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Abstract

In this paper, we will present some recent results on developing numerical methods
for solving Maxwell’s equations in inhomogeneous media with material interfaces. First,
we will present a second order upwinding embedded boundary method - a Cartesian grid
based finite difference method with special upwinding treatment near the material inter-
faces. Second, we will present a high order discontinuous spectral element with Dubinar
orthogonal polynomials on triangles. Numerical results on electromagnetic scattering and
photonic waveguide will be included.

Mathematics subject classification: 65M06, 65M60, 65M70, 78A45
Key words: Embedded Boundary Methods, Discontinuous Galerkin Method, Electromag-
netic scattering photonic waveguides.

1. Introduction

Time domain solutions of Maxwell’s equations have found applications in engineering prob-
lems such as designs of VLSI chips and photonic devices [1]. In contrast to frequency domain
approaches where time harmonic Maxwell’s equations are solved for given frequencies [2], the
solutions from time domain simulation can produce a wide range of frequency information as
well as transient phenomena required in many applications.

The most used time domain algorithm for Maxwell’s equations is the simple Yee’s finite
difference scheme [3], which yields a second order approximation to the fields provided the
underlying grids are rectangles and the conductor or dielectric boundaries are aligning with the
mesh coordinates. Thus, the major disadvantage of the Yee’s scheme is the limitation of the
boundary or material interface geometry. To have second order accuracy, the scheme demands
a locally conforming mesh to the boundary, as a result, tiny finite difference cells may limit the
time step of the overall scheme.

Meanwhile, discontinuous Galerkin methods have attracted much research to handle the
material interfaces in the media. Being higher order versions of traditional finite volume method
[4], discontinuous Galerkin methods have been developed initially in 1970’s for the study of
neutron transport equations [5], and have now been applied to the area of computational fluid
dynamics and the solution of Maxwell’s equations [6] [7]. Discontinuous Galerkin methods
inherit the flexibility of the finite element method in allowing unstructured meshes, and at the
same time, employ high order polynomials for better accuracy and phase error in modelling
wave propagations.

In this paper, we will first present a new upwinding embedded boundary method which
employs a simple Cartesian grid to solve time dependent Maxwell’s equations. The proposed
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embedded boundary method, like the immersed interface method (IIM) proposed to solve elliptic
PDEs with discontinuous coefficients [8], uses a central difference scheme for mesh points away
from the interfaces while modifications are made for grid points near the interfaces. Second, we
will study a high order discontinuous spectral element with Dubinar orthogonal polynomials on
triangles and Legendre orthogonal polynomials on quadrilaterals.

Numerical Results on electromagnetic scattering will be given for the upwinding embedded
boundary methods while photonic waveguide with whispering gallery modes in microcylinders
will be simulated with the discontinuous spectral element methods.

2. Upwinding Embedded Boundary Method

2.1. One Dimensional Scalar Model Equation

We will consider the following simple linear wave equation to demonstrate the basic idea of
the upwinding embedded boundary method,

∂u

∂t
+ a

∂u

∂x
= 0, 0 ≤ x ≤ 1, (2.1)

where the wave speed a is assumed to be positive and discontinuous at xd ∈ (0, 1), and the
solution u(x, t) satisfies a jump condition at xd,

r+u(x+
d , .) − r−u(x−d , .) = g. (2.2)

xdxj xj+1
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Figure 1: 1-D mesh with discontinuity at xd

For a uniform grid {xi = i∆x, 0 ≤ i ≤ N, ∆x = 1
N }, we have the numerical solutions un

i at
grid points (xi, t

n), i = 0, 1, · · · , N , and also the solutions at both sides of the jump location
xd denoted as un−, un

+ (see Figure 1). Let us assume that xd ∈ [xj , xj+1],and xd = xj + α∆x,
xj+1 − xd = β∆x, where α+ β = 1.

We will construct a uniformly second order finite difference method to solve (2.1) based on
the Lax-Wendroff approach

un+1 .= un + ∆tun
t +

(∆t)2

2
un

tt = un − a∆tun
x +

(a∆t)2

2
un

xx, (2.3)

where ∆t = CFL∆x
|a| , and the spatial derivatives can be approximated by appropriate finite

differences Let us assume that the solutions un
i , 0 ≤ i ≤ N, un

− and un
+ have been obtained for

the time step t = tn. We will show how to obtain the solutions at the time step t = tn+1.

