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Abstract

In [12], a QP free feasible method was proposed for the minimization of a smooth func-
tion subject to smooth inequality constraints. This method is based on the solutions of
linear systems of equations, the reformulation of the KKT optimality conditions by using
the Fischer-Burmeister NCP function. This method ensures the feasibility of all iterations.
In this paper, we modify the method in [12] slightly to obtain the local convergence under
some weaker conditions. In particular, this method is implementable and globally con-
vergent without assuming the linear independence of the gradients of active constrained
functions and the uniformly positive definiteness of the submatrix obtained by the Newton
or Quasi Newton methods. We also prove that the method has superlinear convergence
rate under some mild conditions. Some preliminary numerical results indicate that this
new QP free feasible method is quite promising.

Mathematics subject classification: 90C30, 65K10.
Key words: Constrained optimization, KKT point, Multiplier, Nonlinear complementarity,
Convergence.

1. Introduction

Consider the constrained nonlinear optimization Problem (NLP):
min f(z), = € R", s.t.G(x) <0,

where f : R® = R and G(z) = (91(2), g2(2), - , gm(x))T : R* — R™ are Lipchitz continuously
differentiable functions.

We denote by D = {x € R"|G(z) < 0} and D = cl(D) the strictly feasible set and the
feasible set of Problem (NLP), respectively.

The Lagrangian function associated with Problem (NLP) is the function

L(z,\) = f(z) + \TG(x), (1)

where A = (A1, X2, -+, An)? € R™ is the multiplier vector. For simplicity, we use (z,)) to
denote the column vector (z%, A\T)T.

A Karush-Kuhn-Tucker (KKT) point (Z,X) € R™ x R™ is a point that satisfies the nec-
essary optimality conditions for Problem (NLP):

where 1 <i < m. We also say 7 is a KKT point if there exists a A such that (z,\) satisfy (2).
Finding KKT points for Problem (NLP) can be equivalently reformulated as solving the
mixed nonlinear complementarity problem (NCP) in (2), Problem (NCP) has attracted much
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attention due to its various applications, see [4, 1]. One method to solve the nonlinear comple-
mentarity problem is to construct a Newton method for solving a system of nonlinear equations
(see [11, 5]). Qi and Qi [12] proposed a new QP-free method which ensures the strict feasibility
of all iterates. Their work is based on the Fischer-Burmeister NCP function. They proved the
global convergence without isolatedness of the accumulation point and the strict complemen-
tarity condition. They also proved the superlinear convergence under mild conditions.

However, for the global convergence, [12] still used some stronger conditions. One is the
linear independence of the gradients of active constrained functions at the solution; another
is the uniformly positive definiteness of H* which is obtained by the quasi Newton update.
To overcome the shortcoming, in this paper, an algorithm is proposed for the minimization
of a smooth function subject to smooth inequality constraints. This algorithm is based on
the method in [12]. Our main work is to modify this method slightly for obtaining the global
convergence under some weaker conditions. Comparing with the method in [12], our method is
implementable and globally convergent without assuming the uniformly positive definiteness of
H* and the linear independence of the gradients of active constrained functions at the solution.
In particular, for the superlinear convergence of the algorithm we used the same conditions as
the method in [12].

In this paper, we use the Fischer-Burmeister function [2] as the following:

Y(a,b) =Va®>+ b —a—0.

Let ¢i(z,A) = ¥((—gi(x)), Ni), 1 <i<m, ®1(z,A) = (d1(z,\)- --d)m(a:,)\))T. We denote
®(z,\) = (VoL(z,\)T, (@1 (2, \)T)7T, Clearly, the KKT point conditions of (2) are equiva-
lently reformulated as the condition ®(x,\) = 0.

Let Iy (z, A) = {il(gi(x), Ai) # (0,0)} and Io(x, A) = {i|(gi(x), \i) = (0,0)}. If j € Li(z,N),
then we denote,

9i L (2 ) = A
ey Y PR v

We have V,¢; = ¢;Vg;(z) and Vy¢; = vje; where e; = (0,---,0,1,0---,0)7 € R™ is the jth
column of the unit matrix, its jth element is 1, and other elements are 0. If j € Iy(z,\), then
we denote

fj(l',A) = —1.

