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Abstract

This paper studies the discrete minus one norm least-squares methods for the stress
formulation of pure displacement linear elasticity in two dimensions. The proposed least-
squares functional is defined as the sum of the L?- and H ~*-norms of the residual equations
weighted appropriately. The minus one norm in the functional is replaced by the discrete
minus one norm and then the discrete minus one norm least-squares methods are ana-
lyzed with various numerical results focusing on the finite element accuracy and multigrid
convergence performances.
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1. Introduction

In recent years there has been an increased interest in the use of least-squares methods
for numerical approximation of the incompressible Stokes and Navier-Stokes equations [3, 4, 5,
6, 7, 11, 12] and for linear elasticity equations [9, 10, 11, 12, 13, 18, 21]. Such least-squares
approaches are known as including accurate approximations to meaningful physical quantities,
formulation of a well-posed minimization principle and freedom in the choice of finite element
spaces which are not subject to the LBB condition.

In this paper, we attempt to apply H ! least-squares method to planar linear elasticity
equations with pure displacement boundary conditions:

{ —pAu—-A+p)VV-u = f in Q (1.1)

u =0 on 09,

where (2 is a bounded open connected domain in #2 with Lipschitz boundary 6Q; u denotes
the displacement; f is a given body force; and p, A > 0 are the Lamé constants. We assume
that the elastic material is isotropic, homogeneous, and strongly elliptic. Denote by the Poisson
ratio v = m €(0,1).

It is well known that standard Galerkin finite element formulations for elasticity problem
using piecewise linear elements are accurate for moderate values of a Lamé constant A, but, as
the elastic material becomes nearly incompressible, i.e. as A — oo (or v — %), their approx-
imation properties degrade severely [1, 20]. To overcome this, so-called locking phenomenon,

Cai, Manteuffel, McCormick and their coworkers have developed recently first-order system
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L?-norm and H!-norm least squares methods with the flux and vorticity formulation for the
generalized Stokes equations that apply to the pure displacement problem of linear elasticity
in [11, 13], and for the pure traction problem in [12]. In our formulation, defining new two
variables as the strain tensor o = 1/2ue(u) scaled by 1/2u and pressure p = —V - u, the second-

order pure displacement problem is reduced to first-order system of linear equations, so-called
strain-displacement-pressure formulation. In the analysis of structural mechanics, the knowl-
edge of the stress or strain is often of greater interest than the knowledge of the displacement.
Even though the approximation of the stress or strain can be recovered from the displacement,
by postprocessing in the standard finite element formulation, in a numerical point of view their
computations require the derivatives of the displacement which imply a loss of precision. But,
in the strain-displacement-pressure formulation we used, the accurate strain can be obtained
directly and the stress can be directly recovered as the linear combination —Ap I + 1/2u o of

strain tensor o and pressure p where I is 2 x 2 identity matrix. The similar formulation for the

elasticity problem can be found in [21] and the stress formulation for the incompressible Stokes
equations were applied to the mixed methods and stabilized Galerkin methods in [2, 15, 17].

Our least-squares functional is similar to that in [3] with ¢ = —1 but it is appropriately
weighted by a Lamé constant u. We will directly establish ellipticity and continuity of the
functional in a product norm involving Lamé constants 4 and X and the L?- and H'-norms. To
make the computation of H ~'-norm to be feasible, we replace the H !-norm in the functional by
the discrete H!-norm following the idea proposed by Bramble, Lazarov and Pasciak including
discrete H~!-norm least-squares approaches for scalar second-order elliptic equations in [6]
and for the Stokes equations in [7]. Such discrete H~! functional is shown to be uniformly
equivalent to the Sobolev norms weighted by the Lamé constants. From this property we show
that standard finite element discretization error estimates are optimal with respect to the order
of approximation as well as the required regularity of the solution, and that they are uniform
in the Lamé constants.