• Solutions at the jump xd
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As the solution of (2.1) represents a wave propagating from left to right, we can thus use
the PDE (2.1) to obtain un+1

− at the left side of xd, namely

un+1
− = un

− − a−∆tun
x,− +

(a−∆t)2

2
un

xx,−, (2.4)

where the derivatives un
x,− and un

xx,− can be approximated by one-sided difference formulas.
To obtain the solution at the other side of the jump, we can simply use the jump condition

(2.2) and have

un+1
+ =

1
r+

(g + r−un+1
− ). (2.5)

• Solutions un+1
j and un+1

j+1

Solution un+1
j can also be obtained by an upwinding finite difference. In order to obtain

un+1
j+1 , we will use the solution un+1

+ just obtained in (2.5), un
+, and un

j+1+k, k ≥ 1. By examining
the domain of influence of the hyperbolic equation, we can see that the characteristic originating
from the time-space location (xd, t

n) will pass the location (xj+1, t
n +CFLβ∆x

|a| ). Without the
knowledge of un+1

+ , we may only be able to time-march the solution at xj+1 with a time step
CFLβ∆x

|a| , which could be very small if β approaches to zero.

2.2. One Dimensional Systems

Let us consider the linear system of equations

∂u
∂t

+A
∂u
∂x

= 0, (2.6)

where u(x, t) = (u1(x, t), · · ·, un(x, t))ᵀThe matrix A has different formulas across the dis-

continuity xd representing a material interface A =
{
A−, x < xd

A+, x > xd
. The matrix A can be

diagonalized as follows
A = PΛP−1,

where Λ = diag(λ1, ..., λp, ..., λn), λ1, · · · , λp ≥ 0, λp+1, · · · , λn < 0, and p is assumed to
be the same on both sides of the interface throughout the paper. Solution u(x, t) may be
discontinuous across the interface xd and its values on both sides of the interface are related by
the following jump condition,

R+u+ −R−u− = g, (2.7)

which can be rewritten in terms of the characteristic variable w = P−1u as

Q+w+ −Q−w− = g, (2.8)

where Q+ = R+P+ and Q− = R−P−.
The characteristic variables satisfy decoupled scalar wave equations

∂wi

∂t
+ λi

∂wi

∂x
= 0, 0 ≤ i ≤ n, (2.9)

where the λ′is may have a jump discontinuity at xd.

• Solutions at the jump xd

We will apply the same strategy as in Section 2.1 to the system of equations on the char-

acteristic variable w. Let w± =
(

w1±
w2

±

)
be the partition of w± according to the signs of the
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eigenvalues. Similar to the case of single scalar equation, we know that w1
− = (w1,−, · · · , wp,−

)ᵀ can be solved by an upwinding scheme for the differential equation (2.9) as in (2.4). And,
w2

+ = (wp+1,+, · · · , wn,+ )ᵀ can also be obtained by an upwinding scheme from (2.9).
Next, we will apply the jump conditions in characteristic variables to obtain the rest com-

ponents of the characteristic variables on both sides of xd. We first partition the matrices Q+

and Q− as

Q± =

⎡⎣ Q±
11 Q±

12

Q±
21 Q±

22

⎤⎦ . (2.10)

Then, from the jump condition (2.8), we can obtain
(

w1
+

w2
−

)
from the following system of

equations ⎡⎣ Q+
11 Q−

12

Q+
21 Q−

22

⎤⎦⎛⎝ w1
+

w2
−

⎞⎠ = g̃, (2.11)

where g̃ = g −

⎡⎣ Q−
11 Q+

12

Q−
21 Q+

22

⎤⎦⎛⎝ w1−

w2
+

⎞⎠ . The coefficient matrix above is invertible for well-

posed hyperbolic systems.
Finally, we have the solution at xd,u± = P±w±.

• Solutions un+1
j and un+1

j+1

We can obtain the solutions at xj and xj+1 in the same way as in the case of one scalar
equation by working with the decoupled scalar wave equations (2.9) for the characteristic vari-
ables.