Ej(x>>‘):1_\/§/2; ’YJZ’YJ(I.)A):_1+\/§/2'

We have {;Vg;(z) € 0.¢;(z, ) and vje; € Or¢;(x, A). Clearly, f? + 7]2 >3-2V2>0.

The paper is organized as follows. In Section 2, we propose a QP free feasible method. In
Section 3, we show that the algorithm is well defined. In Section 4 and Section 5, we discuss the
conditions of the global convergence and superlinear convergence of the algorithm, respectively.
In Section 6, we give a brief discussion and some numerical tests.

2. Algorithm
In the following algorithm 2.1, let §Jk = &z, p*) and Vi = v @k, k), n;? =—4/ —27;?,

v (Vi Vb _( HN ek, el
S\ VS V) T\ diag(€)(VGM)T diag(n* — ) )

where I, is the n order unit matrix, &f = c;min{1,||®*||"}, ®* = ®(z*, \*), A\* is obtained
in Algorithm 2.1, ¢; € (0,1), diag(&¥) or diag(n® — c*) denotes the diagonal matrix whose jth
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diagonal element is &;(z*, u*) or n; (2%, u*) — c;?", respectively, and

- { crmin{1, [|BFV}, nk =0o0r — ¢ /mk > 1,0k £0;
J

cy = .
0, otherwise.

Algorithm 2.1.

Step 0. Initialization.

Given an initial guess (22, %), 2° € D, po > 0, \° = u° ¢; € (0,1), 7 € (0,1), v > 1,
i > o >0k € (0,1), and § € (0,1). Given a symmetric positive definite matrix H°. Denote
VGk = VG(z*), VF =V (2F, k), f¥ = f(z*) and so on.

Step 1. Compute.

Compute d*® and A\*° by solving the following linear system in (d, \):

“()-()

If d¥0 = 0, then stop. Otherwise, compute d** and A\*' by solving the following linear system

in (d,\): . o
v < A ) - < diag(eF) () ) | (4)

where A¥0 = min{\*° 0}. Compute d*?> and A*¥? by solving the following linear system in (d, \):

v (3) = (e - @ paiagtenre ) ©)

where e = (1,---,1)T € R™. Let
dk ) dkl dk2
(/\k)zbk()\kﬂ)_‘_pk(/\]w)a (6)

where b* = (1 — p¥) and
(dkl)vak

ph=0-1) ol (7)
L+, Ao flast
Compute a correction J, the solution of the least square problem in d.
mind? Hd, s.t. g;(z* + d*) + d"'VgF = —¢* for any i€ I, (8)

where Iy, = {i|gF > —\F} and

(2

k
gk = max{nd’“n",max{‘ G

i
F\F
€he || =i A

K
b} o
If (8) has no solution or if ||d*|| > [|d¥||, set ||d*| = 0.

Step 2. Line search.

Let t* = 77, where j is the smallest non-negative integer such that

Flat 4ttt + (¢)d") < f* + ot () TV S (10)

and A
gi(zh +t*d* + (t%)2d*) <0, 1 <i < m. (11)

Step 3. Updates.
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Set zFt! = 2k 4 thak 4 (tk)24", Set. A1 = min{A*, fie}, 1 = P(z* A1) and
prtl = min{max{\*0 ||d*||e}, ie}. If ®*F1 = 0 or ®(z*+ uk*+1) = 0 then stop; otherwise
update H* and obtain a symmetric positive definite matrix H**t!. Set k = k + 1. Go to Step
1.

3. Implement of Algorithm

In this section, we assume that the following assumptions A1-A3 hold.

A1 The strictly feasible set D is nonempty. The level set S = {z|f(z) < f(zo) and z € D}
is bounded.

A2 f and g; are Lipschitz continuously differentiable, and for all y, z € R*™™  ||L(y) —
L) < eolly - 2]l

A3 HP is positive definite and there exists a positive number m; such that 0 < dT H*d <
ma||d||? for all d € R, d # 0 and all k.
Lemma 3.1. Assume that ®* is an accumulation point of {®*}, PF) 5 * | k() 5 £* gnd
n*) s p*. If ®* £ 0, then n; —c¢; <0 foralyj, j=1,2---,m.

