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Abstract

We propose in this paper an alternating A-¢ method for the quasi-magnetostatic eddy
current problem by means of finite element approximations. Bounds for continuous and
discrete error in finite time are given. And it is verified that provided the time step 7 is
sufficiently small, the proposed algorithm yields for finite time T" an error of O(h + T1/2)
in the L?-norm for the magnetic field H(= p~ !V x A), where h is the mesh size, p the
magnetic permeability.
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1. Introduction

The quasi-magnetostatic eddy current model arises from Maxwell’s equations as an approx-
imation by neglecting the displacement current (see [1]-[4], [6]-[7], [10]-[11]):

OH
E+p— = 1.1
VxE+p—a-=0, (L.1)
VxH=J=0E+J,, (1.2)

where p is the magnetic permeability of the solution domain and o the spatially varying elec-
trical conductivity, and J, is source electric currents density. A constitutive equation

B=uH
relates the magnetic induction and magnetic field vectors. The divergence-free conditions
V-B=0 and V-J=0

are also imposed, indicating no point sources or sinks of electric current or magnetic induction
exists inside the solution domain (2. This is reasonable for low-frequency, high-conductivity
applications like electrical machines. A number of different formulations have proposed [2,
3,4, 6,7, 8 14, 15]. We consider in this paper the above eddy-current model (1.1)-(1.2)
by introducing the magnetic vector potential A = A(x,t) and the electrical scalar potential
¢ = ¢(x,t) as primary unknown.

As a matter of fact, the magnetic H can be expressed, in light of V- B =0 and B = uH,
as follows

H = lV x A. (1.3)
"
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Combining equations (1.1) and (1.3) we have

0A
E=-— -V (1.4)

Thus, in term of the A-¢ potentials, equation (1.2) becomes the following curl-curl equation:

0A
UW-FVX(’UVXA)-FUV(f):JS. (15)
Here v is the inverse of the magnetic permeability p (magnetic susceptibility). To maintain a
divergence-free current density J, the following auxiliary equation

0A
V-(UW—FUV(;S—JS):O (1.6)
must be solved simultaneously with equation (1.5).
In the following context we shall concentrate our attention on the finite element error analysis
of the following initial-boundary value problem of equations (1.5) and (1.6):

a% +Vx WV xXxA)+aVep=Jds, Qx][0,T],
A
V- (0%—t +oVep—Js) =0, Qx][0,T], (1.7)

Axn=0, 00 x][0,T],
A('70)2A07 Q.

Here Q C R? is a sufficiently smooth simply-connected and bounded polyhedral computational
domain with boundary I' = 92 and n the unit normal vector to I'. Though the equations are
initially posed on the entire space R?, we can switch to a bounded domain by introducing an
artificial boundary sufficiently removed from the region of interest. This is commonplace in
engineering simulations (see [9]).

For the sake of simplicity, we confine ourselves to in this paper linear isotropic, that is,
v € L*°(Q) is a bounded uniformly positive scalar function of the spatial variable € € only.
Hence, for some v, © > 0 holds 0 < v < v < ¥ a.e. in Q and conductivity o € L>=(Q) holds
o >0 a.e. in Q.

It is important to note that the magnetic vector potential A lacks physical meaning. The
really interesting quantity is the magnetic field H = vV x A. This is reason that we can use an
un-gauged formulation as in (1.7), which does not impose a constraint on V - A on the solution
domain 2. Obviously, this forfeits uniqueness of the solution in parts of the domain where
o = 0, but the solution for H remains unique everywhere.

The A-¢ method by means of finite element approximation has been applied in the magne-
tostatic eddy current computation far and wide in the last two decades. The numerical results
indicate that the method is a fairly valid one simulating the quasi-magnetostatic eddy current
model. It is worth our while mentioning that, however, the literature on the error estimates of
this method can so far not be found yet. We will in our paper devote ourselves to finite ele-
ment error analysis of the proposed so-called decoupled A-¢ scheme. It is shown that provided
the time step 7 is small enough, the proposed algorithm yields for finite time 7" an error of
O(h + 7/?) in the L*>-norm for the magnetic field H(= vV x A), where h is the mesh size.