The paper is organized as follows. In section 2, we formulate an equivalent first-order sys-
tems with the strain-displacement-pressure formulation to pure elasticity problem and set some
preliminary results. We introduce H ~'-norm least-squares functional weighted appropriately
by Lamé constant u for the strain formulation and then we establish its ellipticity and continuity
in section 3. In section 4, we consider discrete H !-norm least-squares functional and discuss
an error estimate according to [6] and [7]. Finally section 5 investigates a preconditioner for the
resulting algebraic linear system and present the numerical results implemented by precondi-
tioned Richardson iteration method and multigrid V-cycle algorithm using continuous piecewise
linear finite element spaces.

2. First-Order System Formulations

In this section we formulate a first-order system for H ! least-squares methods with the
strain formulation that is equivalent to the system of equations of linear elasticity with pure
displacement boundary conditions.

For convenience, we let the boldface denote the vector valued function and the under tilde
boldface the matrix-valued function, i.e., the tensor. We use C with or without subscripts to
denote a generic positive constant, possibly different at different occurrences, that is indepen-
dent of the Lamé constants and other parameters introduced in this paper, but may depend
on the domain Q. The colon notation : denotes the inner product on 2*2 and for any tensors
T = (1) and & = (d;;) in L?(€2)?*2, the L*(Q)?*? inner product is defined by

(I,Q)Z/Ql'iédl“-
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The divergence for a tensor 7 is defined as

where t denotes transpose.
Let €(u) denote the strain tensor:

1 1
e(w) = 5(Tu+ Vu) = (), oyl =5
The stress tensor T is given by

T:= A (V- )l + 2u €(u)

where I denotes the 2 x 2 identity matrix. Let o be the strain tensor scaled by \/2u

o =/2u €(u)

and let us introduce a new variable p such as

p=-V- u

Then, the stress tensor 7 is defined as the sum of the new variables g and p:

T=-ApL+2u0o.

Using the vector identity
V2

Vie=Ty

we have the first-order system of the strain formulation which is equivalent to (1.1):

V2uv-o-AVp = —f in
o—2uem = 0 in
V-u+p = 0 in

u = 0 on

where p satisfies the compatibility condition

/ pdx =0.
Q

(Au+VV-u),

691

The system (2.4) can be reduced to a system of six unknowns and six equations because the
second equations in (2.4) consists of only three equations in virtue of symmetric tensors o and

e(u).

In order to give proper formulation of H ' least-squares methods we use the Sobolev spaces
H?(Q) with the standard associated inner products (-,-)s and their respective norms || - ||s. For
s =0, H*(Q2) coincides with L*(2). In this case the norm and inner product will be denoted by
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|| -l and (-, -), respectively. As usual, H§(2) will denote the closure of D(2), the linear space of

infinitely differentiable functions with compact supports on 2, with respect to the norm || - ||5
and L2(Q) will denote the subspace of square integrable functions with zero mean:

L2(Q) = {peLz(Q) : /dea::0}.

For positive values of s the space H%(Q) is defined as the dual space of H§(f2) equipped

with the norm
Ml o= sup 2V

0£vEHE () llvlls -

Here, (-, -) is also used as the duality pairing between H~*(Q2) and H§(£2) when there is no risk
of confusion. Define the product spaces Hg(?)? = [[>_, H3(Q) and H~*(Q)* = [[7_, H~5(Q)
with standard product norms. Let

H(div;Q) = {v e L*(Q)? : V-v e L*Q) }

equipped with the norm
1/2
1Vl z(aiviey == (IVIZ + IV - v[?) 7.

We relate the particular space H (2)? to the boundary value problem as follows (see [6]):
Consider the Dirichlet problem

{—Aw—l—w = f in Q (2.5)

w =0 on OfN.

Let T : H1(Q)? — H}(Q)? denote the solution operator for the above problem (2.5), that is,
for any f € H='(Q)?, Tf = w is the solution to (2.5). From the definition of T, we can easily
show that

16112, = (¢, T ). (2.6)

Thus the inner product (-,-)_1 on H~1(Q)% x H=1(Q2)? associated with the norm ||-||—; is given
by

(¢7¢)71 = (¢)T¢) = (T¢7¢)

We now give the following useful identity

/g(u):fda::—/(v-f)-uda: (2.7)
Q Q
for any symmetric tensor 7 and any vector function u vanishing on the boundary, and finally

let us recall from the consequences of a general functional analysis result in [19] and [16] that

Ipll < ClIVpll-1 for any p € L§(9). (2.8)

3. Minus One Norm Least Squares Methods

In this section we define and analyze H ~! least-squares methods to approximate the solution
of (2.4).
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First, we take the least-squares functional as the sum of L?- or H '-norms of the weighted
residuals for the system (2.4) such that

Glo,u,p;if) =|\/2uV -a = AVp+ 1|7,

(3.1)
+ plle = V2pe()|]? + 4|V - u + pl.

