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Abstract

We analyze three one parameter families of approximations and show that they are
symplectic in Lagrangian sence and can be related to symplectic schemes in Hamiltonian
sense by different symplectic mappings. We also give a direct generalization of Veselov
variational principle for construction of scheme of higher order differential equations. At
last, we present numerical experiments.
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1. Introduction

The two main formalisms of mechanics are Lagrangian mechanics based on variational prin-
ciple and Hamiltonian mechanics based on symplectic structure of cotangent bundle. In many
cases two formalisms are equivalent. For a mechanical system once a n-dimensional configu-
ration space @) is chosen, then its Lagrangian flow F; is defined on the tangent bundle T'Q
with its coordinates (g;,¢;) and its Hamiltonian flow G; is defined on cotangent bundle T*@Q
with its coordinates (p;,q;). The equivalence between these two flows is realized by the well
known Legendre transformation FL : TQ) — T*@Q, which depends on the Lagrangian function
L :T@Q — R and is a local diffeomorphism in general. Consequently, we have the following
commutative diagram

Fy
TQ TQ
FL FL
rQ rQ

t

FL7' oG o FL = F;, F; preserves the symplectic form w;, = FL*w, ie., Ffw, = wg, in
canonical coordinates,
0*L %L
wr = ———dg; Ndq; + ———=—dq; N dg;.
L 8%’8(]]' qi qj qi qj
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Note that Gjw = w, in canonical coordinates,

w = dg; N dp;.
Taking @ x @ as the discrete version of T'Q), we can define the specific discrete Legendre
transformations FL : QxQ — T*Q, FL(¢"",¢") = (p", ¢") which are symplectic mappings
between @ X @ and T*@Q, and have the following commutative diagram

F

RQxQ—QxqQ

FL FL

T*Q T*Q
G

therefore, the discrete Lagrangian flow F preserves the symplectic form wy, = FL*w, i.e.,
F*wr, = wr,, in canonical coordinates,
_ 9’L(¢",q")
g ogr
Note that the discrete Hamiltonian flow G preserves the canonical symplectic form, i.e., G*w =
w, in canonical coordinates,

dgl* A dq;H'1 .

w =dg} N\dp}.

In [1] Veselov developed a variational way to construct numerical integrators for Lagrangian
mechanical systems based on a discretization of Hamilton’s principle. Such an integrator is de-
rived from the corresponding discrete Euler-Lagrange equations and preserves some symplectic
forms on the discrete tangent space. The idea was highlighted by Marsden et al in [2] where the
“variational integrators” of Veselov type were generalized to PDEs for field theory in the frame-
work of multisymplectic geometry. Variational integrators often enjoy some amazing properties
such as the preservation of the integrability of mechanical systems. In the case of Hamiltonian
mechanics, however, symplectic integrators have been extensively studied and some nice results
in both quantitative and qualitative aspects of numerical analysis are obtained. Therefore, it
is interesting to bridge the gap between the variational integrators and symplectic ones, which
should be an analogue to the continuous case as described above.

An outline of the paper is as follows. The variational descriptions of one parameter families
of approximations studied in [3] for mechanical systems are presented in section 2. A direct
generalization to higher order differential equations of Euler-Lagrange type is given in section
3. In section 4, we give some numerical results.

2. Variational descriptions of symplectic integrators

Consider the following system of ODEs

0%¢ _ _9V(a)
= = 5. = ), (1)
ot dq
where ¢ is the collective position vector, M is a positive symmetric matrix and F' is the collective
force vector. (1) can be rewritten as following two equivalent forms

L N0
= M 1 -~ 2
q p D 94 (2)
and
oL _ d OL
0 = 4t 0q ¥

where L(q,q) = %QTMQ - V(g).
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In [3], the following approximations of one parameter families for system (1) are studied:

1 ov ov
SM@" = 20" +¢" ) + (1 - )5 (ag" + (1 - a)g") + a7 -(ag" + (1 —a)g" ') =0,
h? 0q 0q
(4)
i n+1 n—1 6V n+1 _ n n—1y\ __
M@ = 2¢" + 4" ) + 5 34 (ag"™" + (1 -2a)¢" + a¢" ") =0, (5)
when o = LQ the scheme is of fourth-order accuracy,
n e ov , _._ ov  _, ov .,
M@ 20" + 7 + oo () + (1 - 20) 2 (7 ) +ag, @ =0 (6)

h? 0q Oq
In these formulas h is the step size, ¢” is the numerical approximation to ¢ at the time nh,
qn — qn _ ahQM_l%(qn).
First, we show that (4), (5), (6) can be derived by discretizing the corresponding Lagrangian.
Choose respectively