2.3. Numerical Results - Scattering of a dielectric cylinder

We will consider a typical electromagnetic scattering problem, i.e. scattering by a dielectric
cylinder in free space with a TM wave excitation. The cylinder is assumed to have a radius of
r0 = 0.6. If we assume that the cylinder is illuminated by a time-harmonic incident plane unit
wavelength wave of the form

Ez
inc = e−i(k1x−ωt), Hy

inc = −e−i(k1x−ωt),

where the propagation constant for homogeneous, isotropic free-space medium is k1 = ω
√
µ1ε1,

ω = 2π, then the problem has an exact solution given in [1]
We consider a situation in which µ1 = ε1 = 1, i.e., the material exterior to the cylinder is

assumed to be vacuum. We set ε2 = 2.25,µ2 = 2. In this case, Ez is continuous across the
interface, but Hx, Hy and derivatives of Hx, Hy and Ez are all discontinuous. Figure 2 shows
the contours and slices of the three computed field components at the time t = 1.0.

3. Discontinuous Spectral Element Method (DSEM) for Maxwell’s
Equations

The Maxwell’s equations in a two dimensional domain (x, y) ∈ Ω can be written in a
conservation form as

∂Q
∂t

+ ∇ ·F(Q) = S, (3.1)

where the flux
F(Q) = (F1(Q), F2(Q)) = AQ, (3.2)
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Figure 2: Scattering of a 2-D dielectric cylinder with material parameters µ1 = ε1 = 1, µ2 = 2
and ε2 = 2.25. On the left are contours of the computed solutions, and on the right are slices
of the computed and the exact solutions. (a) Hx(x, y, t = 1.0); (b) Hx(x, 0.2, t = 1.0); (c)
Hy(x, y, t = 1.0); (d) Hy(x, 0.2, t = 1.0); (e) Ez(x, y, t = 1.0); and (f) Ez(x, 0.2, t = 1.0).
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and A = (A(εr, µr), B(εr, µr)) will be given in (3.34) below.
To solve (3.1) in general geometries, the physical domain Ω under consideration is divided

into non-overlapping quadrilateral and/or triangular elements, denoted by K. Each physical
elementK is mapped onto a reference element I, either a reference square or a reference triangle,
by an isoparametric transformation.

We will name the coordinates in the physical element K as x = (x, y), while the coordinates
in the reference element I as ξ = (ξ, η). The transformation mapping between K and I can be
generally described by x = χ(ξ) = (x(ξ, η), y(ξ, η)), under which the equations (3.1) on each
element become

∂Q̂
∂t

+ ∇ξ · F̂(Q̂) = Ŝ. (3.3)

The new variables in (3.3) are

Q̂ = JQ, Ŝ = JS, F̂(Q̂) = (F̂1(Q̂), F̂2(Q̂)), (3.4)

where

F̂1(Q̂) = (yη,−xη) · F(Q) =
(yη,−xη)

J
· AQ̂, (3.5)

F̂2(Q̂) = (−yξ, xξ) · F(Q) =
(−yξ, xξ)

J
· AQ̂, (3.6)

and J is the Jacobian of the transformation.
Let Th be a triangularization with quadrilateral and/or triangular elements of the solution

domain Ω. On each element K ∈ Th, εr and µr are assumed constant. We denote a finite
dimensional space of smooth functions defined on the element K by P(K), which will be used
to approximate the variable Q̂. For each element K ∈ Th, we set a finite element space Vh of
test functions

Vh := {v ∈ L1(Ω), | v|K ∈ P(K), ∀K ∈ Th}. (3.7)

In the discontinuous spectral element method, the solution Q̂ ∈ V 6
h is approximated by a

linear combination of the basis functions (orthogonal polynomials if possible) on each element
K, and the approximation is not required to be continuous across ∂K. First, we approximate
the solution Q̂ element-by-element in terms of the basis functions ψi(ξ, η), i = 1, 2, · · · , N .

Q̂(ξ, η, t) ≈ Q̂N(ξ, η, t) =
N∑

j=1

Q̂j(t)ψj(ξ, η), (3.8)

where Q̂i(t) ∈ R6 are the time dependent coefficients. For each i = 1, 2, · · · , N , we require that∫
I

