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Abstract

AD (Alternating direction) Galerkin schemes for d-dimensional nonlinear pseudo-hyperbolic
equations are studied. By using patch approximation technique, AD procedure is realized,
and calculation work is simplified. By using Galerkin approach, highly computational
accuracy is kept. By using various priori estimate techniques for differential equations,
difficulty coming from non-linearity is treated, and optimal H' and L? convergence prop-
erties are demonstrated. Moreover, although all the existed AD Galerkin schemes using
patch approximation are limited to have only one order accuracy in time increment, yet
the schemes formulated in this paper have second order accuracy in it. This implies an
essential advancement in AD Galerkin analysis.

Key words: nonlinear, pseudo-hyperbolic equation, alternating direction, numerical analy-
sis

1. Introduction

Consider the nonlinear pseudo-hyperbolic equation with memory term given by
g(u)uge = V - (a(w)Vug + b(u)Vu
+ fot c(u(r))Vu(r)dr) + p(u)Vus + r(u)Vu + f(u), =€ Q,teJ
u(z,t) =0, x €00t e
u(z,0) = up(x), ut(z,0) = us(z), x € . (1.1)

where Q0 C R? (d > 2 is the dimension of the space) is an open bounded domain with piecewise
smooth boundary Q. = = (x1,---,zq4). J =[0,T]. ¢(u) = ¢(x,t,u) for ¢ = q,a,b,p,r, f,
c(u(r)) = ¢(t, 7,2z, u(x, 7)), and ug(x), uwp(z) are known functions.

We assume that:

1) there exist positive constants ¢*,q.,a* and a, such that ¢* > q(z,t,¢) > q.,a* >
a(z,t, ) > a4, for all x € Q,t € J, ¢ € R.

2) the function ¢ is Lipschitz continuous with respect to ¢ and wu.

3) the functions b, ¢ are bounded, a,b, ¢ and the derivatives ¢, ¢;, ¢ are Lipschitz con-
tinuous with respect to ¢, the derivatives a,,, b, are Lipschitz continuous with respect to ¢t and
U.

4) the functions p, r are bounded, p,r and f are Lipschitz continuous with respect to wu.

Equation (1.1) is also called pseudo-hyperbolic integro-differential equation, it is widely used
in the fields of visco-elasticity, nuclear physics and biological mechanics. There is some work on
its qualitative analysis and numerical solution [3*!". When the memory term c(u(7)) = 0, (1.1)
is called pseudo-hyperbolic equation in a usual meaning, which often appears in visco-elasticity
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theory, for example, in the propagation of sound in viscous media and other phenomena of
similar nature (!, There are also some numerical methods for it [°I. But the existed numerical
approaches for these two equations are limited to Galerkin schemes, which have highly accuracy,
but need fairly complicated calculation. In this paper, we first consider their AD (alternating di-
rection) Galerkin solutions. AD Galerkin method was first propounded by Douglas and Dupont
[6,7] and was verified very efficient in numerical approach of parabolic and hyperbolic equations,
it can keep highly accuracy of Galerkin method, and can solve large multi-dimensional problems
as a series of smaller one-dimensional problems by AD technique, hence can simplify computa-
tional work. Here, we will use patch approximation (7] to treat g(u), to realize AD procedure,
and use various priori estimate techniques for differential equations to treat difficulty coming
from non-linearity, and to obtain optimal H' and L? convergence of our schemes. Something
deserving of mention is that all the existed AD Galerkin schemes using patch approximation
are limited to have only one order accuracy in time increment, while the schemes established
here have second order accuracy in it. This means an essential improvement in AD Galerkin
analysis.

Since pseudo-hyperbolic equation can be regarded as a special case of pseudo-hyperbolic
integro-differential equation, we may just study the numerical analysis for the latter, and let
the approximation terms derived from c(u(7)) equal zero to obtain corresponding results for
the former. Besides, before studying AD Galerkin scheme, we consider a Galerkin analysis first
for convenience.

