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DISSIPATIVITY AND EXPONENTIAL STABILITY OF
f—METHODS FOR SINGULARLY PERTURBED DELAY
DIFFERENTIAL EQUATIONS WITH A BOUNDED LAG *!
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Abstract

This paper deals with analytic and numerical dissipativity and exponential stability
of singularly perturbed delay differential equations with any bounded state-independent
lag. Sufficient conditions will be presented to ensure that any solution of the singularly
perturbed delay differential equations (DDEs) with a bounded lag is dissipative and expo-
nentially stable uniformly for sufficiently small £ > 0. We will study the numerical solution
defined by the linear #—method and one-leg method and show that they are dissipative
and exponentially stable uniformly for sufficiently small £ > 0 if and only if § = 1.
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1. Introduction

Singular perturbation problems(SPPs) form a special class of problems containing a small
parameter . They are of practical interest in models of instantaneous phenomena and include
a subclass of what we frequently thought of as ‘stiff’ equations. Singularly perturbed delay
differential equations of the form

ey'(t,e) = g(t,y(t,e),y(t —,€)), 0<t<T, (1)
subject to the initial condition
y(t,s) = ¢(t75)7 -7<t<0 (2)

arise in the study of an “optically bistable device” [7] and in a variety of models for physiological
processes or diseases [16]. Such a problem has also appeared to describe the so-called human
pupil-light reflex [15]. For example, Ikeda [13] adopted the model

6yl(t>5) = _y(t>6) + A2 [1 +2B cos(y(t - 1)5))]

to describe an optically bistable device and showed numerically that instability or chaotic
behaviour occurs for small € and certain values of A, B. This was confirmed experimentally by
Gibbs, Hopf, Kaplan and Shoemaker [9].

1.1. A Simple Example
Before we investigate dissipativity and exponential stability of singularly perturbed delay
differential equations, we first consider a simple ordinary differential equation in the form

ey'(t) = Xy(t), (RA<L0), t>0,
y(0) = o, (3)
which has the solution N
y(t) = e="yo.
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716 H.J. TIAN

The most obvious classical difference scheme for solving this problem numerically is §—method:

6(yn+1 - yn) = 9/\hyn+1 + (]- - 9)/\hyn7 (4)
where n > 0. Solving it explicitly, we obtain
e+ (1L—60)A\h
- S it 5
Yn+1 c — OB Yn, ( )
in which %should be an approximation to e*".

There are several disadvantages of the §—method. First, the §—method doesn’t possess
uniform convergence in €. Let p = % The general form of the first mesh error is

. Ap
— — |eM —
tim () =311 = | = (14 725 . (6)
When p =1,y # 0, for example, (6) reads
A
. _ |
fin () 1] = | = (14 1250 |l 20 )

which means nonuniform convergence in €. In addition, it can be proved that
lim |y(h) =4[ =0 (8)

h — 0
p — oo

for any initial value if and only if § = 1.
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Figure 1: Graph of error function with respect to the ratio p of stiff coefficient ¢ and step-size
h.

Figure 1 implies that the error is small only for small p when 6 # 1, while for the backward
Euler method (i.e. 8 = 1), the error is small for small and large ratio p and becomes significant
when € and h are of the same order of magnitude.

Second, it is clear that the discrete solution oscillates if p > _L)\ (where A € R) except 0 = 1,

because \ N
o 4
= (141250 ) Q

These oscillations are spurious since they do not occur in the solution of the continuous problem,
and can only be avoided by taking the backward Euler scheme.

Third, the original equation is asymptotically stable and hence numerical approximation
should mimic the same property, which requires
e+ (1—0)Ah

e —0\h
It is well-known that §—method is A-stable for ODEs if and only if § € [%,1]. Unfortunately, it
is easy to verify that (10) is satisfied for any Ak € {z : Rz < 0} uniformly in € > 0 if and only
if 0 € (%, 1], which rules out the trapezoidal method since it is not strongly stable at infinity.

We distinguish two cases:

‘ <1 (10)
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1. p — 0. The numerical solution y,, tends to zero extremely slowly even if the exact solution
tends to zero rapidly;

2. p — o0o. The rate of decrease of numerical solution resembles (%)n Yo (where 6 € (%, 1]).

