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Abstract

In this paper, the authors present a locking-free scheme of the lowest order noncon-
forming rectangle finite element method for the planar elasticity with the pure displace-
ment boundary condition. Optimal order error estimate, uniformly for the Lamé constant
A € (0, 00) is obtained.
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1. Introduction

For numerical solutions of the equations of linear isotropic planar elasticity , the conforming
finite element method suffers a deterioration in performance as the Lamé constant A — oo,
i.e., as the material becomes incompressible. It is known as the phenomenon of locking (see
[1], [2], [3] and [5]). By virtue of numerical analysis, the coefficient C appearing in the error
estimate of the conforming finite element approximation to the planar elasticity depends on
the Lamé constant A\; and C'y — oo as A — oo. Thus in order to overcome the phenomenon of
locking, we need to construct a finite element method such that the numerical solutions of the
finite element scheme converge to the true solution of the planar elasticity, as the mesh h — 0,
uniformly with respect to A € (0, 00).

There are some works on locking-free finite element methods for the planar elasticity. The
Crouziex-Raviart element approximations to the pure displacement boundary value problem was
considered in [2] and [3] by virtue of the standard finite element analysis. The pure traction
boundary value problem was considered in [5] and [10] with triangular element approximations,
[11] with quadrilateral element approximations and [12] with the NRQ; element approximations
following the argument of [11] by the mixed finite element analysis. In the previous paper [9],
we have considered a higher order nonconforming rectangular finite element method for the
pure displacement boundary value problem of the planar elasticity. In the present paper, we
derive and analyze the locking-free scheme of the lowest order rectangular finite element for the
same problem. The locking-free finite element method for the pure traction boundary value
problem of the planar elasticity will be considered in our forthcoming papers.

In the following section, we present the preliminary consideration of the locking-free finite
element method for the planar elasticity. Then in section 3, we derive the lowest order locking-
free scheme of nonconforming rectangular finite element. In section 4, optimal order of error
estimate is obtained. At last, we end this paper with some numerical experiments.
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2. Preliminary

In this section, we present the general consideration of the locking-free finite element method
for the planar elasticity with the pure displacement boundary condition.
Let Q C R? be a convex domain with the boundary 912,

—pAG — (4 Ngrad(divd) = f in Q (2.1)
©=0 on 0. )
The corresponding variational problem is as follows
to find « € V, such that (22)
a(i, ) = (f,7) VYTeV, '
where V = (H}(Q))?
a(@,?) = /{,u gradi : gradv + (u + A) (divd) (divd) }dz
Q
= ,u/{gradul - gradvy + gradus - gradvs }dx
Q
+(p+A) / (divid) (divd)dz, (2.3)
Q
(F.o) = [ Foous (2.4)
Q

and A € (0,00), 4 € [u1, 2], 0 < g1 < po, are the Lamé constants. Since the bilinear form a(:, -)
(2.3) is V-elliptic, there exists an unique solution of the problem (2.2). Now we consider the
conforming finite element approximation to the problem (2.2). For the sake of simplicity, we
assume that () is a convex polygon. Let Jj be the regular triangulation of ,V, C V be the
conforming finite element space with respect to Sp, then the finite element approximation to
the problem (2.2) is as follows:

{ to find iy € V4, such that
a(n, Up) = (f,Uh) VUh € Vh.

The following error estimate holds
Theorem 2.1 (see[9]). Assume that @ € (H*(Q))? and @), are the solutions of the problems
(2.2) and (2.5) respectively, then

| —dplli0 < Cx-hldlaq, Cx=C\2u+ A, (2.6)
where C = Const. > 0 is independent of h and .

From theorem 2.1, it can be seen that the solution @ of the conforming finite element
approximation (2.5) converges to the solution @ of the problem (2.2) as h — 0, for each fixed
A; but we can not say any thing about the convergence of i, when A — co. In fact, Brenner et
al.[2] proved that the solution @, of the conforming linear finite element approximation, with
respect to triangulation S, might not converge to the solution @ of the problem (2.2) when
A — oo. It is known as the phenomenon of locking. By the argument of [9], it can be seen
that to overcome the locking, the crucial point is to construct a finite element space V},, and an
interpolation operator I, : (H'(Q))? — V4, such that the following commutativity property
holds

(2.5)

divIly @ = ypdivi, (2.7)

where 7, : L?(Q2) — W}, is another operator, and W}, is a piecewise polynomial space with lower
degree than those in V}; and the following error estimate is required:

|divi — vy, (divid) |lo,o < Ch|divi]y q. (2.8)
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Then by the regularity of the problem (2.2)(see [2][3]), we have:

12,0 + Aldivil 0 < C||fllo; (2.9)
and it is hopeful to obtain optimal error estimate uniform with respect to A € (0, 00):
it = @nll1,0 < chl| fllo.0, (2.10)

where C' = Const. > 0 independent of h and A.