" " 1 anrl _ qn qn+1 _ qn " "
Ll ¢ = 5 (=) M=)~ Viag™™ + (1 - ), @
o
1 n+l _ n n+l _ . n
L) = 5 () - [Flo - al? M P (9)
0
1 n+l _ n n+l _ n
L") = 5 (M) - [Fo-al?MT R (0)
as the definition of the discrete Lagrangians, where §" = ¢™ — ath’l%((jn), F = %(q" —
ah?M~1F), we can derive (4), (5), (6) directly from the DEL equations
DQL(qn+17qn) +D1L(qn)qn71) =0. (10)

We only give the proof of (8).
Let F = %(q" + a(g"tt —2¢"™ + ¢" 1)), then (5) turn into

1 n n n— n —

Mg T _2¢" +¢" )+ F(¢" — ah®M'F) =0, (11)
where the nonlinear term F' is determined implicitly from the equations F(¢") = 8—‘;(q
ah?M~'F). Taking (8) as the definition of the discrete Lagrangian of (10), from (10), (11) can

be derived.
Next, we show that by the specific symplectic mappings, the above three one parameter
families of approximations can be related to the symplectic schemes in Hamiltonian sense.
Remark 2.1. By using the transformation
"= —hDL(¢"",q") = %(Q"“ —q") +h(1- 01)86—‘;(0«1’”r1 + (1= a)q")
(4) is equivalent to
pn _ pnfl haV( n ( a)qnfl)’
(1-a)p™ +ap" 1 = %(q -q" )
which is the approximation of (2). It is clear that the discrete Lagrangian flow F : (¢",¢"~!) —
(q"*1, q") defined by (4) preserves

(12)

)

B aZL(qn qnfl)
gt oq!
and the discrete Hamiltonian flow G : (p"~!, q" B — (p™, q"), determined by (12) preserves
the canonical symplectic form, i.e., dp}’ Adg}' = dp?_1 /\dq?_l, when a = %, (12) is the centered
implicit Euler scheme.

wr, dq; 1A dq}
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Remark 2.2. By using the transformation

M
"= —hD,L(¢"",q") = T(q"Jr1 —q")+h

ov _
a—q(a(q"“ —2¢" +¢""") +¢"),
(5) is equivalent to
pr-pt = =G (alet = ¢t = M) 4 g,
Pt = %(l] — g 1)
It is clear that the discrete Lagrangian flow determined by (5) F : (¢",¢"" ') — (¢"1,q")
preserves

n

s U

dg™ 1 A dg?
oq) Togr " K

and the Hamiltonian flow G : (p"~!,¢""!) — (p",¢"), determined by (13) preserves the
canonical symplectic form, i.e., dp' A dgl* = dp?~" A dg™"

Remark 2.3. By using the transformation

M ov 0*V
" — _hD ~n+1 —ny _ (77 ¢ ntl h— T h2M 1 =N
L") = (G @ =) R @)+ 5 ),
(6) is equivalent to
2
pr—pt = b + ah® M (),
2

pn — %((jn + ah2M71%_\(;(q—n) _ qnfl th 1 BV(—n 1))([ + ah2M71%T‘2/(q—n))‘

It is clear that the discrete Lagrangian flow defined by (6) F : (g7, ¢" ") — (g™, ¢") preserves
62L(_n 7" 1) —n 1 -n

and the Hamiltonian flow G : (p"~ 1,q" 1) — (p™,q") determined by (14) preserves the
canonical symplectic form, i.e., dp?* A dgl* = dp?~" A dg™"

Introducing the substitution p” = %(q"+1 —q" 1), (4), (5), (6) are equivalent respec-

(14)

tively to
1 ol n "
pn+2 =pz —h((1- a)%(aq +11+ (1- (_I’“)q )
ol (aq" + (1 - @)™ — h(p+E +prh), 19)
qn+1_q +hM 1 n+2
prtE =p"Th — A (200"t + (1 - 20)¢" — ah(pttE 4 pTE)), (16)
qn+1_q +hM 1 n+2
and
n+2 _ n—* _ haV

(@ =@ = EM ) = =M “((1—2a>8V< ")+ 2042 (7).
Remark 2.4. It is clear that the discrete Hamiltonian flows G : (p n—3 ,q") — (p’”%,qf”rl),

n_l
defined by (15), (16) preserve the canomcal symplectic form i.e., dp, nt3 /\dq"Jrl =dp, %Adq},

the discrete Hamiltonian flow G : (p"~2,7") —» (p”+2,q"+1) defined by (17) preserves the
K-symplectic form, which is
" 0 I+h M~ oSk (g")
—I - WM~ a%x(q") 0 ’

