI)),

which and Lemma 5.5 and Lemma 5.6 give (5.8).
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