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Abstract

In this article we consider the fully discrete two-level finite element Galerkin method for
the two-dimensional nonstationary incompressible Navier-Stokes equations. This method
consists in dealing with the fully discrete nonlinear Navier-Stokes problem on a coarse
mesh with width H and the fully discrete linear generalized Stokes problem on a fine mesh
with width b << H. Our results show that if we choose H = O(h'/?) this method is as
the same stability and convergence as the fully discrete standard finite element Galerkin
method which needs dealing with the fully discrete nonlinear Navier-Stokes problem on a
fine mesh with width h. However, our method is cheaper than the standard fully discrete
finite element Galerkin method.
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1. Introduction

Two-level finite element Galerkin method is an efficient numerical method for solving non-
linear partial differential equations, e.g., see Xu [25, 26] for steady semi-linear elliptic equations,
Layton [15], Ervin, Layton and Maubach [5], Layton and Lenferink [16] and Layton and To-
biska [17] for the steady Navier-Stokes equations. This method is closely related to the nonlinear
Galerkin method [1,11, 18-20, 23] and recently developed in [7,22] to solve the nonstationary
Navier-Stokes equations. However,it is well known [1, 11, 18-20, 23] that a defect of the nonlin-
ear Galerkin methods is needed to approximate solution uy as the large eddy component y and
the small eddy component z" and solve the unknown components ¥y and 2" simultaneously,
that is to solve a coupled nonlinear and linear equations and increase computing price.

In the case of the nonlinear evolution problem, the basic idea of the two-level method is to
find an approximation ug by solving a nonlinear problem on a coarse grid with grid size H
and find an approximation u” by solving a linearized problem about the known approximation
ug on a fine grid with grid size h. The semi-discretization in space of the 3D time-dependent
Navier-Stokes problem by the two-level method is considered in [7]. Furthermore, the fully
discretization in space-time of the 2D and 3D time-dependent Navier-Stokes problem by the
two-level method is analyzed in [22], where the local error estimates, stability and convergence
are proved, but the global error estimates do not provided. In fact, this scheme is of the global
first-order accurate with respect to the time step size 7.

In the recent work [10] we considered this two-level method used in [22] for solving the
nonstationary, incompressible Navier-Stokes equations. If the equations is discreted by the
standard finite element Galerkin method, there will be a large system of nonlinear algebraic
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equations to be solved. To overcome this difficult, we applied a two-level finite element Galerkin
method for solving the nonstationary Navier-Stokes equations in the framework of mixed finite
elements. This will yield a small system of nonlinear algebraic equations and a large system of
linear algebraic to be solved, i.e., this method can save a large amount of computational work.
For the standard finite element Galerkin method, the discrete velocity up(-,t) and pressure
pu(-,t) are determined in finite element spaces denoted respectively by X; and M) which
satisfy the so-called inf-sup condition ( see [3, 8] ). Our two-level finite element Galerkin
method consists in

e Finding (um,pn) € (Xm, Mp) by solving the nonlinear Navier-Stokes problem on the
coarse mesh with width H;

e Finding (u”,p") € (X, M}p) by solving the linear generalized Stokes problem based on
(ug,pm) on the fine mesh with width h << H.

In recent work [10], our main results are the following results:
[u"(t) — un(®)|| g < K(t)(h+ H?) Vt>0, (1.1)
1" (8) = pa(Dllz2 < o ()" k()(h + H?) V>0, (1.2)

where o(t) = min{1,t} and (up,pp) is the standard FE Galerkin approximation based on
(X, M}p,) which satisfies the following error estimates:

lu(t) = un(®) | < w(E)R,VE >0, (13)
() = pr(®)ll1> < o))~/ 2k()h, ¥t > 0. (L4)

These estimates indicate that the two-level finite element Galerkin method gives the same order
of approximation as the standard finite element Galerkin method if we choose H = O(h!/?).
However, in our method, the nonlinearity is only treated on the coarse grid and only the linear
problem needs to be solved on the fine grid.

This paper continues our analysis of the two-level finite element Galerkin method for the
Navier-Stokes equations. Here we study the time discretizations of the two-level finite element
Galerkin method and the standard finite element Galerkin method in which time is discreted by
the Euler implicit difference scheme. By using several discrete analogs of the Gronwall lemma,
we are able to show that if we choose H = O(h'/?), the two-level finite element Galerkin
approximate solution (uf (t),ph (¢)) is as stable and convergence as what should be verified by
the standard finite element Galerkin approximate solution (u2*(t), p4(t)), namely the numerical
solutions (u& (t),p (t)) and (us (t), p5 () satisfy

llul (8)l]an s lluy Ol < e(llol| e + iggllf(t)lle), (1.5)
luf (t) — uw(t)||gr < &(t)(h+ H? + At),Vt >0, (1.6)

( Ot IPA(5) = p(s)l[72ds)'/? < w(t)(h + H? + At),Vt > 0, (1.7)
lufy (8) = w®)llmrr < w(8)(h + At), ¥t > 0, (1.8)

( Ot Ip5 (s) = p(s)[|72ds)"/* < k(t)(h + At), Vi > 0, (1.9)

where (1.6)-(1.9) hold if At¢ being small. Here x(t) denotes a generic constant depending on
the data (2, v, uo, fxo,t) and is continuous with respect to time,

foo = s {50 + 15O i =
t>0
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in the later case, such a constant which may stand for different values at its different occurrences.
However, compared with the standard finite element Galerkin method, the two-level finite
element Galerkin method should be more simple since this method only needs to solve a small,
nonlinear Navier-Stokes problem on the coarse mesh with width H and a large linear generalized
Stokes problem on the fine mesh with width h << H; while the standard finite element Galerkin
method needs to solve a large, nonlinear Navier-Stokes problem on the fine mesh with width h.