From a numerical analyst’s point of view, it is always assumed for stiff problem that % — 00
and h — 0 simultaneously. This is the most interesting situation because any effective numerical
method for stiff problems should integrate the equation with step-size h such that % is large.
Based on our preceding observations (cf. Figure 1), we conclude that the backward Euler scheme
is the only choice, provided we do not strongly require the so-called uniform convergence in €.

1.2. Outline of the Paper

The dissipativity and stability of DDEs have been studied extensively, but most theory
emphasizes linear, constant coefficient equations with a constant lag. In this paper, we will
concentrate on the dissipativity and exponential stability of singularly perturbed delay dif-
ferential equations with any bounded (state-independent) lag (c.f. Zennaro [23]) and their
numerics. It is very important for the prescribed numerical method to preserve the dissipativ-
ity and stability of the underlying system. In Section 2, we obtain an inequality of Halanay type
which plays an essential role in the analysis of dissipativity and exponential stability, and then
give sufficient conditions for the dissipativity and exponential stability uniform in sufficiently
small ¢ in Section 3. Section 4 deals with numerical dissipativity and exponential stability of
linear #—method and one-leg #—method for singularly perturbed DDEs. These results are also
applicable to general DDEs with a bounded lag (i.e., e = 1).

2. A Generalized Halanay Inequality

The following lemma generalizes the famous Halanay inequality (see Halanay [11]) and will
play a key role in obtaining our main result of this paper.

Lemma 2.1. (A generalized Halanay inequality [20]) Suppose
u'(t) < y(t) — a(t)u(t) + B(t) sup  u(o)

t—7<o<t
fort > to. Here T > 0 and continuous functions v(t), a(t), B(t) satisfy 0 < v(t) < v*,a(t) >
ap >0, and 0 < B(t) < qa(t) for all t >ty with 0 < g < 1. Then
7" —p* (t—to)
u(t) < ———+Ge ™ * 0 or t > to. 11
( ) = (1 — q)a[) f 71} ( )

Here G = supy,_ . <i<y, [u(t)], and p* > 0 is defined as
wh = jof {u(t) - p(t) = at) + BH)e 7 = 0}.

Proof. Note that the result is trivial if 7 = 0. In the following we assume that 7 > 0. Denote

H(p) = p—alt) + B(t)e"". (12)
By assumption a(t) > ap > 0,0 < ﬁ( ) < qa(t) for all t > to, then for any given fixed ¢ > o,
we see that H(O) = —a( ) + ( ) < —1—=q)at) < —(1—-qag < 0, lim,_,o H(u) = oo,
and H'(p) = 1+ pt)re!™ > 0 Therefore for any t > ty there is a unique positive pu(t)
such that p(t) — a(t) + B(t)e*” = 0. From the definition, one has p* > 0. We have to

prove p* > 0. S pose this is not true. Fix § satisfying 0 < ¢ < § < 1 and pick 0 < € <
min{(1 — —)ag, = (%)} Then there is t* > £y such that i(t*) < e and

() = alt") + BE)H)T = 0.
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Now we have

0 = Alt*) - a(tr) + B(E)ert )T
< e altt) +B(E)e
< e—alt)+ 1p0)
< e—a(th) + La(t) (13)
= e—(1=3Da(t)
< e—(1-1ag
< 0,

which is a contradiction.
Suppose (11) fails. Then there is some ¢ > ¢, such that

*

_r e H () <y (p).