The contents of this paper is organized as follows. In section 2, we describe the decoupled
A-¢ scheme in detail. We give two forms of the method: semi-discrete finite element implicit
scheme in time first and fully discrete finite element approximation. Section 3 devotes to the
error estimates of the magnetic field H (= vV x A) and electrical field E(= —A; — V¢) with
appropriate regularity assumptions.
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2. Description of the Method

In this section, we describe the semidscrete and fully discrete finite element approximation
of problem (1.7). First, we state some preliminary knowledge that will be frequently cited in
the sequel.

2.1. Preliminaries

Throughout this paper we assume that Q C R® is a sufficiently smooth bounded, simply
connected polyhedral domain with connected boundary I' = 02 and n is the unit normal vector
to I'. As usual, the real Sobolev space W™ P(Q) is defined as follows

wm™P(Q) ={u € LP(Q): D € LP(Q), V|a| < m},

where m, p are integers and m > 0, 0 < p < 00, equipped with the following norm:

1
[ — /Q S |Dupd)?.

|| <m

The space Wy P is the completion of the space of smooth functions compactly supported in
) with respect to the || - ||, p norm (see [5, 13]). For p = 2, we denote the Hilbert spaces
W™ 2(Q) (resp., Wg™ *(Q)) by H™(Q) (resp., H*(R)). The related norm is denoted by || - || .
The dual space of HJ*(2) is denoted by H~"(Q). For a fixed positive real number T, and a
Banach space X, we denote by LP(X), H*(X) and C(X) the space L?(0,T;X), H*(0,T; X)
and C(0,T; X), respectively.

For simplicity, we set

X={veH' ()’ nxvlpe=0}, M={qeH (Q);qlse =0}
Furthermore, we assume that
(H1) A€ L*(H*(Q)})NC%X), ¢ € L=(H*(Q)) NC°(M);
(H2) A; € L3(L?(Q)3);
(H3) fy L1 Aullf; + IV ullp]dt < C;

(H4) [V} (t,2)[3 < C.
Here, and in what follows, the subscript ¢ is employed for %, and we use C' as a generic constant
depending of Js, Ag, v, o and (2, but not on the time step 7 nor on the mesh size h; also,
B=H*(Q)30<a<l.

Based on above discusses, for a given J, € W2°°(0,T; L?(2)*) and a given initial magnetic
field Ag € X N H2(Q)?, the variational formulation of equations (1.7) is following:

Find (A, ¢) in the following spaces

A e HY0,T; L*(Q)*) N L*(0,T; X) and ¢ € L*(0,T; M)

such that it satisfies the following equations

(a%,B) + (wV x A, V x B)
+(oVe, B) = (J,, B), VB€ X, (2.1)

A
(Uaa—t, V) + (0Vo, Vi) = (J,, Vip), Vb € M.

with initial-value condition A(x,0) = A,.
In the following, we shall assume that (2.1) has a unique solution for all time and that this
solution is as smooth as needed.
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2.2. Semi-discrete method

In this subsection, we shall semi-discretize variational equation (2.1) in time first by the
following implicit scheme: given a time step size 7, let N = [T'/7] — 1; for n € {1,--- , N}, let
t, = n7; given A" € X and ¢" € M, approximations of A(t,) and ¢(t,), respectively, find
A" € X and ¢™ € M such that

(c0; A", B)+ (vV x A", V x B)
+(oVe¢™, B)=(J,, B), VBe X, (2.2)
(00-A", V) + (aVe", V) = (I3, Vi), Vi € M,
where
An _ Anfl
= )
We are now interested in defining an alternating semidiscrete (A, ¢) scheme for 1 <n < N.
We define one sequence of approximate the magnetic vector potential {A" € X} and one
sequence of approximate the electrical scalar potential {¢™ € M} as follows:

9, A" =

Algorithm 2.1. (The semidiscrete alternating A-¢ scheme)
Step 1 (Initialization.) The sequences {A" € X} and {¢"™ € M} are initialized by
A° = A(t =0) and ¢° = ¢(t = 0) respectively.