2. The Navier-Stokes Equations

Let © be a bounded domain in R? assumed to have a Lipschitz-continuous boundary I' and to
satisfy a further condition stated in (2.5) below. We consider the time dependent Navier-Stokes
equations describing the flow of a viscous incompressible fluid confined in 2:

ou

E—yAu+(u-V)u+Vp:f inQ,t>0, (2.1)
divu =0 inQ,¢t>0, (2.2)
u=0 onl,t>0, (2.3)
u(0) =ap in ), (2.4)

where u = (uy,us) is the velocity, p is the pressure, f represents the density of body forces,
v > 0 is the viscosity and wg is the initial velocity.
In order to introduce a variational formulation, we set

X = HY)Q)2, Y = L2(Q)2,

and
M = L) = {g € LX) [ a(a)d =0}
Q

We denote by (-, ), |-| the inner product and norm on L?*(2) or L?(2)?. The space Hg(Q2) and
X are equipped with their usual scalar product and norm

((u,0)) = (Vu, Vo), flufl = ((u,u))"/?.
We define the continuous bilinear forms a(.,.) and d(.,.) on X x X and X x M respectively by
a(u,0) = v((w,0)), Vuve X,

and
d(v,q) = (q,divv), Yve X,qe M.

Next, we introduce the closed subset V of X given by
V={veX;dv,q) =0, YVge M}={ve X;divve=0 1in Q},
and we denote by H the closure of V' in Y. One can show (see [11, 13-15]) that
H={veY;divv=0in Qandv-n=0onT},

where n denotes the unit outward normal to I'. Also, we denote by A the unbounded linear
operator on Y given by Au = —Awu. We assume that (2 is such that the domain of A is given
by

D(A) = H*(Q)*NX. (2.5)

For instance, (2.5) holds if T is of class C? or if Q is a convex plane polygonal domain, see [9].
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Moreover, we define the trilinear form

b(u,v,w) = ((u-V)v,w) + %((div u)v, w)

1 1
= 5((u Vv, w) — 5((u-V)w,v), Yu,v,w € X .

For a given f € L®(R*;Y) and a given @y € H, the variational formulation of (2.1)-(2.4)
reads: find a pair (u,p) with

we L®(RY; HYNL*(0,T; V) ,u, € L*(0,T,V'),p € D'( x (0,T)), VT >0,
such that
(ut,v) + a(u,v) + b(u, u,v) — d(v,p) + d(u,q) = (f,v), V(v,q) € (X, M), (2.6)
u(0) = 1o - (2.7)

It is classical [8, 12, 14, 24] that (2.6)-(2.7) possesses a unique solution (u,p) which satisfies
the following regularity results Lemma 2.1 below.
Lemma 2.1. Let f € L®(R";Y), fr € L°(R";Y) and o € D(A) NV be given. Then, the
solution (u,p) of (2.6)-(2.7) satisfies

lu@)|l+ [Au(@)] + [Jue(B)]] + [Aw(£)] + |uee ()] < 5(2),  VE>0. (2.8)

Here k(t) denotes a generic constant depending on the data (Q, v, ug, foo, f1,00,t) and is contin-
uwous with respect to time,

df

fOO = sup |f(t)|:f1,oo = sup |ft(t)|7 ft = E -
>0 >0

Hereafter, we will denote by ¢ a generic constant depending on the data (Q,v, fs) and
¢o, 1, - -, denote some positive constants depending only on (2,7, f»). Finally, we also will
use the following Poincare inequality:

AMvl? < |v|I%, Vo € X, (2.9)

where A is the least eigenvalue of the operator A.

3. Finite Element Galerkin Approximation

From now on, h will be a real positive parameter tending to 0. We let 7, = 7,(2) be a
uniformly regular mesh of 2 made of n-simplices K with mesh size h. We construct velocity-
pressure finite element spaces (X, M) C (X, M) based upon the mesh 7,,(Q) and define the
subspace V}, of X}, given by

Vi = {vn € Xp; d(vn,qn) =0, Vgn € My}. (3.1)

Let P, : Y — X}, and pp, : M — M}, denote the L?-orthogonal projections defined respectively
by

(Pyv,vp) = (v,vh,), YveEY, v, € Xy,
and

(pra,an) = (a,an), VYa € M, qn € My,

We assume that the couple (X}, M},) satisfies the following approximation properties:
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for each v € D(A) and ¢ € H'(Q) N M, there exist approximations Iv € X}, and Jyq € M},
such that
o = Inoll < chlAv], |q — Jual < chlall (3.2)

together with the inverse inequality
Jonllze + llonll < ch™ |vn], Yor € X, (3.3)

and the so-called inf-sup inequality: for each ¢, € My, there exists v, € Xp, v, # 0 such that

d(vn,qn) > Blan||lvnll » (3.4)

where 3 > 0 is a constant independent of h, where ||.||; denotes the usual norm of the Sobolev
space H'(Q).

The following properties which are classical consequences of (3.2)-(3.4) (see [1, 3, 8]) will be
very useful

1 Prol] < cllvfl, Vve X, (3.5)
o= Pyl < chllell, WoeX, (3.6)
|v — Ppo| + h|lv — Pyo|| < ch?|Av,| Vv € D(A). (3.7)

It is well known that b(-, -, -) satisfies the following properties (see [1,8, 12, 17, 19]):

b(uyvyw) = _b(u)wyv) ) (38)

1
b v, w)| < Seoful M flull 2ol |l w]]*/>

1
+ eollulllel o)l /2wl wl] /2, Yu, v, w € X, (3.9)

|b(w, v, w)| < collulllvll[[w]], Vu,v,w € X. (3.10)

The Galerkin approximation of (2.6)-(2.7) based on (X}, M}y) reads:
Find (up,pn) € HY(0,T; Xp,) x L?(0,T; M), VT > 0, such that

(un,t,vn) + a(un, v) + b(un, un, va) — d(vp, pr) + d(un, qn)
= (fivn),  Y(0n,qn) € (Xn, Mp), (3.11)
uh(O) = Pyug. (3.12)

The following error estimates are classical (see [1, 3,12,21]).