For a solution space, define
V:=L3(Q) x HY(D)? x L3(Q)

where L2(Q) is the space of 2 x 2 symmetric matrix functions whose elements are square-
integrable.

The first-order system least-squares variational problem for the system (2.4) is to minimize
the quadratic functional G(g,u,p;f) over V : find (o,u,p) € V such that

G(o,u,p;f) = inf  G(r,v,q;f) . (3.2)
- (v, )ev 7
Define a norm ||| - ||| on V by
3
iz, v, alll = <N||tZ||2 + 12|l + 2% |pl” > , V(T v, €V

From now on, we assume that 4 < A. Under this assumption, we show that the continuity and
ellipticity of the functional G(o,u, p;0) are independent of the Lamé constants A and g in the

next theorem and the proposed functional is robust as the Poisson ratio v — %

Theorem 3.1. For any (o,u,p) € V, there exists a constant C, independent of pn and \ such
that

1
¢ @ wpllP < Glg,up0) < Clll(g,up)l (33)

Proof. The upper bound of (3.3) is straight forward from the triangle and Cauchy-Schwarz
inequalities and the assumption y < A. If we show the validity of the lower bound of (3.3) for
(o,u,p) € W where W := (L2(Q) N H(div; 2)?) x H}(2)? x (L3(Q) N H'(Q)), then the lower
bound of (3.3) would follow for any (o,u,p) € V by continuity. For any (g,u,p) € W and
v € H}(Q)?, using the Schwarz inequality and the fact that ||e(v)]| < ||v||1 yield

(AVp,v) = |( = V2uV - @ + A\Vp,v) + (v/2uV - a,V)
=(=2uV g +\Vp,v) — (a, \/ﬂg(V))‘
=|(= VBT -2 4+ AT.v) - V(e - Bl €0) - 2n{elu).e(v)]
{IVERY - & = AVbls + Vil = v/2reto) | + 20l I

IN
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Hence, from (2.8) we have

||Ap||s6*{||mv- — Vpllos + VAl — e + plle(a >||}. (3.4)
Using (2.7) and the Schwarz inequality yields
2ulle(u)|]” = (V2ue(n) — g,/ 2ue(w)) + (210, €(u))
= (V/2pe(u) cz\/_ (W) — (\/2uV - g, u)
= (V2pe(u) — g, v/2ue(w)) — (V/2uV - @ — AVp,u) — (AVp,u)
= (V2ue(n) — a,/2pe(u)) = (\/2uV - @ = AVp,u) + (V- u+p,Ap) — (p, Ap)

< Vv2plle = 2pe(u)| el + [[v2uV - g = AVp|| 1 [lully + [[V - u+ pl| [|Ap]l.

By multiplying u and using Korn’s inequality and (3.4), we have
22 |Jull? < C (ullx/2uV o= AVpl1 - [l + /il — /Frre(u)] - ||u||1)
OVl - (u\/ AV g — AVl + vl — Ve + ullg(U)H)

02 2 2

< S IV20Y - @ = AV, + %uunl + Cullg - V2pe)P + E-luls (3.5)
cC

+ 5 <2u2||V cu+pl? +(1v2uV @ = AVp|Z; + plle — \/2/@(11)”2)
c2C?