Step 2 (Time loop.) Forn=1,--- N, seek {A" € X} such that

(00, A", B) + (vV x A", V x B) = (J?, B) — (cV¢"~!, B), VBe X (2.3)
and find ¢" € M such that for all ) € M,
(0V 4", V) = (I, Vo) — (00, A", V). (2.4)

2.3. Fully discrete approximation
Now, we describe the fully discrete finite element approximation. Let

Vy = {'Uh € HI(Q)3 : 'Uh|K € 731(1()3, VK € 77L},

Qh:{thHl(Q):qh|K6P1(K), VKEIHL} (2'5)

where P;(K) is the space of linear polynomials and 7y, is a regular partition of  into tetrahe-
drons(see [6]). We define the finite element subspaces X} and M), as follows:

Xy ={vp € Viis n xvplag =0}, My = {qn € Qn; qnloo =0}. (2.6)

Noting that both the magnetic vector potential and electrical scalar potential finite element
spaces X and Mj are referred to the same partition and both are made up with continuous
functions. These finite element spaces satisfy the following approximating properties (see [5, 9,
12, 13)):

(H5) There exists C' > 0 such that

inf {llv—vnllo + BV X (v —va)llo} < ChZ||v]l2, Vo € X N H()°.
VneXn

(H6) There exists C' > 0 such that for Vg € M N H*(Q),
inf {llg — anllo + PlIV(a — an)llo} < Ch?|lgl>.
qn EMp
Hereafter we denote by AZ € X, and q@% € M}, an approximation to Ay and ¢(t = 0) such

that
~0 ~0 .
140 = Ay llo + k(|| Ao — Ayl + [|6(0) = #h[11) < Ch?. (2.7)
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Let us now give a fully discrete version of Algorithm 2.1: We define one sequence of approx-
imate the magnetic vector potential { A} € X} and one sequence of approximate the electrical
scalar potential {¢} € M}} as follows:

Algorithm 2.2. (The fully discrete alternating A-¢ scheme)

Step 1 (Initialization.) The sequences {A; € Xy} and {¢) € My} are initialized by
A(,)L = A(,)L and ¢Y = (Z)(,)z respectively.

Step 2 (Time loop.) For 0 <n < N, seek {A} € X} such that

(00: Ay, Bp)+ (vV x Ay, V x By)
= (J?, Bh) - (UV(bZ_l: Bh)7 VBh € Xh

and find ¢ € My, such that for all vy, € My,
(oV oy, Vibn) = (Jy, Vi) — (00 Aj, Vibp). (2.9)

Remark 2.3. (1) It is obvious that that the equation (2.8) has a unique solution whenever
o(x) > g > 0. And the Poisson equation (2.9) is also well posed.

(2) Noting that Algorithm 2.2 is simple to implement: they amount to solving at each
time step a parabolic problem and a Poisson problem. This technique is fast: the amount of
computation is much lower than that required by coupled techniques such as those that are
based on the Uzawa operator.

(2.8)

Hereafter we shall use repeatedly the following discrete Gronwall inequality (see [12]):

Lemma 2.4. Let 6, 9o, Gn,bn,cn and yp(n = 0,1,--+) be a sequence of non negative numbers
so that

an+6zn:bi§62n:%ai+52n:ci+gg. (2.10)
=0 =0 =0

Assume that v;0 < 1 for all i, and set o; = (1 —~;6)~t. Then we obtain for all n > 0,

an+52bi < (5Zci+gg)exp(520mi). (2.11)
i=0 i=0 i=0

3. Error Analysis

In this section, we present a numerical analysis of the finite element method (2.8)-(2.9). We
split the error of the method into a temporal error, due to the semidiscretization (2.3)-(2.4),
and a spatial error, due to fully discrete method (2.8)-(2.9).

3.1. Error estimates for semidiscrete solution

Without loss of the generality, we assume that ¢ and v are constants in the sequel. (It
is straightforward to extend the analysis to the non-constant or elementwise constant case by
simply this coefficient inside the integrals or norm and bounding it by taking its maximum or
minimum value if necessary).