Theorem 3.1. Under the assumptions (3.2)-(3.4), let f € L*(RT;Y) , ft € L®(R";Y)
and g € D(A) NV be given. Then, (3.11)-(3.12) possesses a unique solution (up,pp) and the
following error estimates hold:

Ju(t) = un(®)] + Jue(t) = une ()] + hllu(t) — un(t)l] < £(R%. V>0, (3.13)

Ip(t) — pr(t)] < o(t)"2k(t)h. Vit >0, (3.14)

4. Fully Discrete Two-Level Finite Element Galerkin Method

In this section, we first recall the spatial discrete two-level finite element Galerkin method.
Then we consider the fully discrete two-level finite element Galerkin method by applying the
Euler implicit difference scheme of time discretization to the spatial discrete two-level finite
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element Galerkin approximation. In order to justify the efficiency of this method, we also
consider the fully discrete standard finite element Galerkin method.

Here we choose a coarse mesh width H and a fine mesh width h << H, and construct associ-
ated conforming finite element spaces (Xpg, My) and (X, My), where (Xg, My) C (Xp, Mp).
Now we consider the following spatial discrete two-level finite element Galerkin method: Find
(ul,p") € H'(0,T; X1) x L*(0,T; My,),VT > 0 as follows:

e Step I: Solve nonlinear problem on coarse mesh

Find (ug,pr) € (X, Mg) such that, for all (v,q) € (Xu, Mp)
(um,,v) + a(um,v) + b(un, un,v) — d(v, pr) + d(um, q) = (f,v), (4.1)
’LLH(O) = Pyig. (42)

e Step II: Update on fine mesh with linear Stokes problem
Find (u”,p") € (X4, My) such that, for all (v,q) € (Xp, Mp)

(ul,v) + a(u, v) + b(um, upr,v) — d(v, p") + d(u", q) = (f,v), (4.3)
u"(0) = Pyip. (4.4)

The existence and uniqueness of a solution (u”,p") of the two-level finite element Galerkin
problem (4.1)-(4.4) are known (see [10] ), i.e.,
Theorem 4.1. Under the assumptions (3.2)-(3.4), let f € L*(R*;Y), fr € L°(R*;Y) and
tg € D(A) NV be given. Then, for h < H, the problem (4.1)-(4.4) possesses a unique solution
(u",p") defined for t > 0 with

ut € C®(0,T; Xp,), p € C=(0,T; My,) for all T > 0.

Moreover, we also have the following error estimates for the two-level finite element Galerkin
method (see [10]):
Theorem 4.2. Under the assumptions of Theorem 4.1, the solution (u”,p") of problem (4.1)-
(4.4) satisfies
[u(t) —u" ()| < K(£)(h+ H?),Vt >0, (4.5)

Ip(t) = p" (D) < o)~/ 2k(t) (h + H?),Vt > 0, (4.6)

where o(t) = min{1,t}.

Now, we will consider some time discretization schemes related to the spatial discrete stan-
dard finite element Galerkin method and two-level finite element Galerkin method.

Let 0 = tp < t1 < t2 < --- be a division of time interval [0,00), At is the time step size,
try = kAt. By combining problem (3.11)-(3.12) with the Euler implicit difference scheme, we
construct the following numerical methods related to the spatial discrete standard finite element
Galerkin method and two-level finite element Galerkin method:

Standard finite element Galerkin method: Find (uf™, pF™) € (X}, M},) such that

1 . o
Kt(uz+1 - ’U,I,i, ’U) + a(uZJrl)U) - d(’l),pz+1)

+d(up ™, q) + 0(uy ™ uptt o) = (F ) V(v,q) € (Xa, My), (4.7)

u?l = Phﬂ() ) (48)
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where

= / o F)dt, |7 < foo.

Two-level finite element Galerkin method:

e Find (uf', pht') € (Xg, My) such that

1 k+1 k

S — ) + alul ! v) + bl ko)
— P + i ) = (0, V(0,0) € (Xar, M), (+9)

e Find (u}, ,,pl,,) € (Xp, M) such that

1 [»
R (ke = o) + aluf g, 0) 4 bl 0)
— d(v,piyy) +d(uiyy,q) = (), V(v,q) € (Xn, My), (4.10)
’U/(;{ = PH’a(),’u,g = Pyug. (411)

Remark 4.1. Here the notations are such that a lower mark with A refers to the standard finite
element Galerkin method, while an upper mark with h refers to the two-level finite element
Galerkin method, where (uf,p¥) is expected to be the approximation of (up(ty),pn(t)) and
(ult, ph) is expected to be the approximation of (u”(ty),p"(tx)),Vk > 0.

Next, we will give some further properties of the trilinear form b which will be very useful in
sequel numerical analysis. First, we need to introduce the analogue Ay, : X, — X, Ay : Mp, —
M, of the Laplace operator A = —A given by

(Apun,vn) = ((un,vn)), Yun, vy € Xy,
(n, Vign) = —=d(vn, qn),¥(vn, qn) € (Xn, Mp),
d(vn, Angn) = d(Anvn, qn) = —(Anvn, Vian),¥(on, qn) € (Xn, My).

Lemma 4.3. The trilinear form b satisfies the following estimates:

|b(uhlavh27wh3)| + |b(vh27uh17wh3)| < cl||uh1||1/2|Ah1uh1|1/2||vh2|||wh3|7 (412)
|b(uh1)vh27wh3)| + |b(uh17wh37vhz)| < cl|uh1|||vh2||||wh3||1/2|Ah3wh3|1/2) (413)
|b(uh17uh17wh3)| < cl|uh1 |1/2||uh1 |||Ah1uh1 |1/2|wh3 |7 (414)

for any up, € Xp,,vp, € Xp,,Wny € Xpy, where Xy, Xp, and Xy, are three finite element
spaces corresponding to mesh parameters hyi,hs and hg, respectively.