Proof. Without loss of generality, we may assume that V*(®) — V* for any j. If n; =0, then
i =0, ()2 4 ()2 > 3 - 2v/2 > 0 implies (v])2 + (€1)2 >3 -2v2 > 0 and £ > 0. It is
easy to see either n;-c(l) =0or —ff(l) /nf(’) > 1 for sufficiently large k(i). From the definition of
cf(’) we have ¢; > 0 and j — ¢ < 0. This lemma holds.
Lemma 3.2. If ®* # 0, then V* is nonsingular. Furthermore, assume that (z*,pu*) is an
accumulation point of {(z*, u*)}, (z*@ k@) = (z*, p*), D = &* and VFO — V. If
®* # 0, then ||(VF@D) 1| is bounded and V* is nonsingular.

Proof. If V¥(u,v) = 0 for some (u,v) € R*™ where u = (u; -+ ,u,)T, v = (v1 - ,vm)7.
Then we have

(H* + & 1) u+ VG*v = 0, (12)

and
diag(€¥)(VG*)Tu + (diag(n® — *))v = 0. (13)

Assume ®F £ 0. Obviously, & # 0 and, by the definitions of ff and n;-“, fjl-“ > 0and nf — cf <0,
j=1,2,--- m. Thus, diag(n* — c*) is nonsingular. We have

v = —(diag(n® — ¢*)) " diag(€")(VG*) u. (14)
Putting (14) into (12), we have
ul (HY + & 1) u — u'VG*diag(€¥) (diag(n® — c*) "1 (VG*)Tu = 0. (15)

uT(H* +é'I,)u = 0 and u = 0 are implied by the fact that H* 4 &1, is positive definite and
—VG*diag(£¥)(diag(n® — ck)) "1 (VG*)T is positive semi-definite, then v = 0 by (13). The first
part of this lemma holds.

On the other hand, without loss of generality we may assume that E]f(l) — & # 0,

diag(€*D) = diag(€*), diag(n®* D) = diag(n*), nf(i) - cf(i) - nj —cj, H*® 5 H* and
(2*@ k@Y = (2*, u*). By the Lemma 3.1, we know that nj—cj <O0foralj=12---,m.
H*¥® — H* implies that H* is positive semi-definite and H* + ¢}I,, is positive definite. By
replacing index k by * in the above proof, It is easy to check that V* is nonsingular. Assumption
VE®D — V* implies that ||(V*®)~1|| is bounded. This lemma holds.

If ®* = 0 or ®(z*, u*¥) = 0, then (2%, \F) or (2%, u*) is a KKT point of Problem (NLP).
Without loss of generality, in the sequel, we may assume that ®* # 0 and ®(2*, u*) # 0 for all
k.
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( ) always has a unique solution.

Because V* is nonsingular, (3) or
(VE)~1 exists. Let

V* is nonsingular and A% =

g [ HE+EL el LAl A, (16)
-~ \ diag(€")(VGH)T diag(n* —c*) ) — \ A, AL, )~

Let Q% = diag(n* — c*) — diag(¢*)(VGF)T (H* + ek 1,,) "1 (VGF).
Lemma 3.3. If ¢ # 0, then d*® = 0 if and only if V. f(z*) =0, and d*° = 0 implies \** = 0
and (z*,\¥°) is a KKT point of Problem (NLP).

Proof. If Vf(z*) = 0, then d*® = 0 and A\¥® = 0 by (3). If d*® = 0, then (3) implies
VGFAR = —V f(2*) and diag(n® — c*)A¥ = 0. So, A** = 0 and Vf(z*) = 0.

Without loss of generality, we assume that the algorithm never terminates at any k, i.e.,
d*0 £ 0 for all k in the remainder part of this paper.
Lemma 3.4. If d* # 0, then

1 e [ld )7 < (@) (H* + o41,)dk0 < —(d0)TV f+.

2. (dkl)vak = (dkO)vak - Zi:)\?0<0(>‘§0)4'

8. (d*)TVfr < o(dF )TV fk.

