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Abstract

A modification of classical third order methods is proposed. The main advantage
of these methods is they do not need evaluate any second order Fréchet derivative. A
convergence theorem in Banach spaces is analyzed. Finally, some preliminary numerical
results are presented.
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1. Introduction

Great quantity of general problems may be reduced to finding zeros. The roots of a nonli-
near equation cannot in general be expressed in closed form. Thus, in order to solve nonlinear
equations, we have to use approximate methods. One of the most important techniques to study
these equations is the use of iterative processes [9], starting from an initial approximation g,
called pivot, successive approaches (until some predetermined convergence criterion is satisfied)
x; are computed , i = 1,2,..., with the help of certain iteration function ® : X — X,

Tijt41 = (I>(1‘Z), i:0,1,2... (].)

Certainly Newton’s method is the most useful iteration for this purpose. The advance
of computational techniques has allowed the development of some more complicated iterative
methods in order to obtain greater order of convergence as Chebyshev and Halley methods [3],
[4]. In these methods we have to evaluate first and overall second derivatives. These difficulties
are usually harder than the advantage because of the order of these methods. So, two order
iterative methods are widely used.

In this paper, we present a modification of classical third order iterative methods. The main
advantage of these methods is they do not need evaluate any second derivative, but having the
same properties of convergence than the classical third order methods. The methods will
depend, in each iteration, of a parameter a,. These parameters will be a control of the good
approximation to the second derivatives. We will use second order divided differences. We will
study their convergence by recurrence relations and we will test their competitively with respect
the classical methods. They seemed to work very well in our preliminary numerical results.
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Let F: B C X — X a nonlinear operator, X a Banach space and B an open convex set.
If we are interesting to approximate a solution of the nonlinear equation

F(z) =0, (2)

Chebyshev method can be written as

ey = 1y — (1 1L m)) (F' (20)) " F (2n), 3)

where
Lr (zn) = (F' (20)) " F" (zn) (F' (20)) " F (z5) .

Our idea is to approximate F" on the classical third order methods. We will consider the
case of Chebyshev method, but it is possible consider other third order methods [2].
In order to conserve the order we consider the following approximation (in the scalar case
X =R
f(xn +anf (xn)) = 2f (x0) + f (@0 — anf (z4))
(anf (zn))? '

Thus our modification (in a Banach space) will be

[ (@n) ~ (4)

1 _
puin =, = (L L0 (@) ) (F @) F (o). Q
where
Lr (2n) = (F' (20)) ™ Dr(wn) (F' (22)” F (2a),
DF(I'n) = [mn - ClnF(l'n),l'n,l'n + anF(mn); F]>
and [-, -, -; F'] denotes the second divided difference of the operator F, that is, a bilinear operator

from X x X to X such that
Dr(zn)(anF (z,))(anF (z,)) = F (2 + anF (x,)) — 2F (z,) + F (2, — anF (z4,)) .

The method will depend, in each iteration, of a parameter «,. This parameter will be
a control of the good approximation to the second derivative. In practice, {a,} will be a
increasing sequence in (0, 1], and ||a,F(z,,)|] will be small enough.

Remark 1 In order to control the stability in practice, the «, can be computed such that
tol. << ||anF (zn)|| < toly,

where tol. is related with the computer precision and tol,, is a free parameter for the user.
Taylor series expansions show that with these approximations the method (in the scalar
case, f : R — R) can be written as

onin = 0n = (14 5Ls (00) 4 O3 @) ) (7 (o)™ £ 0. ©)

thus, if the method converges, it has order three [1].

We are interesting to obtain sufficient conditions of convergence. In next section we establish
a convergence theorem using recurrence relations in a similar way as Gutiérrez and Herndndez
in [7].
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2. Convergence Study

Our goal in this section is to prove the convergence of (5). Usually the convergence of third
order iterative methods is established assuming that the second Fréchet derivative F" satis-
fies a Lipschitz condition. Gutiérrez and Herndndez [7] obtain the convergence just assuming
F" bounded. In our case, since we don’t evaluate any second derivative, we can reduce this
hypothesis. We will assume the second divided difference of F' is bounded. In fact, we could
consider not twice Fréchet differentiable operators.

Recurrence relations, using a similar strategy as in [7], are considered. Thus the initial

problem in a Banach space can be reduced to a simpler problem with real sequences. Moreover,
our real sequences will be the same than in [7].
Theorem 1. Let be X a Banach space and B an open convex set. Let be F : B C X — X
a nonlinear Fréchet differentiable operator with second order divided differences in B. Let us
assume that Ty = (F (z0))™! € L(X,X) exists at some xo € B, where L(X,X) is the set of
bounded linear operators from X into X.