(
∂Q̂N

∂t
ψi − ŜNψi − F̂N · ∇ψi

)
dξ +

∫
∂K

hK(Q̂−
N , Q̂

+
N )ψids = 0, (3.9)

where Q̂−
N is the approximate field value local to the element K, and Q̂+

N is the approximate
value from the neighbor element, and hK(Q̂−

N , Q̂
+
N) is the numerical normal flux. The numerical

normal fluxes hK(Q̂−
N , Q̂

+
N ) can be obtained by solving a local Riemann problem. The Riemann

problem for Maxwell’s equations is discussed in detail in [13]. In the three space dimensions,
the numerical normal fluxes for a dielectric interface or continuous medium can be written as

hK =

⎡⎢⎣ n× (Y E−n×H)−+(Y E+n×H)+

Y −+Y +

−n× (ZH+n×E)−+(ZH−n×E)+

Z−+Z+

⎤⎥⎦ . (3.10)

where Z =
√

µ
ε , Y = 1

Z .
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3.1. Orthogonal Nodal Basis on Rectangles

We denote the space of polynomials of degree L or less by PL. Let τi, ωi, i = 0, 1, · · · , L, be
the Gauss points and weights in the interval [-1, 1]. Then a orthogonal basis for this space is
the set of Lagrange interpolating polynomials, φi(ξ), with i = 0, 1, · · · , L,

φi(ξ) =
L∏

j=0,j �=i

(ξ − τj)
(τi − τj)

. (3.11)

On the standard reference square

Q0 = [−1, 1]× [−1, 1],

we define PL,L = PL × PL. The approximation basis functions of the scheme are

ψmn(ξ, η) = φm(ξ)φn(η), 0 ≤ m,n ≤ L, (ξ, η) ∈ Q0, (3.12)

and the grid points are

(ξm, ηn) = (τm, τn) ∈ Q0, 0 ≤ m,n ≤ L. (3.13)

3.2. Dubiner Orthogonal Polynomial Basis on Triangles

The Dubiner basis [14] on triangles is obtained by transforming Jacobian polynomials defined
on intervals to form polynomials on triangles. The n-th order Jacobian polynomials Pα,β

n (x)
on [−1, 1] are orthogonal polynomials under Jacobian weight w (x) = (1 − x)α (1 + x)β

.
To construct an orthogonal polynomial basis on the standard reference triangle

T0 = {(ξ, η) | 0 ≤ ξ, η ≤ 1, 0 ≤ ξ + η ≤ 1} , (3.14)

we consider the mapping between the reference square Q0 and the reference triangle T0,{
ξ = (1+a)(1−b)

4 ,
η = 1+b

2 ,
or
{
a = 2ξ

1−η − 1,
b = 2η − 1.

(3.15)

The mappings in (3.15) basically collapse the top edge b = 1 of Q0 into the top vertex (0,1) of
T0.

The Dubiner polynomial basis on T0 is then defined as

gmn (ξ, η) = P 0,0
m (a) (1 − b)m

P 2m+1,0
n (b) (3.16)

= 2mP 0,0
m

(
2ξ

1 − η
− 1
)

(1 − η)m
P 2m+1,0

n (2η − 1) ,

0 ≤ m,n,m+ n ≤M.

Pg = {gmn (ξ, η) , 0 ≤ m,n,m+ n ≤M} forms an orthogonal polynomial set, i.e.

(gmn, gpq)T0
=

1
8
δmpδnq, (3.17)

and is complete in the polynomial space PM .
The finite element spaces over the reference triangle T0 and the element K will be denoted

as
P(T0) = span{gmn(ξ, η), 0 ≤ m,n,m+ n ≤M}, (3.18)

and
P(K) = span{gmn(x, y) = gmn(ξ, η), 0 ≤ m,n,m+ n ≤M}, (3.19)

respectively, and dim(P(T0)) = dim(P(K)) = (M + 1)(M + 2)/2 and x = (x, y) = (x(ξ, η),
y(ξ, η)).
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3.3. Numerical Result - Coupled Resonator Optical Waveguide (CROW)

As a numerical application, we will study CROW devices of coupled microcylinders where
the optical energy transport is provided by the weak coupling of evanescent whispering gallery
modes in the individual microcylinders [10].The whispering gallery modes (WGM) are elec-
tromagnetic resonances travelling in a dielectric medium of circular symmetric structures such
as circular rods, microdisks and microspheres [11][12]. CROW devices have been considered
for application of optical buffering, i.e. slowing down speed of lights for buffering purpose.
In this type of application, propagation speed, arrival time and phase of the signals are crit-
ical parameters to have. A high order and phase-preserving numerical technique such as the
DSEM is crucial. We will apply the proposed discontinuous spectral element method (DSEM)
for Maxwell’s equations to simulate the light propagation in photonic waveguides of coupled
microcylinders.