However in order to satisfy the conditions (2.7) and (2.8), the finite element space V}, must
be nonconforming in general. Let V;, C (L?(2))? be a nonconforming finite element space with
respect to the regular triangulation 3, and

ap(@p,Uh) = Z / {1 gradiy, : gradty + (p + N)dividy, - divdy }dz. (2.11)
T T

Assume that ||@||n = an(Th, T,)? is a norm on Vj. The nonconforming finite element approxi-
mation of the problem (2.2) is

to find @y, € V4, such that
L > (2.12)
an(@n, Un) = (f,0n) Von € Vi,
and the following abstract error estimate holds (see [4]):
Theorem 2.2. (the second Strang lemma)
Let @ and iy, be the solutions of the problem (2.2) and (2.12) respectively, then
an(@, @) — (f, 10
il < O inf i+ sup a0 (ol (2.13)
n €V 01 EVi, ||Wn

where C' = Const. > 0 independent of h.

3. The Lowest Order Nonconforming Rectangular Finite Element

In this section, we derive a locking-free scheme by constructing a kind of nonconforming
rectangular finite element based on the analysis in section 2.

Let 2 be a rectangle, &, be a regular subdivision of 2, and T" € &, be a rectangle. First,
we find that the simplest choice of the operator vy, satisfying the estimate (2.8) is

1
yr(divd) = —/ divtdzdy (3.1)
7| Jr
with |T'| = fT ldxdy, and 73, : L?(Q) — W,— the piecewise constant space with respect to Sy,
such that
Yhw|r = yrw Yw e L*(N) (3.2)

Secondly, we will find such operator IT;, (and then the finite element space V},), that the condition
(2.7) is satified. For any given T' € Sy, denote A;, I; = A;4;4+1(i mod 4), 1 < i <4, (zo,y0) =
iz?zl A; and |l1] = |lIz] = 2hq, |l2] = |la] = 2h2(see Fig 3.1) as its four vertices, four edges,
center and lengths of edges respectively.

Let

RY:
00 = do + @1 (z — x0) + d2(y — yo) + ( e1(y ~ %) ) ) (3.3)

then we have the following result
Lemma 3.1. Let

1 ov
i, = — | —dxd
ay |T| T('?a: zray,

. o5 (3.4)
a vd:rdy,

2 = T a
|T| T Oy
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then
divlly ¥ = yp(divd). (3.5)

Proof. From (3.3), it can be seen that

Mﬂhﬁzm-<é>+@-<?>. (3.6)
And from (3.1), by Green’s formula we have
4
1 1
yr(divg) = —/ divvdzdy = — / U Uids
] T2 ), "7

Do () (D (4)
S (1) S (D) o

In view of (3.6) and (3.7), the lemma is proved.

Finally, we will find the nonconforming finite element space V},, such that for any v, € V4,
the integral of the jump of which across the common edge of any two adjacent elements T and
T~ vanishes. In the analysis of nonconforming finite element method (see [6], [8]), this property
is very important to ensure the convegence of nonconforming finite element approximation. We
have the following lemma.

Lemma 3.2. Assume that the coefficients @, and @y satisfy (3.4), then the equation / Mpvdy =

l2
/ﬁdy is equivalent to the equation / Mpddy = /ﬁdy, and the equation / Mpddy = /Udy
12 la la I3 l3
is equivalent to the equation / Myvdy = / vdy.
I I

Proof. In fact, if | Ipddy = /ﬁdy, ie.,

l> lo

2h1h2 6U Cp 2h3 N
/12 Irddy = 2hady + —— T )y oz —dxdy + ( . 2h By /l2 vdy, (3.8)
then
N _ N 2h1h2 ov Cy - %h%
/14 pddy = 2hody — T a—dwd Y+ (  2h2hy
4hiho
= vdy — d dy = / vdy—/ —dwdy
s |T| 3 I