An outline of the paper is as follows. In Section 2, a Galerkin scheme and its convergence
analysis are described. In Section 3, an AD Galerkin procedure and its analysis are given. In
Section 4, start-up procedures for the preceding schemes are discussed and generalization is
made.

In this paper, the letter K will be a generic constant, and may be different each time it is
used. e will be an arbitrarily small constant. Let (¢,1) = [, ¢1pdz, and let the norms in the
Banach space follow those in [7] and [8].

Divide [0,T] into L small intervals with equal step length At = %, denote t; = [At, tys =

(I + $)AL, ¢ = g(t), 977 = F(¢F +¢)), B¢ = 20171 — ¢ 72, dy¢! = z5(¢'T — @),
0 = shr (9 — ¢! 1), and 0ud! = (Fgpa (¢! — 26! + ¢/ ).

2. Analysis for Galerkin scheme

The weak form of (1.1) can be writen as

(¢(w)wg,v) + (a(u)Vw + b(u)Vu + fOt c(u(r))Vu(r)dr, Vv)
—(p(u)Vw + r(u)Vu,v) = (f(u),v), Vve€ H(Q),t e J. (2.1)

Let p =span(Ny,---,Ny,) C H}(Q) be the finite element space associated with a quasi-
regular polygonalization of Q) such that the elements have diameters bounded by h, let the

index of p be the integer k. Let A > 1(a*/q.) be a constant, ¢ (U) = c(tn,tH%,m,UH%),
and ¢"(U) = ¢(z,t,,U™) for ¢ = q,a,b,p,r, f. A Galerkin scheme is obtained by finding
Ut Wntl € posuch that

(q"O W™, v) + M(At)*(¢"V W™, Vv)

n—1
+@ (U)VW" + b (U)VU™ + At Y c(U)VU'F3, Vo)
=0

—(P"(U)VW"™ +r™(U)VU",v)
= (f"(U),v) + (I"EOW",v), Yv € u,
d.u" :Wn+%’ n=3,45, . (2.2)
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where the initial valuation of U?, Wi(i = 0,1,2,3) will be addressed in Section 4, §" = ¢" —
q"(U), and ¢™ is an approximation to ¢"(U) which is chosen as follows: let Q; = supp(N;),
and ;; = Q; N Q;, then on the patch of elements Q;;, let ¢f% = \/q"(z%)\/q"(27), where
2t € Q,q"(z%) = q(zf,t,, U™(2%)). The patch approximation ¢" may be multi-valued, for
practical computation, z? is usually chosen to be the ith node in Q.

One can prove that for h sufficiently small,

sup |¢"| = sup |gj5 — q(x, b0, U™(2))| < Koh(1+[|[VU"[|), for 0<n<L,
2€Q;;
1<0,j%m

lg" — "7t < KoAt(1 + [|[d: U] o0), for 1<n<L.

For k sufficiently large, we introduce the following Sobolev-Volterra projection: finding
@ :[0,T] — p such that

(a(uw)V(up — ) + b(u)V(u — @) + /0 c(u(m)V(u — a)(r)dr, Vv)
—(p(u)V(ur — i) + r(w)V(u —a),v) + k(ug — g, v) =0, Yo € p. (2.3)

Let n = u — @, with an analogous reasoning to that in [4, 5], we derive
Lemma 2.1. Ifu € H*(J,H**(Q)), then

1nll Lo 2y + 1nell2z2) + neell 222y
+h[IVDll L2y + 1V0ellL2cz2y + 1IVnellparey] < KR

moreover, if u € H*(J,H'(Q)) and k > £, then

2 -
> IV G poo (nooy + el oo ooy + lnsellpoorry + Nawserl| 21y < K-
i=0

Denote w = iy, p=w —w, " =U" —a", and " = W" — ", then U™ —u™ = " — ",
Wn_wnzen_pn'
Theorem 2.1. Assume that k > %, if

L1
16%11 + N16% 1 + [1€%11 + (At)= Eo 1€"]]1
+(A)2 ([[0:6]| + [10:62]]) = O(RF+1 + (A1)2), (2.4)
then for Galerkin scheme (2.2),

10:(W — w)l|L2(L2) + W — w||pee(z2) + AW — wl| oo (1)
HU = ullpeo(r2y + MU = ul|poo () = O(WFF + (AL)?).