Proof. To prove (4.12)-(4.13), we will need the discrete analogues of several Sobolev in-
equalities borrowed from Heywood-Rannacher [12], namely for any h > 0,

lgnlle < cllgnll, Yon € X, (4.15)
1$nllze + IVSnllos < cllgnll'*|Andnl'/?, Yon € Xi. (4.16)

Moreover, we note that for any u,, € Xp,,vn, € Xp, and wp, € Xp,,
|b(uhlavh27wh3)| < c||uh1||L°°||vh2|||wh3| + c||vuh1||L3||Uh2|||wh3|7

|6(Vny Uny s Why )| < el|vn, || Lo [[Vun, || L3 [whg | + cl|vn, |[||wn, || Lo [whs |,
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which and (4.15)-(4.16) imply (4.12). Next, (4.13) follows from (4.15)-(4.16) and the following
estimates:

|6(Why s Vhys Wh )| < eluny |[|vn, |[||wns || L + clun, [[[Vwhg || psl|vn, [ s,

|b(uh17wh3avh2)| < c|uh1|||vwh3||L3||Uh2||L6 + c|uh1|||vh2||||wh3||lz°°'

To Consider (4.14), we will prove the following estimate

gnllL < clgn'?|Ann|"? Vi > 0,¢n € X, (4.17)

In fact, for any h > 0 and ¢5, € Xp, let w € HE(Q)?2 N H2(2)? be such that Aw = Ay

in Q. Clearly |Aw| = |Apr|, and by a standard argument using in [12], one obtains the error
estimate

lw — ¢n| + hllw — ¢nll < ch®|Andnl. (4.18)

Letting w denote the piecewise linear approximation of w. Then notice, by (3.3), (4.18) and a
dimensional argument (see [4, 6]), that

llénllze < llgn —wllpee + [[@llpe < ch™ o — ] + [l Lo
<ch™ (o — w| + Jw = @) + flw = | + [[w]|p,

and further,

6]l < ch™ nl, | Angnl < ch™ g,
|w = ¢n| < ch®|Angn| < chlgnl'*|Angn|'/?,
lw — | < ch®|Aw| = ch®|Angn| < chlgn|"/*| Angnl'’?,
llw — || o < ch|Aw| = ch|Angn| < c|¢n]'/?|Andnl'?,
l[wllpee < clw]"?|Aw|*? < e(jw — ¢nl + [dnl)/* < clgn]'/*[Andn] /.

Hence, we have obtain (4.14).
Moreover, we also need the following estimates on (up(t), py(t)) which are borrowed from
[1] and [12].
Lemma 4.4. Under the assumptions of Theorem 4.1, the solution (un,pn) of (3.11)-(3.12)
satisfies:
[un (O] + llun @O + lune (@1 + [Apun ()] + |une(t)] < K(E), VE > 0. (4.19)

5. Stability Analysis

Our aim is now to derive the stability of the solution sequence {uf} corresponding to the
standard finite element Galerkin method and the solution sequence {ul'} corresponding to the
two-level finite element Galerkin method. First, we need the following Gronwall lemma.
Lemma 5.1. Assume that o,y > 0,a > 0,b; > 0,Vk > 0 such that

(1 + aAt)ak+1 —ag + b1 < YAt (5.1)
Then,

J
ay+ Z(l + aAt)_(J'H_k)bk < (1+alAt)ag+a™1y,VJ >0, (5.2)
k=1
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where we have used the following notation:

Proof. From (5.1), we have
(1+ At apy — (14 aAt)ray + (1 + aAt)rbryr < yAL(1 4+ aAb).

Summing above inequality for £ = 0,---,J — 1, we obtain

J
(1+alAt)ay+ Z(l + aAt)* 1y,
k=1

J—1

< ap+vAt Z(l + aAt)k < ag +a"'y(1 4+ aAt)’,
k=0

which yields (5.2).

Now, we will consider the stability in L (R™;Y") of the solution sequences {uﬁ,pﬁ}, uw=nhH
and {uf, p; }.
Theorem 5.2. Under the assumptions of Theorem 4.1, the solution sequence {uﬁ},,u =h,H
generated by the standard finite element Galerkin method satisfies the following absolute stability
in L°(R*;Y):

J
P +> (1 + V)\lAt)’(‘]“’k)(g||u,’j||2At +lub —ub P < MG, VI >0, (5.3)
k=1
where 5
2 __ — 12 2
Mg = 2uol|” + VzA%foo-

Proof. Taking (v,q) = (uf™, pF™) in (4.7), (v,q) = (uf™,pf") in (4.9), respectively,

using (3.8) and the relation:
2(u —v,u) = |ul> = [v]> + |Ju—v|?, Yu,v e X,, (5.4)

we obtain

1, . . . -
g (P = gl - Ju ™t = ) + vl P = (). (5.5)

From (2.9), Ay |ufi|* < |luk|]*. Hence we derive from (5.5) that

1

u_)\1|fk+1|2’ (5.6)

v
(fk+1,uﬁ+1) S |fk+1||u;li+1| S Z||uﬁ+1||2+

" . ) vV, 2 .
(L+ v A ™ P — fug* + [ ™ =+ Sl PAE < S PAL (5.7

2 A1
We set,

2
ag = |’U,ﬁ|2,')/: V—Alfgoaa = V>\17

v ) .
br+1 = §||uﬁ+1||2At + |ul’:+1 — uZ|2, by = 0.
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Applying Lemma 5.1 to (5.7) with
ap = |U2|2 = |Putio|* < |uol?,

we obtain (5.3).