+

2 2 N2 2
IV -l

which implies
u2||u||%sc{||mv- — VI, + lle — v/ 2ue(w)|? + 12|V - u+p||2} (3.6)
Combining (3.6) with (3.4) yields
M|pll* < C G(g,u,p,0). (3.7)
On the other hand, we have
plell® = (g — V2ue(w), na) + (V2ue(u), ua)
= (g — V2ue(u), ua) — p(v/2uV - g, )
= (g — \2ue(u), pa) — p(\/2uV - — AVp,u) + u(V - u+ p, Ap) — u(p, Ap)
<plle - @gu)u o)l + ully/26V - @ = AVpl| 1 [ulls + plV - u + pl] [IAp]

1
<3 (ulla —V2pe()|]? + plla|l* + 1V/2uV - a — AVp|1%,

[l + g2V - w )l + [IApll?)
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so that, from (3.6) and (3.7), we are led to

ulell® < C Glg,u,p;0). (3-8)
Hence the lower bound of (3.3) follows from (3.6), (3.7) and (3.8).

4. Discrete Minus One Norm Least-Squares Methods

In this section we will present the discrete H ! least-squares finite element approximation,
the well-posedness of the discrete problem and then establish optimal order error estimates for
each variable.

For the finite element approximation, we assume that the domain () is a convex polygonal
and that 7y is a partition of Q into finite elements Q = Uge, K with h = max{diam(K) :
K € Tp}. Assume that the triangulation 7j, is regular and satisfies the inverse assumption (see
[14]). Let V" := " x U" x P" be a finite element, subspace of V with the following properties:

there exist a constant C' and an integer s such that for all (g,u,p) € (L*(Q) N H"(2)¥*?) x
(HE(Q)2 N H™1(Q)?) x (L3(Q) N H"(Q)), 1 < r < s, there exists a triplet (o, u’,p’) € V"
such that

mem—qm+wQ—dm)scmmm, (4.1)
agleoh
it (fhe— w4+ Bl o) < OBl (4.2)
and
. T I r
it (llp =2l + hllp =p'l11) < CHlpllr- (4.3)

Note that typical finite element spaces consisting of continuous piecewise polynomials with
respect to quasi-uniform triangulations satisfy (4.1)-(4.3) (for more detail see [14]).
Let (o, u,p) be the solution of (2.4) which obviously minimizes the functional (3.1) and let

h h

(g", u", p") minimize the functional (3.1) over V". Denote by e, = o — ", e, = u — u” and

e, = p— p". If we use continuous piecewise polynomials of degree r for the variable u" and
piecewise polynomials of degree r — 1 for the variables p" and o® where r > 2, then we can

show from Theorem 3.1 and the approximation properties (4.1)-(4.3) that

Hmm%%WSCM{wwﬂﬁmmmﬂ+Mw},

which is optimal with respect to the finite element functions used. The use of continuous
piecewise polynomials of degree r (r > 1) for all unknowns yields the error estimate O(h"),
but it does not give optimal error estimates for the variables p? and g”. However, the use

of a single approximating space for all variables simplifies programming of least-squares finite
element methods.
Following the ideas suggested in ~[6, 7], we now replace the operator T' by an equivalent

and computable operator Th. Let B : H~1(Q)? — U" be the discrete solution operator
w = Bptp € U" for the Dirichlet problem (2.5) defined by

(Vw,Vv) + (w,v) = (¢, V), Vveuh. (4.4)
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Assume that there is a preconditioner By, : H—(Q)? — U" for By, that is symmetric positive
definite operator with respective to the L?(Q2)2-inner product and spectrally equivalent to By,
i.e., there exists a positive constant C not depending on the mesh size h such that

é(Bhv,v) < (Bpv,v) < C(Bpv,v), veUu". (4.5)

Define T}, = a h%I + 3 By, for fixed positive constants a and 3 where I denotes the identity
operator on /" and the parameters a and 3 could be used to tune the iterative convergence rate.
The order of convergence is not changed (see [6]). For convenience we assume that o = 3 =1
in this section.