We assume that

(1) ||[z',«", 2" ; F)|| <K, for all ', 2" 2" € B
(2) [IToll < M
(3) [IToF (zo)|| <n

Let us denote a = KMn. We define the sequences
ap=bo=1; co=a; do=1+75

’

_ an .
An41 = T—aandn,’
b _ aan+1di 1 4 A
n+l — 2 ( + (2+cn)2)’
Cn+l = AGpy1bpy1;

Cn
dnt1 = (14 2)bpga

Suppose that 0 < a < sy = 0.32664..., where sq is the smallest positive root of 2x* + Tx3 —
41? —24x+8 = 0. Then, if B(zo,m™) C B, wherer = Z:i% dy, the sequence (5) is well defined
and converges to the unique fized point x* of F in B(zo, 757 — ) () B-

Furthermore, we can obtain the following error estimates

* do = ok C1
lz* —zall < =D 775 y=—.
R €o

Proof. We are going to prove
(L) 1Tl < anM
(I1n) [|[CnF (zn)|| < ban
(I11) [|LF(zn)ll < cn
(IVa) |[ens1 — ol < dnn

(Ip), (IIp) and (I1Iy) follow immediately from the hypothesis.

1
llzr —@oll < (X + SlILF (o)l - [[ToF (z0)])
1
< (1+§Co)77

= dUn
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and (IVp) holds.
Since aand, <1 see [7], we obtain

[Tl - |F () = F (zn41)]
aapd, <1

I = TuF (o)l <
<

thus I'y, 41 is defined and
[ICn1]] < any1 M.
On the other hand, we deduce from (5) that

’

F () (@i — 20) = —F(2n) — %Dp(mn)FnF(xn)FnF(mn)

and then i1 ’ )
Flan) = / T @)~ F (@)~ SDr(e) U F ) ()
Consequently,
[Pt 1 F(@n1)|] < bpgan
Finally,
[ICF(znt1)|| < atny1bpir = cnyt
and

[[Tn+2 — Tnpa|| < dnjan

We refer [7] for the rest of the details, because the real sequences are the same. In particular,
they proof that aa,d, < 1 and that {d,} is a Cauchy sequence.

3. Numerical Experiments

In order to see the performance of the introduced iterative method, we have tested it on
some nonlinear equations. We present a comparison with the classical Chebyshev method.
To test numerically the order, in table 1 we consider the 1-D equation

sin(2rz) = 0.

Numerically we observe they are third order schemes.

Table 1: sin(27z) = 0, Error, 2o = 0.1

Iterations | Chebyshev | Modified-tol,, = 0.001
1 1.49¢ — 02 1.49¢ — 02
2 2.18¢ — 05 2.18¢ — 05
3 7.13e — 14 6.40e — 14
4 0.00e + 00 0.00e + 00

In table 2 we analyze the following equation in 2-D:
(y* — 4,22 —y —1) = (0,0).

We obtain the same good convergence properties.
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Table 2: Number of iterations until exact solution

(z0,y0) | Chebyshev | Modified-tol,, = 0.001
(3,4) 4 1
(3,6) 4 4

Now we consider in [0, 1] the ordinary differential equation:
y' o= —4-10" ¢,
y(0) = L (7)
We approximate the solution of the stiff problem (7) at ¢ = 1 by applying implicit Euler method,
Ye+1 = Yk + b ftepr,yp41), K=0,1,...,n.

The different iterative processes are used for the nonlinear equation of the implicit method.
In each step we consider five iterations of the iterative methods. We compute the final error
|y(1) — Yn+1]- The modified method produces an error similar as Chebyshev, see table 3.

Table 3: Cauchy problem, Error

Euler Met. | Chebyshev | Modified-tol,, = 0.001
n=>5 3.05e — 03 6.38¢ — 03
n =10 1.52e — 03 2.39e — 03
n =20 7.81e — 04 2.06e — 04

Finally, let X = C([0, 1]) with the norm ||z|| = max,¢[o,17|2(s)|, and the equation F(z) =0
where the operator F': X — X is given by

F(z)(s) =xz(s) — s+ %/0 scos(x(t))dt, x € C[0,1], s€]0,1]

in table 4 we can see the good convergence properties.

Table 4: Number of iterations until exact solution, zo = zo(s) = s

Chebyshev | Modified-tol,, = 0.001
4 4

We have presented a family of iterative methods. We have studied their convergence. The
theoretically analysis provides information about the existence and uniqueness of solution. We

have tested their competitively with respect the classical methods and they seemed to work
very well in our preliminary numerical results.
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