1
ie., (1+hM a2 X (@ +)ydp; 7 Adgi™ = (1+ h2M e Y (7"))idp! I A et
= f"loypo f, where f : (p"_%,q") (p”_i q"), then the discrete flow ) : (p”_%,q") —

1
(p”*% ,q"T1) preserves the canonical symplectic form, i.e., dp, nts A dq”Jrl = dp? 2 Adgl.
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3. Variational integrators for higher order differential equations of
Euler-Lagrange type

In this section, we generalize the discrete Veselov variational principle to higher order dif-
ferential equations.

Theorem 3.1 (The variational principle for k-order classical field theory).

Let L be a k- order Lagrangian on a given T*Q = T'---(T'Q). A curve q(t) : [a,b] — Q
joining dgq;, - - 6ql ) which vanish at the endpoints a, b, satisfies the higher order Euler-
Lagrange equatlons

oL d* OL
+ Y (1) o —= =0, (18)
9gi = dt 8‘1@()
b b
if and only if dS = & [ Ldt = 6 [ L(qi(¢),--- , ¢! (£))dt = 0, where S = [” L(gi(t),--- ,¢\* (t))dt
a a
is the action functional, g;, (gi, - - ,qz(k_l)) denote the coordinates of Q and T*Q respectively.
Proof. Using integration by parts, the variational equation becomes
_ oL oL .. oL . )
55(a(t)alr) = / (i g0+ 5 e
b k k—1 k—1
oL d? 3L <d™° OL (s) 1
=[G+ (-1)° S)8aidt+ Y[y (-1 loa” 16 -
a/ aqi s=1 dts i s=0 r=s t7‘ ° 6(11( ) ’ ‘
Using the boundary conditions dg;, - éql ) which vanish at the endpoints a, b. Since dg;

is arbitrary ( apart from being zero at the endpomts), we have the k-order Euler-Lagrange
equations

OL sd° 0L _
0q; +52::1( 1) dts 9 l(S) =0

When the boundary conditions are not considered, from the “boundary part” of the functional

derivative of the action we can define the Lagrangian 1-form on 72¢~1Q
k—1 k—1

— r—s a—* oL (s)
9L - sz:;[;(_l) dtr_s 6q§r+1) ]dql . (19)

Consequently, we have the following theorem.

Theorem 3.2. The solutions of k-order Euler-Lagrange equations (18) give rise to a
symplectic map.

Proof. We denote the flow of the vector field on T*Q by F;, and restrict the actions S to
the subspace Cf, of solutions of the variational principle. The space Cp may be identified with
the initial conditions, elements of T*Q, for the flow: to v, € T*Q, we associate the integral
curve s — Fs(v,), s € [0,t]. Thus, we have a well-defined map S; : T*Q — R,

t

Si(v) = [ Lla(s).d() -+ a () ds,
0
where Fy(vy) = (q(s),d(s), -+ ,q®(s)). So the variational equation becomes

dSt(Uq)qu = aL(Ft 'Uq ) - eL(Uq)qua

2l
where € — vy is an arbitrary curve on T*Q such that vq = v, and dig|5:0 vg = wy,. Therefore,
we have

dS; = Fr0, — 0y,



140 Y. SUN AND M. QIN

taking the exterior derivative on both sides of the above equality, we have
0=ddS; = Fdf — dfr,
or Ffwy = wy, where
k—

LA OL .

k
dr—s 82 ()
BHHICIS " el
r—s l r+1
— ¢ dt a()a(+)

The Euler-Lagrange equatlon (18) can be reformulated as
-s+1 aH s+1 aH
p; - aqs+1 a; - aps+1 ’

—
>~
|
—

(20)

k—1
_ () s+l _ d"=° 8L -
where qf =q; i = 2 (=1)" = 38(,,+1),s—0 -,k=1,i=1,---,n,
r=s

n k—1

H( __L+Zzps+1 s+1

i=1 s=0
It is clear that the Hamiltonian flow defined by (20) preserves the canonical symplectic form
n k—1

wy = Z Z dpf+1 A dqurl.
i=1 s=0
Take Q x Q x ---Q as the discrete version of T*Q and define a discrete Lagrangian
|
k+1
L:QXQX Q:{qka 7q0}—>R7
|
k+1

and the corresponding action
n—k

= Z L(qk+m7 e :Qm)