Now, we define the discrete counterparts of the least-squares functional G as follows:

Gu(au,p;f) = (Th(\/QMV g —=AVp+£),/2uV-a- /\Vp+f>

+u(q—\/ﬂ§(U),q—\/@§(U)> +u2(V-u+p,V-u+p>-

The purpose of the remainder of this section is to analyze least-squares approximation based on
the above functional. The finite element approximation to (3.2) becomes: find (g, u”,p") € V"

such that

(4.6)

Gu(g",u",p"f) = ot Ca(Tv.gif) (4.7)

Let Qp : L?(2)? — U" denote the L2-orthogonal projection operator onto " which satisfies
1Quvil < CIvlli, YveH'(Q)? (4.8)

Then, the symmetry of By, with respect to the L?()2-inner product yields that By, = B,Qp.
Similarly, By, = BpQp. Thus, the spectral equivalence in (4.5) holds for every v € L?(2)2. We
recall from [6] that

I = Qu)vll-r < Chivll, YveL*Q)? (4.9)
and
1QnvIZ1 <C (Byv,v) <ClIv|Zy, VveL*(Q) (4.10)
which can be easily proved by using the approximation property and (4.8).

Lemma 4.1. For any (o,u,p) € (L2(Q) N H(div; 2)?) x H}(Q)? x (L3(Q) N H'(Q)), there
exists a constant C, independent of h, u and X, such that

1
C (g, w,p)|I> < Gulg,u,p;0) (4.11)

and

Gu(g,u,p;0) <C (ullczll2 + @2l + X[lpll* + ph?(IV - g lI* + X*1?(|Vp]|? > - (412)

If, in addition, (o,u,p) € Vh = ?h x UM x P and if the spaces @h and P" satisfy inverse

inequalities of the form

IV-all <Ch7Mle|l and |[Vp] < Ch7Hpll, (4.13)



Discrete Minus One Norm Least-Squares for the Stress Formulation of Linear Elasticity 697

respectively, then (4.12) can be replaced by

Grlg,u,p;0) < C|ll(g,u,p)||. (4.14)

Proof. From (4.5) and (4.10), we have that
(Twv,v) < C (RP|IV]* + (Bav,v)) < C (R|VI* +[[v][2,), Vv eL* (@)

The last inequality, the triangle inequality and Theorem 3.1 imply the inequality (4.12) and
then the upper bound (4.14) is nothing but a combination of (4.12) and (4.13). We now prove
the lower bound (4.11). By Theorem 3.1, it is enough to show that

V2V - g = AVp|2, < C <Th(\/2/N @ —AVp),\/2uV - g — Wp)

for any o € (L?(Q) N H(div;2)?) and any p € H'(Q). The last inequality can be proved by
showing the following inequality. Using (4.9) and (4.10) we have

V21 <2 (I = QuVIZ) + 1QavIIZy) < C (R IVIP + (Bav,v)) < C(Thv,v),

for any v € L?(Q2)2. This completes the proof of the lemma.

Theorem 4.2. Assume that the spaces @h and P" satisfy the inverse inequalities (4.13). Let

h

(", u”, p") in V" be the unique minimizer of the problem (4.7). If the solution (o, u,p) of the

problem (2.4) satisfies (o, u,p) € (H"()**2 x Hy ' (Q)? x H"(Y)), then there erists a constant
C, independent of h, p and X\, such that

(@ =" u—ut,p— )| < Ch" (ﬂuan Tl + A ||p||r) . (4.15)

Proof. Tt is easy to show that the error (¢ — o, u — u”,p — p") is orthogonal to V"
with respect to the inner product corresponding to the functional Gp(o,u,p;0). Then the

approximation properties (4.1-4.3), (4.11) and (4.14) in Lemma 4.1 yield the error estimate
(4.15).

5. Implementations and Numerical Results

In this section we present the numerical experiments for the discrete H~! least-squares
methods (4.7). For the finite element spaces, we use the piecewise linear finite elements for
the approximation of all unknowns. The use of a single approximating space for all variables
simplifies the programming of least-squares finite element methods. The computational domain
is taken to be the unit square. We use the uniform triangulation which has the grid interval
h for each direction. For fixed y = 1, the numerical experiments were performed for A =
1,10, 100, 1000. For convenience, the unknowns are ordered as:

h
U= (01702703yu17u27p)t eV

We will use By, as the preconditioner for By, corresponding to one sweep of the multigrid V-
cycle algorithm associated with (4.4) using the point Gauss-Seidel smoothing iteration. This
multigrid preconditioner results from applying one step of the iterative procedure with zero
starting iterate and uses one pre and post Gauss-Seidel iteration sweep.
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Now, the problem (4.7) can be written as the matrix problem such that
A,U" = F" (5.1)

where U" denotes the coefficient vector of U" € V". Here, the matrix Ay itself is never
assembled because of the operator T}, appeared in Aj. Using the equivalent relation provided
in (4.11) and (4.14) yields that the matrix A}, is spectrally equivalent to