Let us define the continuous errors (as for the spatial variables) as:

el = A(tn) — A", el = ¢(tn) — ¢", 007 = @(tn) — """ = 0id(tn) +e27,

where the notation §:¢(t,) = ¢(tn) — P(tn—1)-

We now turn our attention to the (continuous) error analysis of Algorithm 2.1. Based on all
above-mentioned preliminaries, the main result of this subsection is summarized in the following
theorem.
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Theorem 3.1. Assume time step 7 is sufficiently small and hypotheses (H1)-(H4) hold. Then
the solution to the semidiscrete decoupled A-¢ scheme (2.3)-(2.4) satisfies:

N
1
V||V x eN||2 + §mz |0-e™ + Ve |2 < C. (3.1)
n=1

Proof. The whole proof is divided into the following five steps.
Step 1. It follows from (2.1) for all (B, ¢) € X x M,

(aA(t") _TA(t”‘l), B) + (vV x A(t,), V x B)
+(@Vo(tn), B) = (J; +oR", B), (3.2)

Al Z Al ) Gy 1 (4V(ta), Vi) = (T2 + 0", T0).

T

(o

where
1 [t
R" = - / (t = tn1) Au(t)dt, (33)

T Jtn_1

By subtracting (2.3) and (2.4) from the first equation and the second equation of (3.2), respec-
tively, we derive the following error controlling equations:

(00,e", B)+ (vV x e, V x B) + (cV8"~', B) = (¢R", B) (3.4)

and
(c0r€el, Vi) + (cVel, Vi) = (cR", V). (3.5)

Step 2. Take B = 270, e” = 2(e”—e” ') € X in (3.4) and using the inequality 2(a, a—b) >
lal — [b]?, we get

2070, €2 + 27 (VO L, O, en)

Fu(lIV % 23 IV x e27'[[3) < 2r(oR", Dre), (3:6)
On the other hand, taking ¢ = 27l in (3.5), we obtain
207||Ve?||2 + 27(00, €, VeT) = 27(cR"™, Vel). (3.7)

Step 3. Adding up (3.6) and (3.7), we get

or||0-el + Vep|[§ + or||0rel + VO[T + o7 Vel |3
+o([IV x e2[[§ = IV x eZ7H[§) — o7l VOE—I3 (3.8)
<27r(cR"™, 0;el +Vel),

Noting that
1
2r(oR", Byl + Vel) < srlorel + Vel + Ol R ;
1 tn
< grlloer + ezl +Co? [ Aulfpat.
tn—1

It then follow from (3.8) that

1
07l0rer + Ver|ls + vllV x eflg

+or(|0ref + VO H|E + o7 Ver |3 (3.9)

<o||V x el Mg+ o7l VoI G + 072/ || Age ()] Bt

tn—1
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Step 4. By the definition of 7! and Hypothesis (H4), we have

IVOR=tE = IIV(d(tn) — d(tn-1)) + Ver=HI3
ITV ;&) + Vel I3
(L4 )IVer 5 + C,

IN I

where & € (tp—1,t5). Hence, it is found from (3.9):

1
Sorllorel + Ve llg +vllV x e2|lg + o7l Vel I3

S|V x €2 + or(1 + 1)|[Ver |2 (3.10)
tn
L0724 OF / 1A (1) 3 dt.

tn—1
Step 5. By taking the sum from n =1 to N in (3.10), we have

N
1
30T Y llo-er + Verlls + ollV x e I + o7l Ve |13

n=1

N
<ollV x ellg + orl|Vell3 + o7 Y Ve I3

n=1
T
LOr+ 072/ A (1) dt.
0

Note that we have applied the relation 7N < T < C in the above inequality. Using Step
1 of Algorithm 2.1 and Hypothesis (H3) and the discrete Gronwall Lemma 2.4 , we infer for
sufficiently small 7 that

N
1
307 Z |0-€e™ 4+ Ver||2 + ||V x eV ]2 < Cr. (3.11)

n=1
So far we have completed the proof of the theorem.
3.2. Error bounds for magnetic field

We now proceed to obtain error estimates for the fully discrete magnetic field Hy (= vV x
A}) as an approximation of the semi-discrete solution H" (= vV x A") under stronger regularity
assumptions on the continuous problem. We define and split the error of the method as follows:

e = Alt,)— A} =el +ej,
e = ¢(tn) - QSZ = 5? + 52)
where the discrete errors are defined as:
ef = A" - AL, <h=¢" g

We also introduce the following notation. Given (Bp, v¥p) € Xp, x M), arbitrary, we call:

Eu(h) = inf (IV x (8,A" = By)lo + 10-A" = Blo)
+¢h12]f;4h HVQS B V¢h||0
B(h) = max En(h). (3.12)