Proof. Subtracting (2.1) from (2.2), using relation (2.3), and denoting éni(u) = c(tn, ¢4 1,

tiy1

N c(tn, 7z, u(z, 7))Vi(z, 7)dr —

z, U(l‘,tl+%)), cnl(u) = c(tnvtlJr%:m:ulJr%)) 6nl(cv Vﬂ) =
Atén (u)Vilts, we get for Vo € p, n > 3,
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2
(00" — "ED:0™),v) + (A(At)2q"VOu 6" + a™(U)VO",Vv) =: Y. PP

12
i=1

= 3 Q7 = OV — )+ 000" + 4" (0) — 4" (O
L EON — 0") — " + [(U) — Fr ()] + [P (U) — p ()] V"

+[r™(U) — r*(u)|Va"™ 4+ p"(U)VO"™ +r*(U)VE™, v)
—(BM(U)VE™, V) — A(A)?(¢"V i, Vv) + ([a™(u) — a™(U)]Va™, Vo)

+ (b (u) — b (U)] Vi, Vo) — (At ; et (U)VEE Vo) + (; eni(c, Vi), Vo)
+(At Tllg{[cnl(u) — e (U)] + [éni(u) — cnl(u)]}Vﬂ”%,Vz}). (2.5)

Choose v = 9;8™, multiply (2.5) by 2At and sum for n = 3,4,--- ,N(3 < N < L), by
holder’s inequality, we have

N N
20t Y. P> 2(q — )AL S (0,67
n=3 n=3
_ N-1
—KAth? 37 (1+1IVE o) ([10:6"HI* + 1067 72(%). (2.6)

n=3

N
2At 23 PP = X[(¢N(U)VONTL, VN 4 (¢N (U)VEN, VON)

+(igwiey — 2a™ (U) VN, VoN+]
FA(GVVONTE, VONTY) + (GN VN, VON) — 2(gN VN, VeN )
+((@N 7 = ¢V)VON,VON) — (¢*VO?,V6?) — (¢ V62, V8?) + 2(¢* V62, V6?)

N N
+ Z ((qn72 _ qn)vanfl’ vanfl) —9 Z ((qnfl _ qn)vanfl’ ven)]
n=3 n=3

—(a®(U)VH*,VH3) — % ([a™(U) — a1 (U)]VO" 1, Vo),

n=3

rewrite the first term on the right side of this equality as PJ}, and recall A > ia* /qx, then 7]
there exists a constant By > 0 such that P > Go(||[VONHL||2 + ||VOY||?), thus by assumptions
1)-3), we obtain

N _
28t 3 P > [Bo — Kh(1+ [IVE" o) I(IVONTH? + [[VON]1?)

n=3

N
KV +[98212) = KAt 3 (1+ 6™l + g™ )78

N
—KAt 23(1 + 18" Hloo) (VO HI + [IVO 7). (2.7)
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Now turn to the right hand of (2.5), we see

N N
DALY Q< At Y. (108712 + KI(AD + [1l2 g2y + 1ol agze) + 191l2212)]

n=3 n=3

_ N N
+EA? 37 (14 V€™ [l0)*(At)* + KAt 2133(||£"||? +[IVEn[*), (2.8)

n=3

N 8
ALY Q1 < K[AD + [l 2y + Imel12 2 + €202 + V6% 2]

n=31i=2

N
+KIEV]} + €l VONFE|2 + K AL Y |l€n)?
n=2

N-1 1 N
KAt 2 €21 + KAt Zj3(||dt£"‘1||% +{IVETHP)

N 1 N 1
HEAL 3 (14 (e loo)2 IV 2] + K AL 3 (VO3 ]?, (2.9)
n=3 n=3
where assumptions 1), 2), 4) have been used to show (2.8), relation
N N
ST (et — ) = (N, NTE) — (7, 9) = (0" — gLy, (2.10)
n=3 n=3