The variational principle states that §S = 0 with the variation dqg, - -+ , 0qk—1, 0Gn—k+1, " ,0qn
vanishing, which determines a ”discrete flow”

F:\QxQx---QJ—>Q><QX...QI

k+1 k+1

by
F(QO,"‘ an) = (Q1;"' 7qk+1)-

But
dS(QO: ot aqn)(équ e 76qn)

n—k
= Z (DlL(Qerk: T 7qm)6qm+k + D2L(qm+k7 T ;Qm)(SQerkfl

m=0

+- +Dk+1L(qm+k7"' )7qm)6qm)

= Z D1L(qm, - @m—k)0Gm + Z DoL(gm+1, s Gm—k+1)0Gm
m=k m=k—1

n—~k
+ 4+ 2 D L(@mir, 5 Gm)0qm (21)
n—k m=0
= Z (DlL(qma e 7quk) + DZL(Qerl; T ;mek+1) + -

m=~k
+Dp 1 L(@mtks - 5 qm))0qm + DiL(gn, -+, qn—)0qn +
+D1L(Qn—k+17 tee 7(]n—2k+1)6qn—k+1 + DQL(qna s aqn—k)éqn—l + -
+DoL(qn—k+2," - > Gn—2k+2)0Gn—k+1 + Da2L(qr, - -+ ,q0)0qr—1 + - -
+Dp1L(g2e 1, s qe—1)0qr—1 + -+ Dry1L(qr, - ,90)dqo.
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So 05(qo,- - ,qn) = 0 if the following DEL equations hold:
DIL(qkaqk—la e ,l]o) + DQL(qk-‘rlaqk: e 7q1) +o 4+ Dk+1L(lJ2k,(Ik+1a e 7qk) =0.
Define two 1-forms on @) X @ x --- (@) by the boundary terms as follows
A —

oL,
= Dpy1L(g2r-1, -, qr-1)dgr—1 + DeL(g2r—2,- -, qr—2)dqr—1 + -~ + D2L(qx, - -+ ,qo)dqr 1
+ Dip1L(g2r 2,y qe—2)dqr—2 + DrL(g2x—3, - ,qx—3)dqe—2 + - - - + D3L(qx, - , qo)dqr 2
+ o+ Dpy1L(grs1, -+ s q1)dgr + DiL(qg, - -+ ,q0)dg1 + Diy1L(qk, - -+, qo0)dqo,
and
0%, = DiL(q2k—1," - »qr—1)dar + Dp—1L(q2k—1," - , Gk—1)dqrs1
+ Dy_1L(gak—2, " , qr—2)dqr
+ -+ DoL(gar—1,- qr—1)dger—2 + - -+ + DoL(qrs1, -+, q1)dq
+ D1L(g2k—1, ", qr—1)dgq2k—1 + - - - + D1L(qr, - - - , qo)dqs.
The equation (21) becomes
dS = 6;, + F*6%.
Taking the exterior derivative on the both sides of the above equality, we have
0 = ddS = dfy, + F*db;.
From the fact
61, + 03 = d(L(qk, qr—1,* »q0) + L(qrs1,qr, > q1) + L(qor—1,q2k—2, ** ,qk—1)),
it follows that
dey, + do, = 0.

Let —df} = wr,, then
F*wL = WL,-
Further we define the discrete Legendre transformation
p2r—1 = D1L(gak—1, q2k—2," "+ , qk—1),
Pr+1 = D1L(qr+1, gk, q1) + DaL(qk+2, @rt1, -+ 5 qo0)
+ oo+ Dp—1L(g2k—1, @2k—2, "+ Qk—1),
pr = D1L(qk, gk—1, -+ 1 q0) + DoL(qrt1,qr, - ,q1) + - + DiL(gak—1, q2—2, "+, q—1)-
Under which the corresponding discrete Hamiltonian flow
G (q2r—2," ", Qk—1,P26—2," " s Pk—1) — (Q2k—1,""" > qk>P2k—1,""" > k)

preserves the canonical symplectic form

k—1
wy=-— Z dpryr N dqiqr.
r=0
We give a simple example, consider fourth-order differential equations
Mq® — NG+ axg_@) =0, (22)
q

where M and N are positive symmetric matrix. (22) can be reformulated as
0L d oL d*dL
dq  dtoq  df? 9
and
. OH . OH
p = _a_qia q = a_pia
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where i = L2,qo=q,2=¢,p1 = N(]— Mq: b2 = M(b L((bq)q) = %qTM(I"_ %qTNq+V(q))
H=—-L+pig1 + p2go.