0= gay + kG < u(t)
Setv()—m+Ge“tt0)andw() v(t) —u(t). Let ¢ = inf{t >ty : v(t) — u(t) <0}.
Then we have for some ¢ > to such that w(s) = v(¢) — u(s) = 0 and

w'(§) =v'(s) —u'(c) <0. (14)
Hence
w'(s) = V() —u(s)
> _G'u*e—u*(c—to) —(s) — [—a(g)u(g) +6(s) sup u(o)

s—7<0<¢

et _ o (1 &) = B(S)
g an ! <1 (1 —q)ao )

+Ga(§)e_”*(§_t°) — Gﬂ(q)e‘”*“_to_r)
> Ge (st [—u* +a(s) — ﬂ(c)eu*f] :

Let pu(s) satisfy u(s) — a(s) + 8(s)e*©)™ = 0. Then according to the definition of p*, it follows
that

—p*tale) = Be)e" T = [—p* +als) = Bs)e 7]+ [u(s) — als) + B(s)e )]
= (<) — 1) + B[ — er'7]
> 0.
Therefore
w'(s) = v'(s) —u(s)
> Ge ) [ ta(e) = B(s)er 7
> 0.

This contradicts (14) and hence
7" —p* (t—to)
u(t) < m——— + Ge™W (t=to for t > to.
< (1= q)ao =
This completes the proof.
Remark. In the case y(t) = 0,a(t) = a > B(t) = B then the result is a reformulation of
Halanay’s statement in Halanay [11].

3. Dissipativity and Exponential Stability

In this section we will apply the generalized Halanay inequality to study the following
dissipativity and exponential stability for the nonlinear singularly perturbed delay differential
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system.
Consider
Ey’(t,g) = f(t,y(t,E),y(t—T(t),S)), t Z th (15)
with initial function
y(t,s) = ¢(t)7 t <o, (16)

where f: Rt = [tg,00) X C* x C* +— C*, and y(t,e) : R x R — C*.

3.1. Dissipativity

Many interesting problems arising in physics and engineering are modelled by dissipative
dynamical systems. They are characterized by possessing a bounded positively invariant ab-
sorbing set in which all trajectories enter in a finite time and thereafter remain.

Definition 3.1. A singularly perturbed delay differential equation (15) is said to be dissipative
uniformly in € if there is a bounded, positively invariant set B C C° with the property that
for any bounded set E C C?, there exists t* = t*(B, E) > to, which is independent of €, such
that y(t,e) € E for all t > t* and for any initial functions ¢(t) € B. The set B is called an
absorbing set.

We have the following theorem.

Theorem 3.2. Consider
Eyl(t>6) = f(t,y(t,E),y(t—T(t),S)), t > to,
y(t,E) = ¢(t)7 to— 7" <t <to, (17)

where f is sufficiently differentiable, 0 < 7(t) < 7*, where 7" is a constant, and the initial
function ¢(t) is continuous for to — 7 <t < ty. Suppose

Rt y,u),y) < () —a@) [y [P +80)ull?, (18)

vVt € RY,Vu,y € C?,

and a(t), B(t),y(t) are continuous functions and satisfy for t > to
0<y() <7, at)>a0>0, 0<B(t) <qalt), 0<qg<l, (19)

where || - || is the induced norm of the inner product (u,v) = v u, and ag,v*,q are constants.

Then (15) has a unique solution, and there exists a small g > 0 such that (15) is dissipative

uniformly for sufficiently small € € (0,e9] with an absorbing set B = B (0, A /ﬁ + 6) for
any given 6 > 0.

Proof. According to the definition of the norm, we have

eyt I7) = Rey'(r,0),u(t,)
= %(f(t,y(t,[:“),y(t—T(t),&)),y(t,é‘»
1(0) + alt) [ y(t2) I +50) sw_ly(oe)]

t—7*<o<t

IN

Denote V (t,e) = |ly(t,e)|]?. It follows with € > 0 that
200(t 20(t
V'(t,e) < ﬁV(t,s) + 250 sup V(o,e), t > tp.
£ € t—7mr<o<t
Application of the inequality in Lemma 2.1 to the above equation yields

*

Y —p*(g)(t—to)
% < —— 4+ Ge™™ > to.
(t,E) S (1 q) ) e , t e t[) (20)
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Here

15(6) = inf {u(t) : () — 28 4 20O iy

= 21
t>to € € 0}, (21)

and G > 0 only depends on the initial condition ||@(t)||.