Rh = dia‘g[uhzlaa ,U/2Nu, >\2h2]

where I, and I, denote the identity matrices associated with @h and P", respectively, and N,

denotes the stiffness matrix associated with (4.4). We use the inverse of the block matrix Ry,
as a preconditioner for Ay, in which the inverse of N, itself is never assembled. The multigrid
V-cycle preconditioner Bj, will be used instead of computing N, 1.

To study multigrid V-cycle performance we use the multigrid V-cycle algorithm V(1,1) with
the following relaxation sweep: for a given Vg,

Vi =VELR T (FM— A, VE), n>0,

in which the grid size of the coarsest mesh is hy = % The parameters a and 8 in T}, =
a h2I + B By, could be used to tune the iterative convergence rate. In all of the reported
computations, we took (a,3) = (0.1,0.8).

Define a discrete matrix norm |||U"|||, of the coefficient U* = (", 4", p") of U" =

(g", u",p") € V" by

E[1a = <u 6™ 12 4+ 122 1M + A2 ||ph||%>

where || - ||, and || - ||, denote the discrete L?>- and H'-norms given by

16" 10 = /(&™) Mo(6"), 18" ]|1,0 = 1/ (@")!Nu (&) and ||p"ln = 1/ (B")! M, (5")

with the mass matrices M, and M, and the stiffness matrix IV,, corresponding to the spaces
@h, P" and U", respectively.

Example 1. To study multigrid V-cycle performance we begin by studying the convergence
factors for the trivial problem which has zero exact solution, i.e., we take f = 0 in problem
(2.4). With initial guess one, i.c., Ul = 1, we define the convergence factors pl* as ratios of
discrete matrix norm of successive iterations such that

no_ N0kl
kT a0 z
O]

In Table 1, we present the convergence factors for A = 1,10, 100, 1000 measured after 20 V(1,1)-
cycles, in which the linear finite elements was used. The table shows that the convergence factors
appear to be independent of h and .

Example 2. In order to measure discretization errors by discrete H ~'-norm least-squares
method we chose a problem with a known nonzero solution to the problem (2.4):

(uw\ _ [ z(1-2)y*(l —y)?sinTz
YUlw )T 22(1 —2)%y*(1 —y)?cosmy |~
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Then, from this displacement solution u we obtained the other solutions ¢ and p and the data

function f in (2.4), Table 2 shows the total errors |||(es, €y, €p)|||n and their convergence rates
where e, , e, and e, denote the differences between the exact solutions and their approximations.
The table shows that the error bounds are like O(h?* ) with 0 < € < 1 for A = 1,10 and almost
O(h?) for A = 100, 1000, but the theoretically predicted error bounds are O(h). Therefore we
may have obtained superconvergence for the use of linear elements.

In order to compare our numerical results with best approximation, in the remaining tables
we show the L2 and H'! discretization errors and their rates along with three components for
A =1,10,100, 1000. The rates of the best approximation out of the linear finite element spaces
are O(h?) in L? and O(h) in H'. In Tables 4 through 7, we observe that the computed L>
convergence rates of e, for A = 1,10, 100, 1000 and e, and e, for A = 100, 1000 are almost in
agreement with the best rates O(h?). In those tables, we can see a common phenomenon that
the larger ) is, the better the convergence rates of each variable in both L? and H! are. Tables
8 through 11 provide the H' discretization errors and their rates. We note that the theoretical
error bounds of e, in H' is O(h) and the best error bounds for all variables in H' is O(h). The
tables show that the rates of convergence for the displacement errors e, are like O(h?~¢).

