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Abstract

The extended system of nondegenerate simple bifurcation point of the Navier-Stokes
equations is constructed in this paper, due to its derivative has a block lower triangular
form, we design a Newton-like method, using the extended system and splitting iterative
technique to compute transcritical nondegenerate simple bifurcation point, we not only
reduces computational complexity, but also obtain quadratic convergence of algorithm.
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0. Introduction

Bifurcation problem of the Navier-Stokes equations has been studied rather extensively
in the last years, see Li/Mei/Zhang(1986)[5], and M.Golubitsky/D.G.Schaefer(1988)[6], Allgo-
wer/E.Bohmer(1990) [7]. in this paper we discussed numerical approximate method of non-
degenerate simple bifurcation point of the Navier-Stokes equations, the content of the paper
is arranged as follows, first we introduce the Navier-Stokes equations and its operator form in
the section 1, and discuss property of nondegenerate simple bifurcation points. in the section 2
we will construct a extended system as a tool for computing nondegenerate simple bifurcation
points. in the section 3 we give a Newton-like method for computing transcritical nondegenerate
simple bifurcation point, splitting iterative technique is used to compute transcritical nonde-
generate simple bifurcation point of the Navier-Stokes equations. in the section 4 we will make
numerical experiment.

1. Navier-Stokes Equation and its Nondegenerate Simple Bifurcation
Point

We consider the stationary Navier-Stokes equations which has homogeneous boundary con-
ditions

—vAu+ (u-V)u+ Vp = f, z €
divu = 0, z €W (1.1)
U|aQ =0.
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Q2 is a bounded and smooth domain of R™, m = 2,3, moreover f € [L?(Q)]™, v is the coefficient
of kinematic viscosity.

It is well know that the uniqueness of solution of the stationary Navier-Stokes equations has
only been proved under the assumptions that Reynolds number is sufficiently small, or f is suf-
ficiently small, otherwise its solution may be not uniquel' 3!, for this reason it is very important
to discuss efficient numerical algorithm of singular solution for Navier-Stokes equations.

Define function space

V ={ue [H{(D)]™; divu =0}
H = {ue [L2(Q)])™ divu=0,u-n|sq =0}

n denotes the outward normal vector on 9. the scalar product and norm of L?(Q)™ are
denoted by (-,-), | - | on H, Define the following scalar product on V'

((u,v)) = (Vu,Vv), Yu,v€eV

|| - || denotes its corresponding norm, variational formulation of the Navier-Stokers equations
may be stated as follows [}2]

Aag(u,v) + a(u,u,v) = (f,v) =0, YveV, (1.2)
where A = v = Re~! bilinear from ao(-,-) and trilinear form a(:,-,-) are defined by
ap(u,v) = (Vu,Vv), Yu,v €V,
a(u,v,w) = [(u- Vv wdz, Vu,v,weV.
introduce bilinear from B(-,-) : V xV — V'
< B(u,v),w >= a(u,v,w), VYu,v,w €V,

where < -,- > denotes duality pairing on V' x V. let T'(u) = A7'[B(u,u) — f], where A is
stokes operator , then operator form of the Navier-Stokes equations can be writ as follows'[2]

G(u,A) :== du+ T'(u) (1.3)

it is Frechet differentiable and D, G(u,A) = Al + T'(u), it is clear that Yu € V,T'(u) is a
compact operator form V into V 12 and G : V x R — V is a nonlinear Fredholm operator
with 0-index,

In the sequel the subindex 0 indicate the evaluations of function at the point (ug, Ag). with
some calculation, we obtain:

DyGo = Aol +T'(ug) = Mol + A7 [B(ug, ) + B(- uo)], (1.4)
DGy = NI 4+ T (ug) = Mol + A7 [B*(uo,-) + B*(-,uo)], (1.5)
DyuGo = T"(ug) = A™'[B(-,-) + B(:,-)], (1.6)

Dy\Go =up; DunGo =1; Dx\Go =0, (1.7)

Setting ¢, ¢ are eigenfunction of D, Gy and D, G§ corresponding to 0 eigenvalue respectively,
namely