For any fixed ¢ > to, let u(t,e) be defined as the unique positive zero of
w— 20[_(75) + i(t)ew”

€ €

It can be proven that u(t,e1) > p(t,e2) whenever €5 > 1 > 0. This indicates that p*(e;) >

w*(e2) and thus we proved that p*(e) is monotonically decreasing with respect to the variable

e. Hence we deduce that there exists a small g > 0 such that the solution y(¢,e) bounded

uniformly for sufficiently small e € (0,g¢] as

= 0. (22)

2 VL e nt(eo)i—to)
Iyt < =l + G .
Hence the solution can not blow up and the system has a uniquely defined solution for all £ > ¢,.
It is very easy to verify that for any given § > 0, B is an absorbing set. This completes the
proof.
Remark. From the generalized Halanay inequality and the proof above, it is obvious that the
result of this theorem still holds when we set € = 1.

3.2. Exponential Stability
We start with the following definition for exponential stability.

Definition 3.3. The solution y(t,€) of Equation (15) is said to be v-exponentially stable uni-
formly for sufficiently small € if it is asymptotically stable and there exist finite constants K >
0,v > 0 and d > 0, which are independent of ¢ € (0,¢] for some gq, such that ||y(t,e)—z(¢t,€)|| <
Kev(t=%) fort > to and for any initial perturbation satisfying SUDge(ty—r,t0] 19(8) =9 (8)]] < 0.
Here z(t,€) is the solution of Equation (15) corresponding to the initial function .

Theorem 3.4. Consider

ey'(tie) = fltylt,e),yt—7(t),e),  t>to,
y(t,e) = ¢u(t), t < o, (23)
and
ez'(t,e) = f(t,2(t,e),z(t —7(t),¢e)), t > to,
z(t,e) = ¢a(t), t < to, (24)

where f is sufficiently differentiable with respect to both the last two variables, 0 < 7(t) < 7%,
where T is a constant, and the initial functions ¢1(t) and ¢=(t) are continuous for to — 7™ <
t < tog. Suppose

§R(f(t)ylau)_f(t>y2>u)7y1 _y2> < n(t) ||y1 — Y2 ||2)

Vt e ]R+7vu7y1)y2 € CS) (25)
1 fty,u) = flty,ue) | <€) [lua —u2 ],
Vt € RT,Vy, uy,us € C*, (26)

and n(t), ((t) are continuous and satisfy for t > to
n(t) < —mo <0,  0<(() <—gn(t), 0<¢<1, (27)

where ny and q are constants. If (23) and (24) each has a unique solution, then there exists
a small £9 > 0 such that the solution of (15) is exponentially stable uniformly for sufficiently
small € € (0,¢e0].
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Proof. The theorem can be proved analogously to Theorem 3.2 by setting v* > 0 and then
take the limit with respect to v*.

4. Linear 0—Method

In this section we shall examine the numerical dissipativity and exponential stability of the
linear #—method. The linear #—method applied to (15) with constant step size h > € > 0 gives
rise to

Syfwrl = ey, + hOf(tni1, yfz+17 y/&;(tm-l — 7(tnt1)))

Fh(1 = 0)f(tn, ¥, Y (tn — 7(tn))), (28)
where y; (t) = ¢1(t) for t < to, and yj (t) with ¢t > t, are defined by a piecewise linear interpo-
lation procedure, for instance,

. t—nh . (m+1)h—t .
yp(t) = g Yntt + 7, Yn
fornh<t<(n+1)hn=0,1,2,....

4.1. Numerical dissipativity

Let y¢ denote an approximate solution y& (¢) to (15) computed using a prescribed numerical
method and a given initial function ¢(t) for ¢t < t5. Corresponding to the previous dissipativity
property of the analytic solution, we therefore introduce the following analogous definition for
an approximate solution.

Definition 4.1. A numerical method is said to be dissipative uniformly for sufficiently small
¢ if there exists positive constant r such that, for any initial function ¢(t), there is a positive
integer ng such that the resulting numerical solution ||y5|| < r. Here r and ng are independent
of € € (0,g9] for some €,

Theorem 4.2. Assume that the function f in equations (15) satisfies (19) and 0 < 7(t) < 7*.
Then the linear 0—method with h > € > 0 is dissipative uniformly in e € (0,e0] if and only if
f=1.