Theorem 5.3. Under the assumptions of Theorem 4.1, the solution sequence {uZ} satisfies

J
[P+ 301 A A TR P A + fuf — uf i) < a1+ ME)MG.
k=1

Proof. A similar argument to the proof of Theorem 5.2 can yields

v
(14 v A |ujey g |* = Jug* + ujr — ug] + §||UZ+1||2At

2
+ 2b(ub g ult At < TffoAt.
VAL

From (3.9), we derive

|b( k+1  k+1

u g i) < eolug Y2l P g2 |2

|UZ+1 ||UZ+1|

2
Vik Co,, &k k
< ZIIUH“IFIUZHI + ;OIUH“IIIUH“IIIIUZHII

4
2¢;

0l

v v
< gk P + el P ekl + T3l

Combining (5.9) with (5.10) and using (5.3) yield

(L4 v APl P = (1 + v ARl |? + bryr (1 + vA Ab)F

<

v 2
<5 (U v A luf P (Juj | + 8cgy ™ M)At + = fL AL,
1

where y
bri1 = |ujy — upl® + Z||UZ+1||2At-

Setting o = supy>q |u}| and summing (5.11) for k =0,---,J — 1 and using (5.3),

J
(1+vM A [ulf >+ (1 +vA At)F 'y

k=1
2
< Jul)? + (0 + 8cgr™ MZ)ME(1 + v\ At) + Y 21+ vALY,
veAT
or 5
|ult|? < (14 vAi At~ Jao|* + (o + Scav* MZ)MZ + VZ—A%fgo
Hence, we derive from (5.13) that
0% < Jaol? + S M + 8chv Mg + 2 2
P e A R R

which yields
g S C(]. + Mo)Mo.

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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Combining (5.12) and (5.14) yields (5.8).

Consider now the stability of the sequences {uf} and {u?} in L*°(R";X). Here we need
the discrete uniform Gronwall lemma:
Lemma 5.4. Let ay,dg, v,k > 0, be nonnegative real numbers such that

ap+1 — ap < dpapAt + yp+1 At, (5.15)
then for all J >0
J—1 J—1
ay < exp{z dp At} (ag + Z Vi AL). (5.16)
k=0 k=0

If for some fixred r > 0 and arbitrary ko > 0, ag,dy, Vi, for all k > ko, satisfy

r+k r+k r+k

Z dlAt S g1, Z ’)/iAt S g2, Z aiAt S g3, (517)
i=k+1 i=k+1 i=k+1
then -
ap, < (o2 + t_3) exp{o1},Vk > r + 1. (5.18)

This proof is classical (see Shen [23]).
Theorem 5.5. Under the assumptions of Theorem 4.1, the sequences {uﬁ}, p=h,H and {ul}
satisfy the following stability in L>®°(RT : X):

J
Ju||> < M, g S A +ra AR uk PAE < (14 M) (1+ Mg ME)ME VT > 0, (5.19)
k=1
” J
|l | + 3 > A+ vM AR A uf PAE < (1+ M) (1 + Mg MP)MT, VT >0, (5.20)
k=1

where r is a fized integer,

M? = cetOHMOMtr (1 g, 1 V) (||t ||? + MZ)(1+ MY).

Proof. Taking (v,q) = (Apuf™, Appi™) in (4.7) and (v,q) = (Agult, Agpl™) in (4.9)
and using the relation: for u = h, H

(au - banAuau) = ((au - buaau)) = ||au||2 - ||bu||2 + ||au - bu||2:vauvbu € Xy, (5.21)

we derive

1 .
g e I = Mgl o ™™ = ) + AP+ b ™ wi ™, A ™)

= (/7 Aupth. (5.22)

Moreover, we can obtain from (3.8), (4.7) and (4.9) that

1 1%
E|Uﬁ+1 —uf]? + §(||U,'i+1||2 — Nub 11+ luf ™t — up®|?)
+ b(u,’j+1 — uﬁ, u,’j, uZ'H — uﬁ) + b(uﬁ, u,’j, uZ'H — uﬁ)

= (fk“,u,’i+1 - u,’;) . (5.23)
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From (3.8) and (5.3), we have

™ =l k= ub)| < coful 2 bl /2 kT — k=

Iz o P Hp

14
gl = wll” + Mg w1,

v
b v =)l < gl ™t = gl + o1+ M) g,

k+1 , k+1 k Vok+1 k2 2kt
|(f M _uu)| < g”uu _uuH + V—>\1|f | :

Combining (5.20) with above estimates and using Theorem 5.2 yield

1 4
gl A P vl — gl < e+ M)l + V—/\lfgo-

On the other hand , we derive from (4.14) and (5.24) that

by, ™ up ™ Ayl ] < eaug P g AP

2
< AU 4 )Pl Pl

< AP 4 oL 4 MG) M|y ||* + e Mg,

v

4

v

8
|(F5H Ay )] < %|Auuﬁ+l|2 +207 12

Combining (5.22) with (5.25)-(5.26) yields

o112 = (a1 + SvAH A2 < e+ Mg) Mg Aflugg [ + (1 + M) Mg AL.