3.3.1. Basics of Whispering Gallery Modes

Consider a circular dielectric cylinder of radius a and infinite length with dielectric constant
ε1 and magnetic permeability µ1, which is embedded in an infinite homogeneous medium of
material parameters ε2 and µ2. The fields may be derived entirely from the axial components of
the electric and magnetic fields. With respect to a cylindrical coordinate system (r, θ, z), for a
time factor e−iωt, these axial components are solutions of Helmholtz equations (∇2 + k2

1)ψ = 0
for r < a, and (∇2 + k2

2)ψ = 0 for r > a, where ψ is either Ez or Hz. And k1 = ω
√
ε1µ1 and

k2 = ω
√
ε2µ2 are the propagation constants inside and outside the cylinder, respectively. The

fields must be finite at the center and, consequently, the wave functions within the cylinder will
be represented by Bessel functions of the first kind Jn. Outside the cylinder Hankel functions
of the first kind H

(1)
n ensure the Sommerfeld outgoing conditions at the infinity. Therefore,

solutions are of the type

ψ = einθ+ihz−iωt

{
Jn(λ1r), r < a,

H
(1)
n (λ2r), r > a,

(3.20)

where h is the axial propagation constant, and

λ2
1 = k2

1 − h2, λ2
2 = k2

2 − h2.

Representing the field components Ez and Hz in terms of solutions in (3.20), and then applying
Maxwell’s equations, we can have the fields at all interior points [15], r < a,

Hi
r =

∞∑
n=−∞

[
nk2

1

µ1ωλ2
1r
Jn(λ1r) ai

n +
ih

λ1
J ′

n(λ1r) bin

]
Fn

Ei
r =

∞∑
n=−∞

[
ih

λ1
J ′

n(λ1r) ai
n − µ1ωn

λ2
1r

Jn(λ1r) bin

]
Fn (3.21)

Hi
θ =

∞∑
n=−∞

[
ik2

1

µ1ωλ1
J ′

n(λ1r) ai
n − nh

λ2
1r
Jn(λ1r) bin

]
Fn (3.22)

Ei
θ = −

∞∑
n=−∞

[
nh

λ2
1r
Jn(λ1r) ai

n +
iµ1ω

λ1
J ′

n(λ1r) bin

]
Fn (3.23)

Hi
z =

∞∑
n=−∞

[
Jn(λ1r) bin

]
Fn,

Ei
z =

∞∑
n=−∞

[
Jn(λ1r) ai

n

]
Fn. (3.24)
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And at all exterior points, r > a, we have

He
r =

∞∑
n=−∞

[
nk2

2

µ2ωλ2
2r
H(1)

n (λ2r) ae
n +

ih

λ2
H(1)′

n (λ2r) ben

]
Fn

Ee
r =

∞∑
n=−∞

[
ih

λ2
H(1)′

n (λ2r) ae
n − µ2ωn

λ2
2r

H(1)
n (λ2r) ben

]
Fn (3.25)

He
θ =

∞∑
n=−∞

[
ik2

2

µ2ωλ2
H(1)′

n (λ2r) ae
n − nh

λ2
2r
H(1)

n (λ2r) ben

]
Fn (3.26)

Ee
θ = −

∞∑
n=−∞

[
nh

λ2
2r
H(1)

n (λ2r) ae
n +

iµ2ω

λ2
H(1)′

n (λ2r) ben

]
Fn (3.27)

He
z =

∞∑
n=−∞

[
H(1)

n (λ2r) ben
]
Fn,

Ee
z =

∞∑
n=−∞

[
H(1)

n (λ2r) ae
n

]
Fn. (3.28)

Here, the superscripts ”i” and ”e” represent ”interior” and ”exterior”, respectively, and the
prime denotes differentiation with respect to the argument λ1r or λ2r, and

Fn = einθ+ihz−iωt.