Proof. For 6 € [0,1) and 1 > & =&, > 0, where £; is any given positive number, consider
the following special DDE
ay'(te) = —x(y(te) —Ox(By(t—1e), t>0,
ylt,er) = o), t<0,
where x(t) > # is a real continuous function, and ¢(t) is continuous. Then the condition
(19) is satisfied. Set a(t) = X2 Let step size h = 1. Then (28) reads

1= (1= 0)a(ts) — altass) ., 61— B)alty)
R e1 _ €1 2
Ut T+ Baltnr1) U T T Baltngr) (29)

where n =0,1,2,---.
Now we choose a sequence {a(t,)} such that it is 2-periodic with a(ty) = a(t2) = --- =
e =12 a(t;) = alts) = .-+ = f = 125. Define Y* = (y;',y;1,)7. Hence Equation (29) is
equivalent to
Yol = A4,Y7,
where n = 0,1, ..., and

1—(1=0)a(tn)—0%a(tnt1) —0(1=0)a(tn)
An — 1+9a(tn+1) 1+0a(tn+1)
1
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The periodicity of the sequence {a(t,)} yields

erJlr2 = Berl:
where B=A,+14, ,n=0,2,4,....

We obtain
B = Cld1+02 C1d2
- dq do
where
1—(1—-0)e—6f —0(1—0)e
C1 5 Co = —F/——"F7—
1+6f 1+6f
d 1—(1—9)f—02e d _—9(1—9)f
! 1+6e T 14 6e
Thus
det(/\I—B) = Az—(d2+61d1+62)>\+d262
2 l_e_f+(1_0)2+04/\+ 1+6f +60e+ 62+ 62(1 — 6)*
(1+6e)(1+06)) (1+6e)(1+6f)
Since

L+0e+0f+6%+6%(1—6)>
(1+6e)(1+6F)

the spectral radius of the iteration matrix B is greater than 1. Hence the numerical solution
generated by the linear §—method blows up for some initial functions and hence the linear
f#—method is not dissipative for 6 € [0,1).

For any fixed step size h > 0 and 6 = 1, (28) reads

> 1,

6y78L+1 = Ey; + hf(thrl: yfz+1> yli(thrl - T(thrl)))' (30)
Now 7* can be written as 7* = mh — dh,d € [0,1), and m is a nonnegative integer. From (30),
it follows that

2h
lyreall® = yall” + = Rynsrs f st Ui Vi ltnir = 7(n41))

2h £ € £ €
_?<f(tn+1a Ynt1Yn(tnrr — T(tn1))), F(tnts Yna1H Y (Bngr — 7(tnr1))))

IN

g 2h g €
lyall” + — (v(tn41) = altns) 195 + Btn ) 195 (bnsr = T(tns)I)

Therefore

2hy(tnt1) 2hB(tn+1)
€+ 2ha(tn+1) €+ 2ha(tn+1) €+ 2ha(tn+1)

From the interpolation procedure, we have, if 7(¢,+1) > h,

2hy (tnt1) €
€+ 2ha(tyy1) €+ 2ha(tntr)

or, if T(thrl) = (]. — 6n+1)h,6n+1 S (0, 1),
2hy(tnt1) €+ 2(1 = 6ny1)hB(tns1)

Y5 all® < lyall” + 195 (tns = T(tas)1%-

2h3(t
Bltnr)) g e

2
yE + -
|| n“ e+ QhQ(thrl) 1<s<m

1y ll* <

7| lynll>.
€+ QhQ(thrl) - 2h(5n+1ﬁ(tn+1) €+ QhQ(thrl) - 2(5n+1hﬁ(tn+1)
It is true that the following inequality
" hB(tn+1)
e 2 < B + € €112 + n+ su e 2 31
||yn+1|| = (1_q)a0 5—|—2ha(tn+1)”y"” 8+2ha(tn+1) 1§s£m||yn+1—s|| ( )
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holds. i
Set A = (ljm and B = m When n =0, (31) reads
2h3(t1)
<At |||+ ) P <A+MQA+P@E)h
0717 < A+ g I + s sup -l < A+ M1+ PR
where
—2(1 — g)havo
P = ————— <0
(8) 6+2hCMO < ’
M = [
_max sl