[2dt + K(At)S||Valts ||

t

2 ] ~
conditions 1)-3), and the fact, [|eq(c, Vi)||2 < K(A#)® [+ S |V 2L
i=0

have been adopted to get (2.9).
Noticing that d;&! = 6't% + (@W'*t= — d;ii') leads to

ldié!lloo < 1+ R 56742, (€7 < K*[(AD* + [|€212 + Até 162131,
where K* > 1, applying these inequalities and )
IOV + OV < K(l6*]1 + [16°(*) + KAt %3 16711 + eAt %3 10:6"17
n= n=
to the combination of relation (2.5)-(2.9) implies that

N
At 32 (10672 + [0V + (|07

n=3
10
< 3 BY = AN 4 ey + Il r + o Barey + 118215 +116°1
=

1 B N
+1€211F + Atlg) 1E°11F + At([[0:0M[1* + 118:6%]1*)] + K1 Ath>= 32 [[€" (12 (An)*

n=3

_ _ N
+EGTH (At + K Ath®~? 23 €7 IF (1067~ + [|0:6"2]%)

_ N _ .
+ESALh? Y (18017 + 110:0™217) + Ksh' == [|€7[[ (IVONT 1> + [[VON]?)

n=3

_ N
+Eh([|[VONTH]? + [[VON?) + B2 At 2 167 11F

N 1 3 _ n
+E2 ALY hE(l0mE |+ (167 F ) (10" 112 + [167113)

n=3

N 1
+IEAL E3(h‘%||9"‘5||)2(||9"‘1||? +16717)- (2.11)
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From Lemma 2.1 and assumption (2.4), B < K;[h?**2 + (At)*]. Since the conclusion
expected in Theorem 2.1 involves h**! 4+ (At)?, we may consider that there exist two positive
constants 6y, 6> such that 6;*! < (At)? < 6,h*+!. Denote constants § = k — ¢ +1 > 1,

s _ 2
S > maw{Ks, K3, K1} such that Y5 <10 And let @ = <500 9y = max{1, 62},
— ; Gy 1 K. 1 1 _dk
and hg = mzn{(%)6,1,§,/m,m,m}, then for 0 < h < hg, we have h™2 (hFT1 +
(A)?) < 2@G. Set K = K1e(ST+D*/(ST)(> 1), it’s natural that ||¢2||; < K(h**! + (At)?). Now
make inductive hypothesis that
165 [l < K(R5 4 (AD2), (167 # [l < K + (A1)?) (2.12)

has been shown valid for [ = 3,4, ---, N, then a further deduction shows that forn = 3,4,---, N,
. N—1

5|l < 2KG/K*(1+T) <1, and hence BY < BY < E=(At)", BY < BN <iAt Y
n=1

166712, BY < BN < Z(|[VONTL|2 + ||[VON||?), then apply Gronwall’s inequality to the sim-

plification of (2.11), we confirm

N ~
At Y 110017 + [IOVHHIE + 10V 17 < K[R?2 + (At)*],
n=3

N+1
IENHU + 1ENI2 < KTAD* + €207 + At 3. [16717] < Kb+ + (An)1],

n=2

and inequality (2.12) is also valid for [ = N + 1, which completes the proof.
Using v = 0;W"™ in (2.2), we derive
Theorem 2.2. Assume that the conditions of Theorem 2.1 hold, then for Galerkin scheme

(2.2),

N
At 3 9P + IV + [TW N2 4 VU2 4 VU
n=3
1
< K[[VW2IP +[IVW2 + VU212 + At 3 VU2
=0

N
HAL(I0VHIZ + 1072 ]7) + At 2 1 @I

3. Analysis for AD Galerkin scheme

In this part, let Q@ = (L1, Ry) X (L2, R2) X -+ X (Lq, Rq) be a rectangular solid in R?. For
J=1,2,--,d, let pj = span(v{(z;), v (x;), - 7, (7)) C H{([Lj, R;]), aj € {0,1}; denote

d la]
|a| = Z aj, Da¢ = aa—d)au‘d’ then D0¢ = ¢ Denote
=1 “a

«1 X2
z, 'Oz,

H:{¢| ¢>DQ¢EL2(Q) fOT' |a|:1)27"')d;
|D%¢|| < KR =1\ ¢ll;, for j=0,1,2---,|a| and |a| =2,---,d}.