In particularly, (5.27) yields
k41 — O < drap At + ’)/kAt,

where
a, = |[uF|?, di. = e(1+ Mg) M |lug|l*, v = (1 + Mg) Mg

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

Recalling (5.7) and (5.3), we have easily checked that ag,dg, i satisfy the assumptions of

Lemma 5.3, namely for some fixed r > 0 and any ko > 0,
r+k
> aidt < o5 =c(l +1t,) Mg,
i=k+1
r+k
Z YiAt < o9 = (1 + M) Mit,,
i=k+1

r+k
> didt <oy = (1 + M) Mgt,, Yk > ko.
i=k+1

Applying Lemma 5.3 to (5.28), we obtain

k—1 k—1
[uf)1* < exp{D_ didt}(llaoll* + D 7v:At) < 7 (||ao]|* + 05), YO < k <r,
i=0 i=0
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03
[upl” < e (o2 + EIALETE
r

Hence, we obtain
lugll> < M7, VE > 0. (5.29)

Using again (2.9), (5.29) and (5.27), we obtain
v
(14w A Jug I = g l® + 5| AP A
< (1 + MMM + (1 + M) M3 At, (5.30)

which and (5.29) yields (5.19).
Moreover, we take (v,q) = (Apul, |, Anpj, ;) in (4.10) and use (5.21). Then,

1
E(HUQHH2 — gl + llug oy — will?) + vl Apug, |
+b(ult ul Apug ) = (P Anugyy). (5.31)

From (4.14), (5.3) and the Young inequality, we have

(P A < glAnujeg P+ 207 FH2, (5.32)

[Pl BN

blug™ ul™ Anui)] < eug™ V2 Aru 2 lug | Anug|

v _ ’

< glAnui [+ 207 e e P Al
v

< g (Anug [+ 2 A7) + eMglui | (5.33)

Combining (5.31) with (5.32)-(5.33) and using (5.29), we obtain
i I? = Nk + Sl Al PAE < ¥ Al PAE+eMIMEAL,  (5.34)
which and (2.9) yield

(14 A Al 2 = (1 oA ADF [ + 5 (14 v A0 A P
< (Gl P+ (1 + MM+ A AL, (5:35)

Summing (5.35) for k =0,1,---,J — 1, we obtain

J
(1+ M ADY [Jul? + g 3 (L4 A AR AP At
k=1
v J
< ol + 5 D20+ o0 80" iy P

+e(1+ MPHMZ(1+vr A, VT >0, (5.36)
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which and (5.19) yields

J
2 (J+1—k h|2
a1 + 5 Z(1+V/\1At) )| Apult|? At
k=1
< (L+ My)(L+ MgME) + MG(1+ MEME)ME,NJ > 0, (5.37)

namely, (5.20) holds.
Remark. Similarly, we can prove that the semi-discrete numerical solution wuy(t) and wg(t)
are stability in L>(R™; X):

lun@®I” + llur (]1* < ME, vt > 0. (5.38)

6. Convergence Analysis

In this section, we shall analyze the rates of convergence on the numerical solutions cor-
responding to the standard finite element Galerkin method and the two-level finite element
Galerkin method. For the standard finite element Galerkin method, we introduce the numeri-
cal solution (uﬁ,pﬁ), 1 = h, H defined by

up () = a(t)ul + B()ult™, pit(t) = pfth, VYt € [ty te],

and for the two-level finite element Galerkin method we define the numerical solution (uf,ph)
as follows :

uk (t) = a(tyup + Bt ujyy , PAR) =iy, VEE [trtega] s

where ; _y
k+1 k
t) = =
aft) = EL=L 5y =
In this section, we will frequently use a dlscrete version of the Gronwall inequality in a
slightly more general form (see [13]):
Lemma 6.1. Let At,v and ay, by, dy, Vi, for integers k > 0, be nonnegative numbers such that

J J J
ay+ Y At <> dparAt+ > At +7,Y.J > 0. (6.1)
k=0 k=0 k=0
Suppose that
dipAt < 1, and set oy = (1 — dpAt)™ VE > 0. (6.2)
Then,
J J J
ajy+ Z br At < exp(z akdkAt){Z YAt +~},YJ > 0. (6.3)
k=0 k=0 k=0

Now, we first consider some convergence results on the solution sequences {uf} and {ul'}
in L>® (R+ X).
Theorem 6.2. Assume that the assumptions of Theorem /.1 are valid and At satisfies the
following convergence condition:
—4) 74
At g 611 M, (6.4)
Then, for = h, H

J
14
lwats) = w1+ 2 37 1A (wa(ty) — ul) PAt < w(t)(AD?, VI 20, (65)
k=0
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Proof. For simplicity, we only prove (6.5) for 4 = h. By virtue of the Taylor expansion with
the integral remainder (see Girault-Raviart [11]):

1 du

A—t(u(tkﬂ) —u(ty),v) = (_t(thrl)’U)
+Ait /tkk+1 (t - tk+1)(%(t)’ v)dt, Vv e X, (6.6)

we derive from (3.11)-(3.12) that

A_t(“h(tk+1) —un(tr),v) + a(un(te+1),v)
+ b(un(tr+1), un(trt1),v) — d(v,pn(te+1)) + d(un(tr+1), Q)

1

= () + o [ ) 0 Ve € (5 M). 67

By setting Ef = u,(tx) — uk and 6} = p,(tx) —pf, p = h, H, we derive from (6.7) and (4.3)
that

1
A—t(E’,i"'1 — E,’j, v) + a(E,’j+1, v) + b(E’,ﬁ"'l,uh(tkH), v) + b(u’fl"'l, E,’j+1, v)

- d(’l}, 6lli+1) + d(ElliJrl:(J) = (Ef+1,’l)),V(’U,q) € (Xha Mh) ) (68)

where

trt1 tet1
B0 = g [ ) = 0,0+ 5 [ ) o), v

We now aim to estimate |E¥+1|, where

Ek+1
|Eic+1|: sup ( * ;U),
veEX) |U|
and
1 trt1 p 1 thy1 trt1 drd
— t — f(t i < — - t
ail [ e = s < g1 [ [T pedrato
tht1
<@ ([ P, (6.9)
tr
1 tk+1 tk+1
E| (t — thg1)(up,ee(t), v)dt| < (At)l/z(/ |uh,tt|2dt)1/2|v|. (6.10)
tk tk
Estimating (6.9)-(6.10), we obtain
thy1
BEP < A [T (AP funa)i. (6.11)
tr

Next, by taking (v,q) = (A, Ef T, Ap07 ™) in (6.8) and the relation (5.21), we obtain