Ker(D,Go) = Span{¢}, ||¢]| =1 (1.8)
Ker(D,Gp) = Span{v}, ||| =1 (1.9)
(6.6)) =1 (1.10)

Fredholm theory shows that
Range(D,Go) = {u € V, ((u,¢)) = 0} (1.11)
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Range(D,G) = {u € V,((u,¢)) =0} (1.12)
moreover
V = Ker(D,Go) ® Range(D,Gp) = Ker(D,Gj) ® Range(D,Go) (1.13)
Assume that point(ug, Ag) satisfying
(Hl) Gg :G(Uo,/\o) =0
(H>) D,Gy is a Fredholm operator, 0 is a eigenvalue of D, Gy with simple algebraic
multiplicity
(Hs) D\Gy € Rang(D,Gy), namely there exists vy € Range(D,G}), such that
D, Govy + D\Gy =0 (114)

we say that (ug, o) is simple bifurcation point of the Navier-Stokes equations (1.3)12. let
a = ((¢, DuuGo¢9)) = 2a(¢, $,7)
B = (¥, DuuGovrd + DurGod)) = (¢, DuDGo(vx,1)¢))
= a(vx, ¢, ¥) + al(¢, vr,¥) + ao(9, ¥)
(¥, DuuGovavy)) + 2((¥), DurGovy)) + (1, DanGho))
= (¢, D*Go(vx, 1)) = 2a(vr, vx, %) + 2a0(vr, )

v

if
d=p>—ay >0,

we say that (up, Ao) is nondegenerate simple bifurcation point of the Navier-Stokes equations
(1.3), further if a # 0, (uo, \o) is transcritical nondegenerate simple bifurcation point[4l.

2. The Extended System of Nondegenate Simple Bifurcation Point

In the neighborhood of bifurcation point (ug, Ao), classical numerical method, for example,
Newton method is invalid, thereafter, we will construct a extended system, which make bifur-
cation point (ug,Ag) of (1.3) into nonsingular solution of the extended system. according to
reference [8], we set up the following extended system:

G + ((u2, DyGuy))us
((u2, D,Guz + D\@))
F(u,\,u1,us2,u3) = | D,Guy + %[((ul,ul)) — 1us (2.1)

D, G*uz + $[((us,u2)) — uy
| DuGuz + DrG + ((u1, u3))us

where F : VXRXV XV XV 5V XxRxV xV xV is well-defined.
Recalling the definition of (ug, Ao, @, %, vx), for o = (ug, Ao, @, 1, vr), we can get F(zg) = 0,
Simple calculation yields:

A0 0 0
DF(zg)=| C B 0 0 (2.2)
E H W

where
| (¥, DuDGo(v2,1))) (¥, DxDGo(v, 1)) '
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B = D,Go + ((¢,-)); B* = DuGg + ((¥,))$; C = (DuuGod, DurGod) (2.4)
Do Gin)- Du\Gj§
_ [ 01/} A OI/J ] (25)
D,DGy(vx,1)- DxDGo(vy,1)
H=10,(( o))" (2.6)
wo| B0 o7
=1y 5 (2.7)

Lemma 2.1. A, B, B* are nonsingular.
Proof. Firstly, we consider the homogeneous equation: Bu = 0, i.e.

DuGou+ ((¢,u))y =0 (2.8)

taking an inner product with ¢ at the both sides of (2.8), one obtains, ((¢,u)) = 0, together
with (2.8), we get D,Gou = 0, i.e.u = c¢. taking it back into ((¢,u)) = 0, which means ¢ = 0.
that implies the equation (2.8) has unique solution u = 0, thereafter B is nonsingular. similarly,
we can prove the nonsingularity of B*.

Now, we consider the following system:

A<1/<>: (2.9)

DyGou + (¢, DuuGodu))p + DaGoA + A((¢, DurGog))yh = 0 (2.10)
(1, DuDGo(vx, 1)u)) + A((¢, DADGo(vr,1))) = 0 (2.11)

presisely

from (1.14) we derive
D,Gou + D\Go\ = DuGo(u — )\UA)

thereafter, taking an inner product with ¢ at the both sides of (2.10), we have
(¥, DuuGogu + DyrGog)) = 0 (2.12)
taking it back into (2.10), we derive
D, Go(u—dvy) =0 (2.13)

from (2.13), one obtains u = u¢ + Avy for A\, u € R. taking it back into (2.12) and (2.11), we
derive the system for u, A\ € R :

ap+PA=0
{ (2.14)

Bu+yA=0

due to 3% — ay > 0, we get u = A = 0, this yields that the equations (2.9) have trivial solution
= A =0 only. hence A is nonsingular.