Proof. (3) implies

(H* + &7 1,)d"™ + VGFAFO = —v fk (17)
and
diag(e")(VGF)Td* + (diag(n® — )N = 0. (18)
We have
MO = —(diag(n* — c*) " diag(e¥)(VGF)Td. (19)

Putting (19) into (17), we have

—(d")T'V = (@) (H*d* + & 1,) + VG*A)
()T (H" + &1 1,)d"
—(d)"V G (diag(n® — c*)) " diag(¢") (VG*)T d*. (20)

(d*TV G (diag(n® — ¢*)) Ldiag(F)(VG*)Td < 0 implies
et lla®||? < (d*)T(H Y + & 1,)d* < —(a") TV fE. (21)
The first part of the lemma holds. (3) and (16) imply
(@) = —Ab vk AR = 4k vk, (22)
The property of the matrix implies
(Q")'diag(¢") = ((diag(¢")) ' Q") ™" = diag(€*)((Q")™) . (23)
(4), (16) and (23) imply A¥,diag(¢*) = (A%)T and
(@)Y f* = (AT V)TV IR = [(AT,) T diag(€9)]T (V f5)(AR0)?
= (@)= Y (O (24)

i:)\;"0<0

The second part of this lemma holds. Finally, (5)-(7) and (24) imply

(d* — d") TV * = ||d" |7 [AYydiag(€")e] "V f* = ||d™ " 2/\’”0
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and
(@)1 = (1= gY@V 4 pH @)V < 0TV (25)

This lemma holds.

It is easy to prove that (see [12]):
Lemma 3.5. If d° # 0, then there is a t such that, for all t € (0,t), (10) and (11) are
satisfied.

Proof. If d*° # 0, then by the continuous differentiability of f, we have

F* = f@F + tdF + 2d) > —t(d)TV R+ 0. (26)

(26), g¥ < 0 and the continuous differentiability of g; imply that there is a £ > 0 such that, for
any 0 < t <, (10) and (11) are satisfied. This lemma holds.
Lemmas 3.1-3.5 show that Algorithm 2.1 can be implemented.

4. Convergence

In this section, we assume that assumptions A1-A3 hold in this section.

Lemma 4. 1 Assume z*() — z* and ®FO > e > 0 for some e, then the sequence of
{(dF@0 XE@OVL L (@O NRDIYY gnd {(d*D2 ) A¥D2)} are all bounded on k =0,1,---.

Proof If 250 = 2% and D) > ¢ > 0 for some E, then the matrix sequence {(Vk(’))_l} is
proved to be uniformly bounded in the Lemma 3.2. {a: 2 } is bounded due to the assumption
A3. The solubility of system (3) implies that {(d¥(¥0 \k(10)} ig bounded which implies the
boundedness of {d*()1} of the right- hand side of (4). Hence {(dR1 ) Nk )} is also bounded.
Finally, the boundedness of {d*®"' \¥()1)} implies the boundedness of the right-hand side of
(5). Hence {(dF()? )\k(’)2)} is also bounded.

Lemma 4.2. Assume ¥ — 2* and ®*) > ¢ > 0 for some €. There is a c3 > 0 such that,
forallk=1,2,---,
15 — d* O] < ey |dH ).

Proof. 1t is from the Lemma 3.2 that there exists a ¢3 > 0 such that, for all k. = 0,1, -,
cg > 2mpF(|(VFD) =1, Let
AdFD = @) — @HDT and AN = \KO) — \KOL,

Then by (4)-(6), (Az*®, AXF() is the solution of
o [ AdFD 0
k(%) ’ — .
v (3o ) = (L paon paiagiere ) 0

(A, AN || < el d D0

It is easy to see that

The lemma holds.
Lemma 4.3. Assume 2 — 2* and \FG) — \*,
1. If d*D — 0, then A7 >0 forany 1 <j <m.
2. If d*W0 — 0, then «* is a KKT point of Problem (NLP).
3. If d*® = 0 and ®* > ¢ > 0 for some ¢, then x* is a KKT point of Problem (NLP).
Proof. Tt follows from the Lemma 3.4 that

(@)D <~ Dgllat P - S ()" (28)

R0 <o
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Hence {d*()} — 0 implies that

S )t 5 0and X >0, 1< <m. (29)
iaf%<o
The first part of this lemma holds.