Table 1. Convergence factors after 20 MGV (1,1)-cycles

A=1 A=10 A =100 A = 1000
h = % 0.8868 0.8599 0.8677 0.8590
h =1z 0.8794 0.8426 0.8734 0.8710
h = % 0.8694 0.8417 0.8768 0.8756
h = 6%1 0.8624 0.8412 0.8759 0.8767
h= oz 0.8579 0.8406 0.8704 0.8767
h = ﬁ 0.8552 0.8401 0.8618 0.8764

Table 2. Total errors |||(e},el, e!)|||, and convergence rates
A=1 A=10 A =100 A = 1000

Error | Rate | Error | Rate | Error | Rate | Error | Rate

h=zt | 6.56e3 9.03e-3 7.61e-2 7.31le-1
h =1 | 254e-3 | 1.37 | 3.20e-3 | 1.50 | 8.59¢-3 | 3.15 | 7.90e-2 | 3.21
= [ 7.99e-4 | 1.67 | 9.14e-4 | 1.81 | 1.63e-3 | 2.40 | 1.14e-2 | 2.79
=& | 2.36e-4 | 1.76 | 2.66e-4 | 1.78 | 4.3de-4 | 1.91 | 2.64e-3 | 2.11
= | 714e-5 | 1.73 [ 7.76e-5 | 1.78 | 1.14e-4 [ 1.92 | 6.65¢-4 | 1.99
h =5z | 2.26e-5 | 1.66 | 2.36e-5 | 1.72 [ 3.07e-5 | 1.90 | 1.72e-4 | 1.96

Table 3. L?-norm errors and convergence rates when A = 1
el el el
o u P
ERROR | RATE | ERROR | RATE | ERROR | RATE
= % 3.048e-3 8.786e-4 1.126e-3

h =1z | 1.190e-3 | 1.3564 | 2.990e-4 | 1.5547 | 5.196e-4 | 1.1157
h = % 3.759e-4 | 1.6629 | 8.487e-5 | 1.8171 | 2.268e-4 | 1.1960
1.093e-4 | 1.7813 | 2.223e-5 | 1.9324 | 8.448e-5 | 1.4247
h =1 13.216e-5 | 1.7655 | 5.728¢-6 | 1.9567 | 3.004e-5 | 1.4917

h= 5= | 9.894e-6 | 1.7009 | 1.493e-6 | 1.9393 | 1.056e-5 | 1.5083
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Table 4. L?-norm errors and convergence rates when A = 10

of o e
ERROR | RATE | ERROR | RATE | ERROR | RATE
= % 3.201e-3 6.984e-4 6.206e-4

= % 1.372e-3 | 1.2217 | 3.022e-4 | 1.2082 | 8.644e-5 | 2.8439
h = % 4.479e-4 | 1.6155 | 8.274e-5 | 1.8691 | 3.253e-5 | 1.4099
h = %1 1.260e-4 | 1.8294 | 2.178e-5 | 1.9254 | 1.058e-5 | 1.6204
h = ﬁ 3.499e-5 | 1.8488 | 5.526e-6 | 1.9790 | 3.410e-6 | 1.6335

h:ﬁ 1.006e-5 | 1.7984 | 1.387e-6 | 1.9937 | 1.130e-6 | 1.5934

Table 5. L?-norm errors and convergence rates when A = 100
of oh o
ERROR | RATE | ERROR | RATE | ERROR | RATE
= % 3.500e-2 1.238e-3 6.592e-4
h = % 3.688e-3 | 3.2467 | 2.815e-4 | 2.1369 | 6.937e-5 | 3.2483
h = % 5.609e-4 | 2.7170 | 8.408e-5 | 1.7432 | 1.292e-5 | 2.4247
= é 1.498e-4 | 1.9040 | 2.276e-5 | 1.8850 | 3.380e-6 | 1.9345
h = ﬁ 4.034e-5 | 1.8936 | 5.939e-6 | 1.9385 | 8.500e-7 | 1.9915