We use the following definition for the discrete Lagrangian
Qk+1 — Gk Qk+2 — 2Qe+1 + Gk

h ’ h? ),

L(qk+2, Gkv1,qk) = L(Q1Qra2 + @2qry1 + @3qk,
where a; + a3 + az = 1, then the DEL equations are
qu+2_2,ff“+q'“ — N Lt D a3%(al(ﬂc+2 + a2 qp41 + a3qr)—
2M Qk+1_2,ff+Qk’1 + N&=mt QQ%_‘(;(Oélqk+1 + aaqr + asqr_1)+ (23)
MO 20ea s 01%(%% + @2qr—1 + azqr—2) =0,

ie.,

—4qr 6qr—4qr_— . — —2qr _
M Let2 qre+1+ th qr—1+qr—2 — N %kt Qk+Qk IR as %‘q/ (CVl(IkJrZ + Qi1 + a3Qk)
8V

+as B (argpir + asar, + azqr—1) + a1 G (igr + aagr-1 + azgy—2) = 0.
The discrete Lagrangian flow F : (qx, qx—1, qk—2) — (qr+1,qk, @k—1), defined by (23) preserves
the form
wr, = —d(D1L(qk, k-1, qk—2) + DaL(qk+1, Gk, qr—1)) A dgr, — d(D1L(qr+1, Gk, qr—1)) A dgi41-
Define the discrete Legendre transformation
Pr+1 = D1L(qk+1, k> Gh—1),

pr = D1L(qk, qk—1,qk—2) + DaL(qr+1, qr, qe—1),
then the corresponding discrete Hamiltonian flow G : (qx—1, Gk, Pk—1,Pk) — (Qk Qet+1> Pk P+1)

preserves
1

wy=-— Z(dpk+r A dgpr).
r=0

4. Numerical experiments

In section, we present some numerical results and show the scheme given by us in this paper
involves more computational efforts over long time. Consider the one dimensional mechanical
equation with the double well potential

i=-2¢"+q, (24)
(24) can be rewritten as
Discretizing (25) by using the generating function method of first kind [9-11]

19"V (qw
Prrt =t (qrgr —q) — t Z q'“{,;jf.) 3q(nq")7

(26)
n - n+1
—DPr = fl(Qk —Qr+1) +1 z_:l (qkzrrlwrff!) ton V ‘1’“) —t E (qk(t;rlq)’f 2 aqn‘cr(fk);
where V(q) = 3(¢* — ¢*). Eliminating py;1, py from (26), we can derive
Qo1 =206+ k-1 __ ( di—ai 3B —R)-5dhi1—q})  di—q} 3(‘12—‘1271)—5(42—‘1271))
h? T N2(qe1—ar) 30(qrt1—aqx)> 2(qk —qr—1) 30(qr—ar—1)> )
(27)
The computation is done by using scheme (27) and the following initial conditions
o — q1 = 074, (28)
g0 = q1 = 0.995, (29)
g =q = 1.0. (30)

The discrete energy that we used is
L gres = a2 a7, — 54}y, — 3q; + 543

E—
2( h 30(qr+1 — qr)
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In Fig. 1, the left top plot showes a periodic orbit that oscillates around the stable equilibrium
position q = %, G = 0, the right top plot showes a periodic orbit with high period just inside
the homoclinic orbit in the positive ¢ half space, while that in bottom plot is a periodic orbit
just outside the homoclinic orbit. Using the three initial conditions the energy errors over initial
800 timesteps and over 800 timesteps after 100000 timesteps is showed in Fig.2.

0.05 ! ! ! ! ! ! ! 05
0.04F - 0.4+
0.031 1 0.3
0.021 1 0.2
0.01H 1 01t
oF 1 oF
-0.01F 1 0.1t
-0.02F 1 -0.2F
-0.03F 1 -0.3F
-0.04r 1 -0.4F
%67 068 069 07 071 o2 073 074 s %
q
05
0.4
0.3F
0.2
0.1
oF
-0.1
0.2
-0.3F
0.4
-0.

. . . . . . n .
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
q

Figure 1. The three orbit plots are showed respectively by using initial conditions (28), (29), (30) with
the time step h=0.1 after 100000 timestep.
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Figure 2. The energy errors are showed with the initial dates correspond to Fig. 1. Left: the energy
errors at beginning; right: the energy errors after 100000 timestep.
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