Because {\*(V} < fi and p*() are bounded, there is an accumulation point X* of {\*()}.
Without loss of generality we may assume that ¢*) — ¢*, u*@) — p* and XD — X*. (28)
implies that, for any accumulation point \* of {\¥()}, Af > 0,1 < i < m. Taking the limitations
in both sides of (3), by noting d*(¥° — 0,we obtain (A\*)TVG* = —V f* and diag(n* —c*)\* = 0.
If —gr >0, for some 1 <i < n, then —pf +cf > 6 >0 and A =0, that is, for any 1 <i < m,
g Af = 0. The second part of this lemma holds. If d*® — 0 and ®*) > ¢ > 0 for some ¢, then
(28) implies d*(V° — 0. So, z* is a KKT point of Problem (NLP). This lemma holds.

By using the Lemma, 4.3, the proof of the following lemma is the same as the proof of the
Lemma 3.8 in [5].

Lemma 4.4. Assume ¥ — 2* and ®*D) > ¢ > 0 for some e. If d*D~1 — 0, then (x*, \*)
is a KKT point of Problem (NLP), where \* is an accumulation point of {\*(}.

The following result is the same as the Lemma 3.6 of [12].

Lemma 4.5. Assume z*(V — z* and ®* > ¢ > 0 for some . If

lim inf{||d*® =1} > 0,

then (z*,\*) is a KKT point of Problem (NLP), where \* is an accumulation point of {\*(}.
The following global convergence theorem holds.
Theorem 4.1. If x* is a limit point of {z*}, then z* is a KKT point of Problem (NLP).
Proof. Assume (zF() \F(D)) 5 (z* X*). If ®* = 0, then (z*, \*) is a KKT point of Problem
(NLP).
If ®* # 0, then A\*( is bounded by the Lemma 4.1. It follows from the Lemmas 4.2-4.5
that (z*,\*) is a KKT point, where \* is an accumulation point of {\*()}. The proof of this
theorem completes.

5. Superlinear Convergence

Let Ir(x,\) = {i|g:(x) = 0,\; >0} and X (x,\) = {d|dTVg;(z) > 0,i € I(x,\); }.

We need the following conception and assumptions for the superlinear convergence.
Definition 5.1. A point (z,\) is said to satisfy the strong second-order sufficiency condition
for Problem(NLP) if it satisfies the first-order KKT conditions (2) and if d"Vd > 0 for all
de X(z,\),d#0 and any V € 0pP(z, A).

Notice that the strong second-sufficiency condition implies that z is a strict local minimum
of Problem (NLP) (see [10]).

A4 {Vg;(z*)} arelinear independent, where i € I(z*) = {i|g;(z*) = 0}, z* is a accumulation
point of {z*} and a KKT point of Problem (NLP).

A5 H* is uniformly positive definite and there exist two positive numbers m; and ms such
that 0 < ma||d||> < dT H*d < my||d||? for all d € R and all k.

A6 The strong second-order sufficiency condition for Problem(NLP) holds at each KKT
point (z*, \*).

AY The strict complementarity condition holds at each KKT point (z*, u*).

A8 The sequence of {H*} satisfies

\PHUE = VAL, ) dM )
a]

0, (30)



658 D.G. PU, Y. ZHOU AND H.Y. ZHANG

where P¥ = [ — NE((NF)TN*)"INK)T and N* = (VgF), i € I* = {i|gF = 0}.
Assumption A7 implies that ® is continuously differentiable at each KKT point (z*, u*).
Same as the proof of the Lemma 3.2, we get
Lemma 5.1. Assume A4 and A5 hold. Then {||(V*)= ||} and {||(V*)='||} are bounded.
Furthermore if V* is an accumulation matrix of {V*}, then V* is nonsingular.
The Lemma 5.1 and the proof of the Lemma 4.1 imply
Lemma 5.2. Assume A4 and A5 hold. The sequence of {(d*()0 XKWL £ (kD1 NKD1)Y gnd
{(d*@D2 XKD gre all bounded on k =0,1,---.
A9 M0 < i and A\F = \¥0 for sufficiently large k.
It is easy to check that limg_, .o ®(zF, A\¥) = limg_,oo ®(2*, A9) = 0. (30) is equivalent to
the following
[(P*(H" + ef) — V3L(z*, "))

dk1||
— 0. (31)
||

We have ||c¥||/||®*]] — 0 and &} /[|®*[| — 0 as k — oo, respectively.