/ ddy, (3.9)
la
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since by Green’s formula, / —dxdy = / vdy — / vdy. And the second equivalence can be

proved in the same way. The proof is completed
Thus from the following equations:

2h1h2 ov %h% - C1 _ N
/IHTvdy = 2haly + —— T /s %dmdy + ( Mihy ey ) T /lvdy,
2 2
h 8 ) (3.10)
2 1702 17 < 2h1h2 - Cy > / -
Mrody = 2h1dy + —— da:d + = [ ddx,
/ls TR T T\ ke ) T,

we can determine the coefficients dy = agl,a02)T c; and ¢y as follows:

o= i, A>WWza<A [ Jref

(3.11)
0 = o, {‘z </,2 +/l4> vy + (/,3 /,) W}
and
= 377 {h2 </ +/> v = </ +/> ”ldy}’ o)

3
=t ([ e[ e ([0 )

Substituting (3.4), (3.11) and (3.12) into (3.3), after some arrangements we have Ilpv =
(I 71, O2, 7v2)t defined as follows: Let

(x — o) (y — yo)
— 9 - JV 1
3 o T (3.13)
then
‘1
I, 7v, = Z m/ vids - p1; (€, 1), (3.14)
. 7 li
where
p11(§,m) = %(_1 — 20+ 31?),
p13(&,m) %(_1 + 21 + 31?),
p14(f,77) = %(3 - 26 - 3772)7
and
1
Il 7vs = Z m/ vads - p2;i (€, 1), (3.16)
i=1 "l
where
p21(&,n) = %( —2n- 352)
p22(€777) - %( 1+2€+3§2) (317)
p23(&,m) = %(3 +2n — 38%),
paa(§,m) = 7(=1 - 26+ 3¢%).
Lemma 3.3. The interpolations (3.14) and (3.16) are preserved in Py(T), i.e.,
Hi,TUi = v; Yv; € P, (T), 1 =1,2. (318)

Proof: The equations (3.18) can be proved for v; =1, v; =& = (z;—fo) and v; =n = (y;—go) by
straightforward calculations.
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Now we can set the nonconforming finite element space V}, as follows(see Fig 3.2):

Vh:{ Up 1 Op € Pr, /ﬁds:/ﬁ;ds, VFC8T+08T_,
F F

and / Guds = 0,YF C 90} . (3.19)
F
L N P;

where 17; = Up|r+,7, = Up|r- and Pr = ( P;; > ,Pir = span{pli}?zl and Pyr = span{pgi}?zl.
Let I, : (H'(Q))? — V4 be defined as follows: for any given @ € (H(Q2))?2,

Hh'17|T = I, VT € Sp. (3.20)
Lemma 3.4.

-1l = VanG - (3.21)

s the norm on the space V},.

Proof. Tt is sufficient to prove that V ), € Vj, if ||Up||n = O then ¢, = 0. In fact, if
|9nlln = 0, i.€., an(Vh, ¥n) = 0, then by the definition (2.14), we have

|Op)1,7 =0 vT € Sy,
which means that
Opl|T = Cr— Constant vector depedent on T, VT € .

Since the mean values of integrals of @, on the common edge F' of two adjacent elements T+
and T~ are the same, then it can be seen that

#, = C— Constant vector on (2,

from which and since the integral of ¥, vanishes on each edge F' C 91, we have ¢, = 0. The
proof is completed.

4. A Locking-free Finite Element Scheme

We consider the following finite element approximation to the problem (2.2):

Find @y € V}, such that
o 7 (4.1)
an(n, Un) = (f,Th) Vvp € Vi
where V}, is defined by (3.19).
We now present the error estimate of (4.1) which is uniform with respect to A € (0, c0).
First, we have the following lemmas.

Lemma 4.1.

0,0 eV, Vi e (H' ()% (4.2)
Proof. From lemma 3.2 and the relations (3.10), it can be seen that VF = T+ N oT~
(c.f.Fig 3.2)
/ M+ 7ds = / Iy vds = / vds,
F F F
and VF N 0N,

/ [Myuds = / tds = 0,
F F
then the proof is completed.

Lemma 4.2. The following interpolation error estimate holds:
| — #||1,7 < Chl|tlar Vi€ (H*(T))?, T € Sh. (4.3)
where C = Const. > 0 is independent of h.
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Proof. By lemma 3.3 and the arguement for the affine equivalent finite element method (see
[4]), the lemma is proved.