1 o
s (IEEFE = BRIP4 IBEF = ERIP) + v AREET P + 0B un (b)), AW H)

+ b(uf Tt BETL AL ERTYY = (BFL AL ERTY). (6.12)
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Thanks to (4.13), we have

B(ERT un(tis), AnER O] < coll BRI ARER T P2 Jun (trg)

v " 2 .
< ZIAhE;'I“IZ’ + (;)30‘flluh(tk+1)II“IIE;'I“||2 ;

(6.13)
o v 8 3
b, BEH ALEE)] < KB kB, (6.14)
x v 2
[(BSY, ARBRH)| < §|AhE,’j+1|2 + B (6.15)
By combining (6.12) with (6.13)-(6.15) and using (6.11) , (5.19) and (5.38), we obtain
ap+1 — ap + bk+1At < dk+1ak+1At + ’yk+1At, (616)
where 16
ar = ||ERN1%, b = |ARBE P, diyr = —3 M ([lun(ter)I1” + llur FHI1%),
4 tet1 ) )
et = S A [ AP + lun )it 70 =0,
tr
Summing (6.16) for k from 0 to J — 1 and using the fact of E) = 0, we obtain
o J J
ar+ g ) AL <Y dagAt+ ) AL, (6.17)
k=0 k=0 k=0
From (5.19), (5.38) and the convergence condition (6.4), we have
32, ., 1
Hence, we can apply Lemma 6.1 to (6.17), then
J 4 J ty
ar+ S bat< S exp(QdeAt)/ (£ + [unsl?)dt(A8)?
k=0 v k=0 0
namely (6.5) holds.
Theorem 6.3. Assume that the assumptions of Theorem 6.2 are valid. Then
J
lul(ts) — ul||* + I/Z |Ap(u"(ty) —ul)PAt < k(t)(AH)? VI >0. (6.19)
k=0
Proof. An exact similar argument to the proof of (6.5) can yields
1
m(EI{7L+1 — B, 0) + a(BRyy,0) — d(v, 6p41) + d(Bfy,q) + (B um(ty), v)
+ b(’U‘I;I: E]}CI+1) U) = (E;Jrl)v))v(v: q) € (Xh; Mh) ) (620)

where E,’j =ul(ty) — uZ,(SZ =p"(tx) — p’é and

B = [ (ltwn) = F@00)dt+ 5 [ = sl (0, 0)de.

tr tr
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The estimate of |Ejf | is similar to ones of |E¥T|, namely

BaP <02 [ UAR + Pt (6:21)
Next, by taking (v, q) = (AnE}',, Andp, ) in (6.20) and using (5.21) and (6.21), we find
2%At(||f’51'§+1||2 — BRI + [|IE*T = E*|1?) + v]An B |
+ (B up (b)), AnEj ) + b(ul™ ER ApER )
= (B, AnFly) < FIEMFP 4 (6.22)
Moreover, by (4.12)-(4.14), (5.19) and (5.38), we have

(B um(ther), AnEf ) + b(uly ™, BT AER )|

< er([furr (b))l + laf DB IV AR EE 2| An B |
v 4
< JUAREL P + AR BT ) + s M7 (lum (b)) I+ llul™ P I1EE 1
(6.23)
Combining (6.22) with (6.23) yields
IBSFH? — [|B¥|* + v| A By, [P At
v
< 5|AHE’;,+1|2At + di1 | Ef g [IPAt + yes1 At (6.24)
where A
diy = —z et M (lum (6) I + lludy 1),
v 12, 2 i 2 h 22
Tt = HlAn By "+~ At (IFel” + Jug ") dt , 70 = 0.
tr
Summing (6.24) for k =0,---,J — 1 and using the fact of E! = 0, we obtain
J J J
ay+ > bpAt <> apdpAt + > At (6.25)

k=0 k=0 k=0

where aj, = ||E!||. From (5.19), (5.38) and the convergence condition (6.4), we check that dj,
and oy, satisfy (6.18). Hence, we can apply Lemma 6.1 to (6.25) and using (6.5), we obtain
(6.19).

Secondly, we will provide the convergence results of the pressure sequences {pf} and {p}}.
Theorem 6.4. Under the assumptions of Theorem 6.2, the sequences {pr} and {py} satisfy
respectively

J
> Ipalte) — pfIPAt < w(t) (A, VT > 1, (6.26)
k=1
J
> Ip"(te) — prIPAE < k(ts)(AR)?, VT > 1. (6.27)

k=1
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Proof. Thanks to (4.12)-(4.14), we derive from (6.8) and (6.20) that

|EF+L gk .
— - SvAET
+ex(lJun(tren) |+ g T IDIARER B2 B2 (6.28)
|E} il
kHAt < V|AhE1}cL+1|
+er(llun (ter) |+ g D AR ER 2 IBE Y2 + | Bl .
(6.29)
Using again (2.9), (3.4), (3.10), (5.19) and (5.38), we imply
Ipn(tis1) — Py T PAL < | AR EY TP AL + c||EFTHP AL + of|[ EETY P At (6.30)
p" (t) = piP At < (| AREf | + [Ar B *) At
+c||EfHPAL + ¢|Ef L P At (6.31)

By summing (6.30) and (6.31) for k = 0,1, ..., J — 1 and using (6.5) and (6.19, we obtain (6.26)
and (6.27), respectively.
By combining Theorem 3.1, Lemma 4.4 with Theorem 6.2, one finds

[lu(t) = u (O < [lu(t) — un(®)]]
+a®)|lun(t) = unte)ll + B)||lun(t) = un(tri)ll
a(®)llun(tr) — upll + B lun(tre1) — ug |