If (up, Ao) is transcritical nondegenerate simple bifurcation point, we can use the following
lemma 2.2 to express the inverse of A explicitly.
Lemma 2.2. assume that a # 0, M := D,Go + (¢, DyyGo@-)) is non singular, and

M~ = [I-a (¢, DuuGog") = ((¢,)))]B™ (2.15)

Proof. Consider the homogeneous equation Mu = 0, i.e.

DyGot + (), DyuGodui)) = 0 (2.16)
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taking an inner product with ¢ at its both sides, we derive:

((¢;DuuG0¢u)) =0 (217)

taking it back into (2.16), hence D,Gou = 0, i.e u = c¢¢, together with (2.17) and « # 0, we
get ¢ = 0. that means u = 0 is the unique solution of (2.16), for this reason M is nonsingular.

Now, we define function V- — R, 0 := ((¢, DyuGo¢+)) — ((¢,-)). by virtue of (1.8), it is easy
to verify that: B¢ =1, B~14¢ = ¢, thereby

OB 1 = 06 = (1, DuuGod?)) — (($,4)) = a — 1 # —1,

i.e.
OB~ +1=aq,
simple calculation yields
B~ y8 B~ y8
I—-—— B YB = (B I———— B '=1
(I~ Tgporg) B (B+06) = (B+ )1 - 15250
There we have B1y0
-1 _ (7 _ —1
(B+vb) = 71+0B—1¢)B

precisely, we get,
M~ =T —a ' ¢(((¢h, DuuGog-)) — ((¢,-)))]B~"
In order to describe the inverse of A explicitly, we set
A1 .— { ain  G12 }
’ a1 Q22

It is follows that

[DuGo + (¥, DuuGo¢))¥lars + [DaGo + (¢, DurGod))Ylan = I
[DuGo + (¢, DuuGod-))larz + [DaGo + (¢, DunGod))lazs =0
(1), DuDGo(vr,1)-))ars + (¢, DxDGo(vx,1)))az1 = 0
(1), DuDGo(vx,1)-))arz + (¥, DxDGo(vx,1)))az: = 1
With complex calculation, we obtain:
an = [I —d (B¢ — ava)((, DuDGyo(vr, 1) )M (2.18)
a1y = —ad (v — BM 1) (2.19)
a1 = ad™' ((¢, Dy DGo (v, 1)) M~ (2.20)
oo = —ad ™! (2.21)

Theorem 2.1. zo = (ug, \o, ¢, ¥, vyx) defined by (Hy)(Hs)(1.8)(1.9) is the nonsingular solution
of F(z) =0.

Proof. Obviously, F(z9) = 0.

On the other hand, DF(z) is a diagonal form. by virtue of Lemma 2.1, we can prove
DF(x) is nonsingular. that means z is the nonsingular solution of F(z) = 0.

3. Newton-like Method for Transcritical Nondegenerate Simple
Bifurcation Point

Although o = (uo, \o, @, %, vy) is the nonsingular solution of F(x) = 0, scale of extended
system (2.1) is bigger than (1.3), computation work is bigger too. due to the block structure of
D Fy, we introduce a Newton-like method which allows reductions of computation complexity.
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Let 20 = (u® A%, u?,u3,u3) be a starting vector near zg, for k = 0,1,- - -, if ¥~ is known,

z* can be found from the followings:

{ D(z*) - Azk = —F(z*)

xk-ﬁ-l :mk-{—AJ;k
A0 0 0

Di*=1]C* B* 0 0
E* HY Wk

where

DyG* + ((ub, Do G*ub))ub  DAG* + ((uf, DunG*ul))ul
((uf, Dy D G*(uf, 1)-)) ((uh, DADG* (uf, 1 )))]
B = D,G* + ((uf,)ub, B :=D,G" + ((uh, )l