Our main result of this subsection is the following:
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Theorem 3.2. Assume (H1)-(H6) hold; then there exists a constant C > 0 independent of T
and h such that for sufficiently small :

N
1
v||V x el )2 + 507 > l10-€) + Veill2 < C(h? + E(h)?). (3.13)

n=1

Proof. Subtracting (2.8) and (2.9) from (2.3) and (2.4) respectively, and using their respec-
tive definition, we can see that these discrete errors satisfy the following equations, which hold
for any (B, ) € X X Mp:

(00-€}, Bp)+v(V x e, VxBy)+ (oVe ', By) =0 (3.14)
and
(00-€%, V) + (oVel, Vi) = 0. (3.15)

Given (By, ) € X x My, we take 27(Byp, — 0; Ap, ¢¥n — ¢}) as test functions in (3.14) and
(3.15), to get

207(|0, €22 + 27(a Ve, 0-e%) + u(||V x el]]2 + ||V x 6:en 2 — ||V x e |2)

=27(0(0,;el + Ve "), 0, A" — By) +27(vV x €%, V x (9; A" — By,)) (3.16)

and
27(00- e, Vel) + 207||Vel||2 = 27(0(dr e + Ver), V(¢™ —p)). (3.17)
Adding up (3.16) and (3.17) we get
o7||0ref + Veglls + o7]|0-ef + Ve [I§ + o7 Vegl3
—o7||Vey g +0llV x el — vllV x e I3

< 27(0(0, €} +0oVel h), 0-A" — By,)
+27(vV x €}, V x (0:A" — By))

+27(0(0-€ + Vel), V(o™ —1bp))

(3.18)

e

(1i).

i=1

Using (3.12) and the inequality 2(a, b) < vy|a|® + |b*/v, v > 0, we have

IN

1
(1) §UT||3763+UV63_1||3+CT||<9¢A”—BhII3

1
SoTllo-ed + oVel =2 + CTE(h)?,

CL 7|V x €2 + Car||V x (8, A" — By)|I3
Ci7lIV % efll5 + CarE(h)?,

1
507lI0rel + o Vel + CorlI V(6" = on)llg

INIA

—~
oy
~
IN

1
507‘”&,—63 + UVSZH?) + C37'E(h)2,

Using these bounds it follows from (3.18) that,

1
V||V x el|lg + or||Ver|2 + 507‘”3-,—63 + Ven||2

(3.19)
<oV x e HZ + o7 Vel 13 + CTE(R)? + CT||V x e?|3.
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After adding up from n = 1 to N, we obtain

N
1
v||V x el [|2 + or|| Vel |2 + 50T Z |0-e + Venla

n=1

N
< ||V x eql§ + o7l Vells + CE(R)? + CT Y ||V x ejlf5.
n=1
Note that we have applied the relation N7 < T in above inequality. Using the discrete Gronwall
Lemma 2.4 and Step 1 of Algorithm 2.2, we obtain for sufficiently small 7 that
1 N
||V x e |2 + 50T > llo-ef + Veglls < C(h* + E(h)?). (3.20)
n=0

So far we complete the proof of Theorem 3.2.

Remark 3.3. For equal order interpolations of degree k, the spatial error functions E(h)
behaves like h*. In general, one always has E(h) < Ch.

As a consequence of the previous results, we have the following so-called global error bounds:

Corollary 3.4. Assume that the conditions of Theorem 3.1 and Theorem 3.2 hold. Assume
also that, forn = 1,--- N, A" € H?(Q)? and ¢" € H2(), and that they are uniformly
bounded in these spaces. Then there exists a constant C > 0 independent of T and h such that,
for small enough 7:

N
1
v|V x eV|)2 + 507 > llo-e™ + Vep|ls < C(r + 1 + E(h)?).
n=1
Remark 3.5. Corollary 3.4 actually gives the error estimates on the electric field E and the

magnetic field H. In fact, noting that ¥ = —A; — V¢ and H = vV X A, we can write the
estimate in Corollary 3.4 as

N
1
ol HY — Hy |15 + 50T Y IE" - Ep|l; < C(r + b* + E(h)), (3.21)
n=1

where
= 9, A} —Ve¢r, HY =0V xAY.
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