Let ® represent the tensor product operator, y = 1 ® pto ® -+ ® pg = span(Ny,---,Np) C
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H}(Q) N H be a k degree finite dimensional space. Consider the following AD Galerkin scheme

d
(g0 W™, v) + At Y (2AAL)°l(g"D*8,, W™, D)

lo]=1

n—1 1
+(@(U)VW" + 0 (U)VU™ + At S e (U)VUHE, Vo)

=0
—(P"(U)VW™ + r*(U)VU", v) (3.1)
= (f"(U),v) + ("ERW",v), Vv € p,
d, U™ = Wnts, n=34,5-.

where the symbols ¢, A\, a™(U), b™(U), e (U), p™(U), r™(U), f*(U) and ¢" have the same
meaning as in scheme (2.2).

If we set W = 3 J7N; and U™ = 3 ATN;, and let
j=1 j=1

q*(zt) 0 0 0
0 q*(z%) 0 0

G" = )
0 0 0 q"(z™)

d
and M = (3 (2MA1)I®l(D*N;, D*N,)) be m xm matrices, then the matrix problem associated
|a|=0

with (3.1) can be expressed by
(G™ZM(G™)? (™! — 29" 497 1) = 2A4T",  A"FL = A" 4 Apdnt3,
where (U7); = (p"(U)VW" +r*(U)VU" —q"d; W™ + f2(U) +G"EW™,v) — (a™(U)VW " +
r(U)VU™ + At nil c(U)VU 2, Vo), v = Nj, and UL, Wi(i = 0,1,---,n) are known.
Thus the calclu:l?ation work of (3.1) can be carried out as below:
(GM)2O" = 2A¢T", MO" = Q", (GM):Y" = ",
Yl = g9n — gn—l 4 yn ARl = A" 4 A9t

The diagonal matrix G™ involves only point evaluations and hence can be formed quickly
and inverted easily. Now the main work focuses on resolving M ®" = ©". Denote (@, v); =

S ¢pday, let I be Mj x Mj unit matrix, C; = () (x;), 74(x;));) and A; = ({(+] (),
(vi(z;))");) be M; x M; matrices (j = 1,---,d). If the nodes are numbered in z; direction first,
then in z», and so on, and finally in x4 direction, then M ®" = O is equivalent to a simpler
AD procedure

L@@ @ (0 + 20 AtA) @ [j11 @ - @ [3®] = &7

j—1» j:172"'7d7

where @' = ©" and ®" = ®}. Since M is independent of time, it only need to be decomposed
once, and this decomposition can be used at each time step.
Theorem 3.1. Assume that k > max{3, %}, if

1 ! 1
16211 + 1167112 + 11€%[12 + (At)= l;) €111 + (At)= (|06 ]| + [|0:6%]1)

£ (A D] = O + (A1), (3.2)

lor[=2
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then for AD Galerkin scheme (3.1),

10:(W —w)||p2(z2) + IW — wl|pee(z2) + RIW — w|poe (1) + U — | (22

d la|+1 .
PRI = ullgequry + 3 (A D, (W — )1 (12) = O(BF + (AL)?).

|a|=2

3 9
Proof. The error equation got from (2.1), (3.1) and (2.3) is ) P* = " QF, where P"(i =
i=1

i=1

1,2) and Q7(i =1,2,---,8) follow their forms in (2.5), and

d
Py = 1At 3 (2AAY)el(g"DY9,0™, DY),

lor[=2

d
Qp = —3At Y (2)AY) 2l (g" D0y, D).

|a|=2
Taking v = 9;0™ in the error equation shows

N d
2At 3 PR > 1At Y (2AA1) Mg, ||D¥d6N |2 — K| D*d,67 ||

n=3 |a|=2

N
—KAt 35 (1+[|de€" o) [ID*de™ 7],
n=3

N 1
20t Y Q < K[(A6)* + 103 [3] + el |07+ 3
n=3

N 1
+KAt 23(1 + {18 loo)? 16711,

where (2.10) and k& > max{3, %} have been employed for the second inequality. Combine these
relations with the existed results for other terms in Section 2, use a similar inductive hypothesis
reasoning, we accomplish the proof of Theorem 3.1.