h:ﬁ 1.079e-5 | 1.9018 | 1.521e-6 | 1.9651 | 2.100e-7 | 2.0171

Table 6. L?-norm errors and convergence rates when A\ = 1000

ol el el

ERrROR | RATE | ERROR | RATE | ERROR | RATE
h=< |[3.349-1 8.150e-3 6.411e-4
h= % 3.323e-2 | 3.3334 | 9.521e-4 | 3.0975 | 6.973e-5 | 3.2007
h= % 2.442e-3 | 3.7663 | 1.242e-4 | 2.9377 | 1.095e-5 | 2.6708
h= é 2.217e-4 | 3.4612 | 2.818e-5 | 2.1405 | 2.610e-6 | 2.0688
h= ﬁ 4.469e-5 | 2.3106 | 7.122e-6 | 1.9845 | 6.600e-7 | 1.9835
h = ﬁ 1.198e-5 | 1.8988 | 1.786e-6 | 1.9950 | 1.700e-7 | 1.9569

Table 7. H'-norm errors and convergence rates when \ = 1
of oh o
ERROR | RATE | ERROR | RATE | ERROR | RATE
% 2.945e-2 5.634e-3 1.356e-2

= % 1.672e-2 | 0.8163 | 2.157e-3 | 1.3848 | 1.532e-2 | -0.176
= % 1.137e-2 | 0.5566 | 6.621e-4 | 1.7045 | 1.433e-2 | 0.0964

h
h
h:é 8.042e-3 | 0.4996 | 1.902e-4 | 1.7992 | 1.095e-2 | 0.3881
h
h

= | 5.676e-3 | 0.5027 | 5.589¢-5 | 1.7671 | 7.901e-3 | 0.4708
= 5= | 3.992e-3 | 0.5076 | 1.727e-5 | 1.6944 | 5.598¢-3 | 0.4971

Table 8. H'-norm errors and convergence rates when \ = 10
oF oh o
ERROR | RATE | ERROR | RATE | ERROR | RATE
5 | 4.135e-2 5.680e-3 6.834e-3

= % 1.809e-2 | 1.1927 | 2.744e-3 | 1.0493 | 1.533e-3 | 2.1564
= | 1.116e-2 | 0.6963 | 7.220e-4 | 1.9266 | 1.476e-3 | 0.0547

h
h
h:é 7.268e-3 | 0.6192 | 2.079%e-4 | 1.7960 | 1.065e-3 | 0.4708
h
h

= | 4.998e-3 | 0.5403 | 6.004e-5 | 1.7920 | 7.566e-4 | 0.4932
= 5= | 3.500e-3 | 0.5139 | 1.811e-5 | 1.7287 | 5.355e-4 | 0.4986
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Table 9. H!-norm errors and convergence rates when A\ = 100
el el e
ERROR | RATE | ERROR | RATE | ERROR | RATE

=3 | 47891 1.497¢-2 9.121e-3
=1z | 6.675e-2 | 2.8429 | 3.473e-3 | 2.1076 | 1.551e-3 | 2.5560
h =4 | 1.438e-2 | 2.2144 | 8.240e-4 | 2.0755 | 4.085e-4 | 1.9248

h = é 6.307e-3 | 1.1891 | 2.254e-4 | 1.8702 | 1.487e-4 | 1.4579
h = ﬁ 3.608e-3 | 0.8059 | 6.479e-5 | 1.7987 | 6.762e-5 | 1.1369
h = ﬁ 2.343e-3 | 0.6225 | 1.952e-5 | 1.7305 | 3.815e-5 | 0.8258

Table 10. H'-norm errors and convergence rates when A = 1000
oF eh e
ErRROR | RATE | ERROR | RATE | ERROR | RATE

= % 4.640e+-0 1.020e-1 8.911e-3
h = % 6.230e-1 | 2.8970 | 1.643e-2 | 2.6342 | 1.351e-3 | 2.7216
h = % 7.878e-2 | 2.9833 | 2.025e-3 | 3.0203 | 2.462e-4 | 2.4561
1.217e-2 | 2.6945 | 3.053e-4 | 2.7299 | 5.583e-5 | 2.1407
4.770e-3 | 1.3513 | 7.237e-5 | 2.0768 | 1.758e-5 | 1.6671
h= 5= | 3.171e-3 | 0.5888 | 2.041e-5 | 1.8257 | 7.410e-6 | 1.2464
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