The coefficients of the expansions ai
n, b

i
n, a

e
n, ben, and the axial propagation constant h are

determined by boundary conditions. At the cylindrical boundary r = a, the tangential compo-
nents of the fields are continuous, yielding a 4×4 linear system for the coefficients for each n. In
order to have nontrivial coefficients ai

n, b
i
n, a

e
n, and ben. the determinant of the 4 × 4 coefficient

matrix should vanish, resulting in an algebraic equation for the axial propagation constant h
[12] [

µ1

u

J ′
n(u)
Jn(u)

− µ2

v

H
(1)′
n (v)

H
(1)
n (v)

][
k2
1

µ1u

J ′
n(u)
Jn(u)

− k2
2

µ2v

H
(1)′
n (v)

H
(1)
n (v)

]
= n2h2

(
1
v2

− 1
u2

)2

, (3.29)

whose roots are the allowed values of the propagation constant h and determine the character-
istics or natural modes of propagation. These roots are discrete and form a twofold infinity,
and for each n the denumerable infinity of roots are designated by hn,m.

3.3.2. Maxwell’s Equations for Coupled Microcylinders
For a WGM with the axial propagation constant h, the magnetic field H = (Hx, Hy, Hz)

and the electric filed E = (Ex, Ey, Ez) in a rectangular coordinate system (x, y, z) may be
expressed as

H(x, y, z, t) = H(x, y, t) eihz , (3.30)

E(x, y, z, t) = E(x, y, t) eihz . (3.31)

Substituting (3.30)(3.31) into Maxwell’s equations

µ
∂H
∂t

= −∇× E, (3.32)

ε
∂E
∂t

= ∇× H. (3.33)

we obtain the following scalar equations (in the MKS system of units), Q = (µH, εE)T

∂Q
∂t

+ A(ε, µ)
∂Q
∂x

+ B(ε, µ)
∂Q
∂y

= S,
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Figure 3: Optical energy transport by WGMs between two identical microcylinders in contact.
The four sequential snapshots at t = 2, 6, 8, 10 (a)-(d) illustrate generation of a clockwise WGM
in the right cylinder due to resonant optical coupling.

where

A(ε, µ) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 − 1

ε
0 0 0 0 1

ε 0
0 0 0 0 0 0
0 0 1

µ 0 0 0
0 − 1

µ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B(ε, µ) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
ε

0 0 0 0 0 0
0 0 0 − 1

ε 0 0
0 0 − 1

µ 0 0 0
0 0 0 0 0 0
1
µ 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , S =

⎡⎢⎢⎢⎢⎢⎢⎣
ihEy

−ihEx

0
−ihHy

ihHx

0

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.34)

3.3.3. Optical Coupling between Two Identical Cylinders in Contact
Two identical circular dielectric cylinders of infinite length in contact will be considered.

The radiuses of the cylinders are r1 = r2 = 0.5775and material index n = 3.2, i.e. ε1 = 10.24
and µ1 = 1 inside both cylinders while the external medium is vacuum.

It can be shown that WGMs exist in such a cylinder. In fact, by setting the angular
frequency ω = 2π, and the azimuthal number n = 8, we find that the transcendental equation
(3.29) has a solution h = 6.80842739 between k1 = 6.4π and k2 = 2π. The WGM is denoted
by WGM8,0,0.

We will investigate the optical energy transport by WGMs from one cylinder to the other.
To this end, we assume that initially there exists a WGM in the left cylinder and no fields exist
inside the right cylinder. As initial conditions, the exact values of WGM8,0,0 in the left cylinder
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are taken in the entire computational domain except for the inside of the right cylinder, where
a zero field is initialized.

To demonstrate the dynamics of the optical energy transport by WGMs from the left cylinder
to the right cylinder, in Fig. 3 we show the snapshots of the Ez component at four different
times. The initial state of the system is represented by a counterclockwise circulating wave, i.e.
the fundamental mode WGM8,0,0, in the left cylinder. The four sequential snapshots Fig. 3(a)-
(d) then illustrate the generation of a clockwise WGM in the right cylinder due to the optical
coupling, and thus confirm the optical energy transport from the left cylinder to the right
cylinder. The effect of the separation and size variation of the microcylinders on the optical
transfer is studied in [16].

4. Conclusion

In this paper, we have presented two different methods in treating material interfaces for
electromagnetic scattering in inhomogeneous media. The upwinding method is a Cartesian
grid based method with second order accuracy, which avoids the accuracy degeneracy of the
traditional Yee scheme near material interface. Further work is needed to extend the idea to
3-D problems and to higher order methods. The discontinuous spectral element method can
give higher order accuracy for the solutions as long as the material interface is approximated
by the underlying mesh accurately. In summary, the discontinuous spectral method has better
accuracy than the upwinding embedded method for treating material interfaces at the expense
of mesh generations.
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