< K(tg+1)h + [sup | [lun,t ()AL < K(tgs1)(h + AL),VE € [tr, tht], (6.32)
tE[tr trt1

which yields the following convergence result .
Theorem 6.5. Under the assumptions of Theorem 6.1 , the numerical solution (ua,pa) cor-
responding to the finite element Galerkin method is of the following convergence rate:

lu(t) = ug (D] < &(8){h + At}, ¥t >0, (6.33)

/ () — p (B)2d0)/2 < w(E){h + AL}, VE > 0. (6.34)

Proof. Using (6.32), we prove easily that (6.33) holds. For convenience, we let t = t; .
Recalling again Theorem 3.1 and Lemma 4.4, we can derive from (3.4) and (3.10) that

t
/ ) = PO < w(o)h, [ Ipna(s)ds < w(0),¥1 > 0. (6.35)
0

Hence, we have

p(t) = vy (OPdt <2 [ |p(t) — pa(t)Pdt

to to

J
+4Z |ph — pu(te)Pdt + 4 |pa(te) — Pk At

th—1 k=1
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J tr J tr 23
S [ @ -mePa <y [ 1 [ atsiasta
k=1 k=1"t-1 1

te—1

tre—1

J tr t
< Z/ Ipn o2 dt(AL)? :/ Ipn.o2ds (A1) < k(£)(AD)?.
k=1 0

Combining (6.15) and above estimates yields (6.34). #

Similarly , we also obtain the convergence rate of the numerical solution (u%,p/) corre-
sponding to the two-level finite element Galerkin method.
Theorem 6.6. Under the assumptions of Theorem 6.2, (uk,pk) is of the following convergence

rate:
lu() = uk (0)]| < w(t){h+ H? + At}, V>0, (6.36)

t
( / Ip(t) — PA(OIPdD)7? < k(D) {h + H* + At}, V> 0. (6.37)
0
This proof can be omitted.

7. Numerical Test

In this section we present the results of numerical experiments with the one-level finite
element Galerkin method (1-level method) and the two-level finite element Galerkin method
(2-level method) described in section 4. Specifically, we consider a simple example which is a
nonphysical example with p = 0. The domain Q is the unit square {0 < z < 1,0 < y < 1}.
The finite element discretization uses a quadrilaterals mesh with the (), element. In the @,
element, piecewise bilinear functions on quadrilaterals are used to approximate the velocity w.
We set v = 0.1, T' =1 and the exact solution be given by

up (z,y,t) = 102%(z — 1)%y(y — 1)(2y — 1)cos(t), (7.1)

uz(z,y,t) = —10z(z — 1)(2z — 1)y*(y — 1)*cos(t). (7.2)

If we compute the solution u5 (), denoted as uone(t), by using 1-level method and uX (¢),

denoted as uyo(t) by using 2-level method, respectively, the theoretical rate of convergence for
the velocity u should be:

[u(t) = tone(B)]] < K(E) (R + A), [u(t) — urwo(t)]] < 6(E)(h + H? + At). (7.3)

From the error estimate (7.3), we should choose a time step At = O(h), H = O(h'/?) for 1-level
method and 2-level method. Since we have an exact solution for this example, we can compute
the L?2— and H' —errors for 1-level method and 2-level method and verify that they agree with
the predicted results.

For 1-level method, we provide the L?— and H'-global relative errors

r u — Uone 2 1/2

llu = wonello = (- [ = ey, (7.0
r — Uone 2 1/2

|||U —Uone|||1 = (%/0 ||U(t)||u(t)”2(t)” dt) / ’ (7-5)

and the CPU time spent for these numerical computations in TABLE 1 with some h and At
values; and for 2-level method, we provide the L2- and H'-global relative errors

r — Utwo 2 1/2
llu = veuoll = ([ el ey 72, (7.6)
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1T u(®) = wwo @) 1/

dt)’=,
T Jo [lu(®)]]

and the CPU time spent for these numerical computations in TABLE 2 with some H, h and At
values.

llw = wewollls = ( (7.7)

Table 1. Global relative errors and CPU times on [0, T] for 1-level method

h | At [|lw — wonelllo |||l — tonelll1 | CPU time (seconds)
% % 0.002837499359 | 0.01765409989 1

% % 0.001630965379 | 0.01674963354 14

% 2—15 0.001226508960 | 0.01808277793 260

% ?_16 0.0008157798295 | 0.01759956684 2820

% % 0.0006580201631 | 0.01815739471 21136

Table 2. Global relative errors and CPU times on [0, T'] for 2-level method

H| h | At e — wewolllo [l — utwol||1 | CPU time(seconds)
% % % 0.002837499141 0.01765409948 1

1 1 1

e Toomorors |

i E E 0.0008432068195 | 0.01758127961 123

f13 316 316

z || 39 0.0006296068716 | 0.01815738914 313

Two Tables show that the L2- and H'-global relative errors of two methods are almost
same, but 2-level method spends less time than 1-level method.

We want to compare the L2- and H'-error of 1-level method with 2-level method at each

time ¢ € [0,7T]. To do this, for fixed values of H = %, h = % and At = 41—9 we plot the L?-error

curves as FIG.1 and the H!-error curves as FIG.2 for 1-level method and 2-level method on
[0,T7].

x10™ x10™
8 8
6 6
4 4
— 1-level method -+ 2-level method |
0 0.5 1 0 0.5 1

Fig.1. the L%-error curves on [0, T] using 1-level method and 2-level method.
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0.02 0.02
0.018 0.018
0.016 0.016
0.014 0.014}
0.012 0.012}
| — 1-level method | | 2-level method |
0.01 0.01
0 05 1 0 05 1

Fig.2. the H'-error curves on [0, 7] using 1-level method and 2-level method.

The curves suggest that there is no significant difference between the two methods in terms

of the L?— and H'— errors. But, the CPU time spent by 2-level method is shorter than the
1-level finite element Galerkin method, i.e., 2-level method spends 313 seconds and 1-level finite
element Galerkin method spends 21136 seconds.
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