We have the following error estimate:
Theorem 4.3. Assume that f € (L*(2))2, the solution of the problem (2.2) i € (H?(Q) N
H}(Q))?, and @y, is the solution of the finite element approzimation (4.1), then the following
error estimate holds

@ — @nlln < Ch| fllo.g, (4.4)

where C = Const. > 0 is independent of h and .

Proof. By the second Strang lemma (Theorem 2.2), it is sufficient to estimate the approxi-
mate error (the first term on the right hand side of (2.13)) and the nonconforming finite element
error (the second term on the right hand side of (2.13)). First, the approximate error can be
estimated as follows:

By lemma 3.1 and lemma 4.2, we have

*inf ||17—17h||i S ||ﬁ—Hhﬁ||?L:ah(ﬁ—Hhﬁ,ﬁ—Hhﬁ)

R EVR
= pY |@—Trdl o+ (n+ N> |ldivi — dioTri|fj 5

T T
= pY_|@—Tral p + (n+ X)) |ldivd — yr(divd) |3 ¢
T T
< phlily g + (4 AR |divil; g
< CRA (g + Mdivil? ) < CR?|| fI2 g, (4.5)

in the last inequality, we have used the regularity of @ (2.9).
Next, the nonconforming finite element error can be estimated as follows: Using Green’s
formula and considering that @ is the solution of the problem (2.2), we have

En(i@, ) = an(id, @) — (f, i)
= Z / {pgradi : grady, + (p + \)divd - dividy ydz — / finda
T /T Q
= - / {pAT + (p + X)grad(divi) }iipde —/ f-bnda
Q Q
+ Z/ {ud, @ - Wy, + (1 + N divid - &, - V}ds
T Jor
= NZ/ 8,,ﬁ-u7hds+(u+/\)2/ divi - @y, - Pds. (4.6)
T Jor T Jor
Denote

Pl (w) = % /T wdz. (4.7)

Since on the common edge F = 0T+ N AT~ of adjacent elements 7'T and T~, the following

relation holds: Vwy, € Vp,
/ W ds = / Wy, ds, (4.8)
F F

U—;}T = U7h|T+7 ’117; = wh|T_7 (49)

where

and on the edge F' C 99,
/ Whds = 0, (4.10)
F
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by the error estimate of nonconforming finite element (see [8],[6]), we have

2
> [ ovidudsl < 33 110i - b O)loor -~ 5 () oo
T JOT T =1
< COhlidlz.q - [|[Walln, (4.11)
and
|Z/ divii -y, - vds| < Y ||divi — p§ (divid)|lo,or - ||k — py (F4)]|o,67
T /oT T
< Ch|divﬁ|17g - || Wr || - (4.12)
Substituting (4.11) and (4.12) into (4.6), we have
| En (0, W) | < Ch{lilz,0 + Aldiviily o} - ||@h||5- (4.13)
By (4.13) and the regularity of the solution @ (2.9), it can be seen that
Ey (i, w .
sup BB o £ o, (414
ozaneVi  |[Whlln

where C' = Const. > 0 is independent of h and A. The proof is completed.

5. Numerical Experiments

In order to check the convergence of the finite element scheme described in this paper as
A = oo, we give two numerical examples in the rest of this section.

5.1. A cantilever beam with a parabolic end load

This example appears in R. Kouhia and R. Stenberg’s paper[10]. It is a standard test
problem of a cantilever beam subjected to a parabolically end shear. For the sake of convenience
in notation, we use the Poisson ratio v. It relates to u and X by the following identities:

1 2uv

_ —_— p—y . -].
P +vy 1-2v (5-1)
Let Q =[0,L] X [-¢,c] and T'p = L X [—¢,¢]. A true solution of (2.1) is
71/2 —V 2702
uy (z,y) = — £ {3:6(2L —a)+ %} : (5.2)
us(w,y) = P {(L - o) — 13+ e 4 3120 4 22t L (5.3)

with P = -1, L = 16, ¢ = 2, and £ = 1. On a part of the boundary, @ satisfies the following
normal boundary traction condition (I is the identity tensor):
{pViI + (Vi)' + Mdivi I} - i = §:= (0,0.75P(c* — y*)/c*)t,  (z,y) € Ty. (5.4)
We obtain the nonhomogeneous displacement boundary conditions for (2.1) by virtue of
(5.2) and (5.3). Denote h, and h, as the mesh length along z— and y—direction respectively.
[10] solves the problem by the traction condition (5.4), then obtains the discrete displacement
on I'y. We use the displacement boundary conditions to obtain the discrete boundary traction
gr and compare it with §. In Table 5.1 and 5.2, we present error information in the energy
norm and L? norm on different meshes, for different v.