The proof of following Theorem 5.1 is the same as Theorem 3.7, Lemma 3.2 and Corollary
3.3 in [12].
Theorem 5.1. Assume A1-A3 and A6 hold. If (z*,\*) is a accumulation point of {(z*, \F9)},
then

1. (z*,\*) is a KKT point of Problem (NLP),

2.(z%, AF0) — (2%, \%),

3. d*® — 0, d" — 0 and d**> — 0.

Assume A1l and A3-A9 hold. The proofs of following the Lemma 5.2 and Theorem 5.1 are
the same as the Lemma 4.6 and Theorem 4.9 in [12].
Lemma 5.3. For k large enough the step t;, = 1 is accepted by the line search.
Theorem 5.2. Let Algorithm 2.1 be implemented, to generate a sequence {(z*,\¥)} and
(x*,\*) be an accumulation point of {(z*,\F)}, then (z*,\*) is an KKT point of Problem
(NLP), and (z* \*) converges to (x*,\*) superlinearly.

6. Discussion and Numerical Tests

In Algorithm 2.1 the matrix H* is replaced by H* + &¥I,. This idea is stimulated by
[6,9, 7, 8]. [6, 8] proposed a class of revised Broyden Algorithm in which the search direction
—H*V f(2*) is replaced by —(HFV f(z*) + ckV f(2*)), where the matrix H* is obtained by
Broyden updates, c¥ is a positive number and f is the objective function. [9, 7] proposed a
class of inexact Newton methods in which the search direction — (V2 f(z*))~!'V f(z*) is replaced
by —((V2f(z*)) 1V f(z*) + kV f(z*)), where c} is a positive number and f is the objective
function. In both above two classes of methods, the algorithms are globally convergent without
convexity assumption and superlinearly convergent under some mild conditions.

In Algorithm 2.1, the H* is updated by the BFGS method. In particular, we set

HEsk(sM)THE gk (y0)T
R — ke _ 2
(sP)THF sk + (sF)Tyk’ (32)
where
yk — gk7 (Sk)Tgk Z OQ(Sk)THkSk7 (33)
Ok gk + (1 — *)H s*  otherwise,

and

sk = ghtl _ gk

' = V() = V) £ (VG - VG)A, (34

9k — O.S(Sk)THksk/((sk)THksk _ (sk)Tgk)
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In table 1 which presents some results of the numerical experiments, we use the following
notation:

F1 method: the QP-free feasible method in [12]; F2 method: the method QP-free feasible

in this paper. Problem: number of problem in [3]; NIT=the number of iterations; NF=the
number of function f(z) evaluations, NG=the number of functions G(z) evaluations.

[1]

2]
3]

[4]

F1 method F2 method

Problem | NIT | NF | NG | NIT | NF | NG
1 40 66 | 66 17 31 | 49
3 12 17 | 23 11 17 | 19
4 4 9 11 6 11 13
5 6 11 11 5 10 13
12 7 15 17 5 10 18
24 11 19 | 24 12 16 18
29 8 15 18 9 12 13
30 7 10 14 10 13 14
31 10 37 | 41 9 21 23
33 10 28 | 34 11 15 19
34 23 68 | 78 18 39 | 44
35 7 12 15 8 11 13
36 13 72 74 14 35 | 49
37 17 79 | 85 16 41 | 47
43 12 25 | 30 11 25 | 29
44 17 39 | 42 14 21 29
76 10 39 | 42 11 29 | 35
100 15 39 | 45 13 27 | 37
113 22 50 | 58 16 24 | 31
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