Taking v = 0;WW™ in (3.1), we have
Theorem 3.2. Assume that the conditions of Theorem 3.1 hold, then for AD Galerkin
scheme (3.1),

N
At 3 oW P + IVWNH2 + [V N2
n=3

d
HIVUNTE + VUV + 30 (Al D, W |)?

|o|=2
1
< K[[VWPP + IV + [[VU?()? + At 3 [VU'?
=0
d N
FAL([ O] + 10,2 P) + 3 (AplFH D d W21 + At 3 (IF(U)]°)-
‘ n=3

a|=2

4. Initialization procedures and generalization

To start procedures (2.2) and (3.1), we need to define perfect initial value that satisfies (2.4)
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and (3.2) respectively. One way to do this is to define
U =a® wo = ut
(a(@)VW"™ + b(a") VU™ + At z e (@YVU 2, Vo)
(()VWm+r()VU" v) + k(W™ v)

= (a(ﬂ")V’a? +b( )Vu + At E cnl( ) ﬁl+1+al VU)

=0
—(p(@)Vay} + r(@")Va™,v) + k(ap,v), Yve p,n=1,23. (4.1)
where @°,%? and & are provided by (2.3), ¢(@") = ¢(t,,z,a") for ¢ = a,b,p,r; cu(@') =
_ _ 2 2
cltn, tig 1,2, M), " = up + nAtuy + (nAQt) udy, U = ury + nAtul, + (nAQt) udy,, for n =

2,3. ud,,ud,, can be calculated by (1. 1) directly.
Denote ¢, (U) = [ (tn,tl+1,x Ults )+c(tn+1,tl+1 ,o, U’ +2)], 1=0,1,---,n—1; Cun(U) =

Le(tngt, byt @, U" n+3). Another initialization is given by

2
UO — 70 WO — ,aO
(¢"t =2 (U)d;W",0) + (a2 (U)VIW" s
+0" 2 (U)VU™ 2 + At Y. 6 (U) VU2, Vo)

=0
—(p"t3(U)VIW s 4¢3 (U)VU 3, 0) = (773 (U),v), Vv € p,
dU™ = Wnts, n=012 (42

We can prove that relation (2.4) stands for k > 4 with definition (4.1) or (4.2), while (3.2)
stands for k > £ with (4.1), and for k > max{3, 4} with (4.2).

Obviously schemes (2.2) and (3.2) are both linear algebraic equation systems about U™
and W"*!, from theorems in this paper, we see, they are all uniquely solvable, and all have
optimal H' and L? convergence properties.

Remark. The idea in this paper can be extended to generalized nonlinear systems of
pseudo-hyperbolic equations. Consider

— 0 Ous
qsUstt = Z Bz; (asz] Bac L+ bsszj
i =1

+f0 'Jaus‘r)d’r)_kz(p-ﬂaus +T8l8us)+fsa I'EQ,tEJ,S:1,2,---,S

(,):Q z €00, t e J
u(z,0) = uo(z),ut(x,0) = ugo (), z € (. (4.3)
where u = (u1,us,--,us) is unknown vector variable. as;; = asij(z,t,u), As = (asij) is
a d x d symmetric and positive-defined matrix, ¢s = gs(x,t,u),bs;; = bsij(x,t,u), csij =

csij(t, T, z,u(z, 7)), etc.
We can present similar schemes and obtain similar conclusion as we do here.
Acknowledgements. The author is grateful to Professor Shen Longjun for his helpful
suggestions and warmly encouragement and to the referees and editors for their worthy advice.
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