C* := (DuuG*uf-, DunG*uf) = (Cf, CF)
Wk .= diag{B*", B*}

o [ DG DGl | [ By Bl
D,DG*(uk, 1) D\DG*(uk,1) B B3
1

H" = [ ((u3,u5)) = 1), ((ug))us] " = (HY, H)'

. . k T
Note, in discrete case B* = B*

Denote: F(z) = (ff, f5, f5, ff, f)7

The system (3.1) can be written in block form:

T Ak ] 7k
a) A L= [ 1k
| AX fs
k [ Au® ] k k
by C*. Ak + B* - Auf = —f3
Auk ] Auk k
c) E*. + H* - Auf + Wk . =-
| AN Auj 3

Algorithm is following;:
1) Compute LU-decomposition for B*
2) Compute
a* = ((uf, Dy GFubub)) = 2a(ul, ub, ub
pr = ((UzaD DG*(uf, 1)ut)) = ag(u
7’“ = ((ub Dsz(u3, 1)?)) = 2a(uf, u
— Bt — ok
a’fl = [I_df (u kﬂk — akuf)
ak, = —akd=*(uk — pkM—Fqy
a’]2€1 = akd_k((u27D DG(U 39 )'))M_k
QA99 = —akd—*
M = [1 — a~Fub(((uh, DuuGFub) — ((uk, )] B
3) Compute Au* ANF :

)

)

) ot )+ ol )
3, U2

) + 2a0(us, u5)

(3.1)
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Aub = —afy ff —afoff, AN = —af f - b f)
4) Compute Aub :
Auf = ~(B¥)~! - [f§ — Cf Auk — CEAN]
5) Compute Auk, Auk:
Auf = —(B)7H(ff - By Auk — B AN — HEAut)
Auf = —(BY) 7 (f§ — By Aub — B AN — HYAuf)

Remark. The main work of our calculation is once LU-decomposition of B¥, five times back
substitution, and algebraic calculation. that greatly reduces the computational complexity . in
fact, computational complexity of splitting iterative method (3.1) is the same as computation
complexity of (1.3), and we have the following conclusion.

Theorem 3.1. The iteration algorithm (3.7) is quadratic converges.
Proof: Define

®(z)=2—D '@)F(2) :VXRXV XV XV 3V xRxVxVxV,

then ®(z9) = 0, D®(x0) = 0.

Taylor’s formular yields.
1
B(z) - 20 = B(a) - B(z0) = | (1= OD*B(o -+ to — a0)(x - o)’
0

from the fixed point theorem, we obtain the local quadratic convergence of (3.7).

4. Numerical Experiment

The numerical test is carried out in axisymmetric spherical couette flow between two con-
centric different rotating spheres by using finite element method and described the splitting
iteration method, namely, Newton-like method. Spherical Couette flow depend on three pa-
rameters, A\ = Re !, ¢ and n which are describing Reynolds number, the difference of angular
velocities of two spheres and the gap of spheres. if we fix n = 0.14 and ¢ = 0.9, the A = Re ! is
taken bifurcation parameter. and we use the solution of the related Stokes equations as initial
value, the splitting iteration method was applied to Compute transcritical nondegenerate sim-
ple bifurcation point. the numerical results are Re = 642.05, Re = 739.08. when Re = 739.08,
we present the comparative results between Newton-like method (NLM) and old method (OM)
in the following table. the first two rows indicate the error ||zg — zf|| and the rest two rows
indicate the CPU time used by the two algorithms with respect to different iteration times k.

k 5 10 15 20

OM(error) 1.73-E3 | 1.69-E3 | 1.38-E3 | 1.27-E3
NLM(error) | 1.81-E3 | 1.54-E3 | 1.37-E3 | 1.14-E3
OM(time) 127.8s 263.7s 541.2s 753.6s
NLM (time) 85.7s 91.3s 103.7s 187.5s

It is obvious that NLM can save a lot of CPU time. in the following Fig. 1-2, we give Stream-
linear on the meridional plane
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Fig.1 Streamlinear on the meridional plane, Re=642, 645, 650

Fig.2 Streamlinear on the meridional plane, Re=739, 740, 745
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