One easily shows that for any n < m —1

n
lyeill? < S AB'+ M(1+ P(e)h).
i=0
Applying the technique of induction with respect to n, we can conclude that

n—1 n
IW5ll> <Y AB'+ M(1+ P(e)h)"™ < AY " B+ Mexp(P(e)(r + 1)h)
i=0 =0

forrm <n < (r+1)m,r=0,1,2,.... Choosing ji(c) = —% > 0 indicates that

: A _
i IP < = + exXB(=7(E) (bn — t0)):

Since h > e > 0, we observe that
N P 2(1—q)h 2(1 —
i) = 26 _ 2= ahao *( 7)o
m me + 2mhay — 7™ (1 + 2ap)

and hence prove the backward Euler method (i.e. # = 1) is dissipative uniformly in €.

4.2, Numerical Stability

Let 3% denote an approximate solution y: (¢) to (15) computed using a prescribed numerical
method and a given initial function ¢(t) for ¢ < to. We can then write 0yS, := y5 (d+90) —y5 ().
Corresponding to the exponential stability property of the analytic solution, we introduce the
following analogous definition for an approximate solution.

Definition 4.3. (Exponentially stable uniformly for small €) A numerical solution {yg}
computed by a prescribed numerical method is called exponentially stable for sufficiently small
e if there exist positive constants G and [, which are independent of € € (0,g9] for some
co, such that ||6yS]| < Gexp(—fi(t, — to)) (corresponding to two initial functions ¢, ¢ + d¢
defined for t < ty). We also call the prescribed numerical method exponentially stable if the
resulting numerical solution is exponentially stable, under the assumed conditions, when the
corresponding analytic solution is exponentially stable.

Definition 4.4. Assume that the function f in equations (23) and (24) (s=1) satisfies (27)
and 0 < 7(t) < 7*. Then the resulting method with h > ¢ > 0 is exponentially stable uniformly
in e € (0,e0] if and only if = 1.

Proof. The linear #—method applied to (23) and (24) with step size h > ¢ > 0 gives rise to

>0

Sny-l = eyp +h0f(tns1, ny—l: Y (tnr1 — 7(tnt1)))
+h(1 = 0)f(tn, y5, yu(tn — 7(t0))) (32)
and
E2np1 = €2, + hOf(tnt1s 2nqs 25t — T(Ent1)))
Fh(L = 0)f(tas 25 21t — 7(00), (33)

respectively, where y; (t) = ¢1(t), 27, (t) = ¢2(t) for t < to, and y; (t) and 2z} (t) with ¢ > to are
defined by a piecewise linear interpolation procedure. Tian and Kuang [19] have proved that
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the linear §—method is not asymptotically stable for § € [0,1). So it remains to prove the
backward Euler method is exponentially stable uniformly in e.
For any fixed step size h > 0, (32) and (33) read

eYni1 = €Yn +hf(tni1, Ynp1, ittt — T(tns1))), (34)
€2pp1 = €z, +hf(tnt1, 2540 25ttt — T(tnt1)))- (35)
Now 7* can be written as 7* = mh —dh,d € [0,1), and m is a nonnegative integer. Subtracting
(35) from (34) gives
eWnt1 — #nt1) —€(Un — 27)
b [f (gt Yin U (bns = T(tng1))) = Fltngrs 2540105 2 (bns = T(tng1)))]
h [f(tn+17 yfz+17 yZ(thrl - T(thrl))) - f(tn+1) ZTELJrl) y}i( n+l — T n+1 ] (36)
+h [f(thrl: erH-l; y[i(thrl - T(thrl))) - f(tn+1) ZT€L+17 lez(tn+1 ( n+1)))]
= hdpsr [Yrsr — Zng1] + Blngr [Y5 (B — T(tng1)) — 25 (Enr = T(tg1))]
where
f(tTH-l:y;Jrlvy;( T(tnt1))) — f(tnt1, n+1’yh( T(tnt1))) = dn+1(yn+1 n+1)’
) = f(ntrs 2 g1 25t — T(Ens1)))
) = 24 (tng1r — T(tnt1))] -
tnt1) and |lp41] < ((tn41)- From (36), it follows that

f(tn+1) ZTELJrl: yi( n+1l — T(thrl
= bng1 [V (Bn1 — (o)
Condition (27) implies that R(dp+1) < n(