Table 5.1. v =10.3

h h [a—@nllo.o = Tg=3nllo,rq
r v 1Zllo,0 (K 17110,
. .Tg
4.0 | 2.0 0.008949 0.097070 1.354426
2.0 1.0 0.002241 0.034419 0.654926
1.0 | 1/2 0.000560 0.024350 0.341142
1/2 | 1/4 0.000140 0.012176 0.178884
1/4 | 1/8 0.000035 0.006088 0.092761
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Table 5.2. v = 0.49999

B hy HﬁH—:‘TthO,Q HiHilehHh Hﬁu—qﬁhllo,rg
dllo, @ illn gllo,rg
4.0 2.0 0.009743 0.096717 1.201420
2.0 1.0 0.002433 0.048420 0.622112
1.0 | 1/2 0.000608 0.024205 0.327500
1/2 | 1/4 0.000152 0.012100 0.173906
1/4 | 1/8 0.000038 0.006049 0.091157

Error analyse. From Table 5.1 and 5.2 we can see that, each element is refined iteratively by
bisecting its four edges. The edge lengths, relative errors in L?-norm and in the energy norm,
and relative boundary traction errors are reduced respectively as follows:

he =4x27", hy =2x2"",
|Z — @nln

Il —dnllog . ) 108949 x 9—2n

_ _ ~ 0.09707 x 27,
lll]o.2 ]|

g =Gnllore 1 9142 w2 m=0.1,.- 4.
llg1lo,ro

Thus we can conclude that, for this example, error reductions behave uniformly with respect
to A = +oo as follows:

1@ = dnlloo = O(h?), |l@ —dnlln = O(h), 1§ = Gullo,r, = O(h).
Thus these results coincide with our convergence result (inequality (4.4)) very well.
5.2. Fixed boundary problem

The second is mathematical example. We give a more complicated righthand side

f: (64(I+y),€4(m7y)), (55)
and solve (2.1) with homogeneous boundary conditions.
The domain ©Q = [0,1] x [0,1] is divided into the combination of uniform squares. The

length of any edge of each element is h. We list error information in Table 5.3, 5.4, and 5.5 for
different A.

Table 5.3. A =10

Tan, —@n, o, Mihy —nyl
b | b | lEwlloe | Zhegeg® | Mol | —ym g

0.1 0.2 | 1.4333304 0.13081827 14.8139829 | 0.36546064
0.056 | 0.1 | 1.4137843 0.0375355 14.8315507 | 0.19148415
0.01 | 0.02 | 1.4071949 0.00164618 14.8323388 0.0403195

Table 5.4. X =10°

Mih, —tnyllo, Mipy =Gyl
hi | he | liwloe | 2™ | lanlln | o

0.1 0.2 | 1.1153696 0.15905983 9.7854903 | 0.32077705
0.056 | 0.1 | 1.0799019 | 0.045995382 | 9.5561538 | 0.15702522
0.01 | 0.02 | 1.0655821 0.00194632 9.4691434 | 0.03115786

Table 5.5. A =10'°

T, —Tny o, MTh, —nyll
M | b | Mmoo | “pa e | Wl | = g

0.1 0.2 | 1.1153765 0.15906064 9.7846438 | 0.32076529
0.05 | 0.1 | 1.0799063 0.04599705 9.55526 0.15701656
0.01 | 0.02 | 1.0655821 0.00410217 9.4469238 | 0.03134559
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It should be noted that since there is no explicit solution of the problem with given f in
(5.5), we compare the numerical solutions over two different meshes.
From Table 5.3-5.5 (for A = 10,10%, and 10'°), we can see that, all relative L2-errors

[En, —ting llo,@ lltiny —tiny llny
lldn, llo.o ldny [1ny
with respect to A € (0, 00). This means that our scheme is locking-free, provided its convergence

which is proved in Theorem 4.3.

and energy-errors tend to zero, as the mesh size h — 0, uniformly
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