€ h((tn+1)
C < |————| € — if 7(t,, > h,
en—i—l = le— hdn+1 e — hd 1 1<SE£m €n+1 s 1 T( +1)
or
€+ (]- - 6n+1)hln+1 .
e it r(tnay) = (1= 8p41)h,
en—i—l — e — hdn+1 _ 6n+1hln+1 en? 1 T( +1) ( +1)

where €}, = |y5, 11 — 25,41(, and 8,41 € (0,1). It is true that the following inequality

€ h((tni1)

& < |————|ef, +|———| sup €5, , 37
Al oy ] Al ey ) S G0
holds.
Keep the condition (27) in mind and proceed step by step. When n = 0, (37) reads
h((t)
€ < |——|es+ |—>2L | sup e, < M(1+ P(e)h),
1 = E—h’l’](tl) 0 S—hn(tl) lgsé)m 1 = ( ( ) )
where
—(1 -9
P = — <0,
(6) €+ hno
M = max e
—m<s<0

One easily shows that for any n < m —1
€ny1 < M(1+ P(g)h).
Applying the technique of induction with respect to n, we can conclude that
es < M(1+ P(e)h)" < Mexp(P(e)(r + 1)h)
for rm < n < (r+ 1)m,r = 0,1,2,.... Choosing Ji(¢) = —% > 0 indicates that e}, <
M exp(—ji(e)(tn, —to)). Since h > € > 0, we observe that

P 1- 1-
i) = — (€ _ O-am  (-an _,
m me +mhny = (1 + 1)

and hence prove the Backward Euler method is exponentially stable uniformly in €.
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5. One-leg /—Method

We new investigate the numerical dissipativity and exponential stability of the one-leg 68—
method. The one-leg #—method applied to (15) with constant step size h > ¢ > 0 gives rise to

Ynt1 = Yn + hf (bn + 0h, 0y i1 + (1 = 0)yy, Y (i + 0h — 7(tn + 6h))) (38)
where y; (t) = ¢1(t) for t < to, and y5(t) with ¢ > ty are defined in the same way by the
piecewise linear interpolation.

Theorem 5.1. Dissipativity Assume that the function f in equations (15) satisfies (19) and
0 < 7(t) < 7. Then the one-leg 6—method with h > & > 0 is dissipative uniformly in e € (0, &)
if and only if 6 = 1.

Proof. For 8 € [0,1), consider the following special DDE

Eyl(ta 8) = —(Ly(t, 8) - ea’y(t - 05 8)5 t> 07
Wt = o), 1<0,

where a > 0 is a real constant, and ¢(t) is continuous. Then the condition (19) is satisfied.

Let step size h = 1. Then (38) reads

EYni1 = €Yn — a(Bynyq + (1 —0)y,) — Oay;, (39)
where n = 0,1,2,---. Hence we have
e—a
= ———— 40
yn+1 e+ 0@ ( )

E—a
>

el = %+ > 1. Therefore
the numerical solution blows up for some initial function ¢(¢) and the one-leg #—method is not
dissipative for 0 € [0, 1).

For any fixed step size h > 0 and # = 1, the one-leg method (38) and (28) coincides and
hence the method is dissipative uniformly in . (28)
Theorem 5.2. (Exponential stability) Assume that the function f in equations (23) and (24)
(s=1) satisfies (27) and 0 < 7(t) < 7. Then the resulting one-leg 6—method with h > > 0 is
exponentially stable uniformly in € € (0,e0] if and only if 6 = 1.

Proof. The stability can be proved in a similar way as the dissipativity.

In the case # = 0, we have lim,_,q+ | | = 00, otherwise lim,_,o+ ‘
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