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Abstract

Superconvergence structures for rectangular and triangular finite elements are summa-
rized. Two debatable issues in Zhu’s paper [18] are discussed. A superclose polynomial to
cubic triangular finite element is constructed by area coordinate.
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1. Summary on Superconvergence Structures

Suppose that domain (2 is a square with the boundary I and triangulation J” in € is uniform.
We shall discuss n-degree triangular family P, = ), Li<n bi;xr'y? and n-degree rectangular
family @,. Denote by S = {v € H'(Q),v|, € P,(or Q,), 7 € J*, v =0 on I'} the n-degree
finite element subspace. The solution u € H}(Q) of second order elliptic problem and its finite
element approximation (Ritz-projection) u; € S¥ satisfy the orthogonal relation

A(u —up,v) =0, ve Sy, (1)
where the bilinear form A(u,v) = [ (a;; DiuDjv + agouv)dz is assumed to be bounded and

Hgi-coercive. Denote by W*P(Q) Sobolev space with norm ||ul|rp.q. If p = 2, simply use
H%(Q) and ||u||,q. It is well known that there are the error estimates

[ — un|l1,00.0 = O(W" ' Inh), 1=0,1. (2)

But, up or Duy, at some specific points possibly possess the higher rate of convergence (called
superconvergence by Douglas).

In the conference on superconvergence in finite element method on March 15-30, 2000, at
Berkeley, two chairmen Babuska and Wahlbin claimed that there are three present schools of
superconvergence, i.e Ithaca (Locally symmetry theory [12,13,14]), Texas (Method based on the
computer [1,2]) and China (Element othogonality analysis, see [6,7,11]). In another conference
on three-dimensional finite elements on August 2000 at Jyvaskyla, Brandts and Krizek [3] also
summarized three different methods of three schools.

From numerous researches on superconvergence up to now, we know that there are two
basic structures of superconvergcne, i.e. Gauss-Lobatto points and symmetric points. Firstly,
for regular rectangular element u, € Qx(n) = 2:(2,7].)@",A bijziyl, where I, = {(i,5)|0 <
i,j <nyi+j <n+A}1< A <n, we early known [5,6,10,19] that u;, and its gradient Duy,
have superconvergence at n + 1-order Lobatto points and n- order Gauss points, respectively.
Besides, if n is odd, the average gradient Duy, has superconvergence at vertexes and n-order
Gauss points on each side of the element. Secondly, if the number of parameter is decreased, it
reduces to the rectangular defective (or serendipity) family Q'(n) = P, ® span{z™y, zy™} and
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n-degree triangular family P, =3, ., bi;x'yd. At this time, uy (for even n) and the average
gradient Duy, (for odd n) have superconvergence at symmetric points T}, where T}, consists of
four vertexes, four side midpoints and center for rectangular element (see [1,2,9,15] ), and three
vertexes and three side midpoints for triangular element (see [1,2, 6,7,8,12,13,14,16]).

Here, an interesting topic for us is that whether there exist other superconvergence points
for triangular elements, besides symmetric points. We should point out that Wahlbin [12,13,14]
first time proved superconvergence at locally symmetric points in quite extensive framework.
Of course, their paper has not given the answer to the question mentioned above. However,
Babuska [1,2] have calculated the derivative Dyuy in a triangle for 1 < n < 7 based on the
computer and have pointed out that the midpoint of a side parallel to z-axis is only supercon-
vergence point for D,uj (but the averaging have not been considered) for n = 1,3,5,7, and
have found no other points. And no superconvergence point of D,juy for n = 4,6, but, n = 2
is an exceptional case, 2-Gauss points on this side are superconvergent. Recently, Babuska
and Strouboulis have depicted a fig. 4.7*.8 for D,u of the cubic triangular element in their
new book [2] and especially emphasized that “Note that the mid-points of the sides which are
parallel to the z-axis are the only superconvergence points in the case of the Poisson equation”.
We also proved [8] that D,uy for cubic triangular element uj, has no superconvergence points,
besides symmetric points, and there are no superconvergence points for u itself at all. We
exhibit the numerical examples in a square 2 = {0, z,y < 1} as follows.

Counsider an elliptic problem —Au = fin Q,u=00nTy={z=0,0<y<1}U{y=0,0<
z<ltand Dyu=0o0onT; ={r=1,0<y <1}U{y =1,0 <z < 1}. The exact solution
u = (13z — 822 + 2°)(2y — y?). Q is subdivided into regular triangular uniform meshes .J",
h=1/N,N = 4,8. We have calculated the cubic finite element ux and its error ey = u — un
in the following table 1.

The table 1. The error e4, egs at nodes and the ratio ey : eg
z=1/4 1/2 3/4 1
y=1/4| 2.380E-4 | 1.913E-4 | 1.669E-4 | 1.436E-4
1.207E-5 | 1.117E-5 | 9.489E-6 | 8.393E-6
18.86 17.13 17.57 17.11
y=1/2| 2.399E-4 | 1.935E-4 | 1.699E-4 | 1.593E-4
1.393E-5 | 1.243E-4 | 1.074E-5 | 9,521E-6
17.22 15.57 15.82 16.73
y=23/4| 2.680E-4 | 2.142E-4 | 1.876E-4 | 1.783E-4
1.503E-5 | 1.355E-5 | 1.187E-5 | 1.063E-5
17.83 15.81 15.80 16.77
y=1 2.510E-4 | 2.200E-4 | 1.910E-4 | 3.630E-4
1.501E-5 | 1.421E-5 | 1.252E-5 | 2.274E-6
15,78 15.48 15.26 16.00

We see that when triangulation is refined twice, the error ratio e4 : eg = 15.3 ~ 18.9, thus
the cubic triangular element has only the accuracy O(h*) at nodes, no superconvergence. A
detailed data analysis shows that its accuracy at nodes is the worst. The facts mentioned
above show that the cubic triangular elements do not possess Gauss-Lobatto point structure of
superconvergence, which is of a great difference from the regular rectangular elements.

2. Discussion on Zhu’s paper [18]

Early Chen [4] proved by the element analysis that the average gradient Duy, for triangular
linear element has superconvergence at six symmetric points in each triangular element. Later,
Zhu [16] proved by this method that the quadratic triangular element uy, itself has superconver-
gence at six symmetric points. Although the natural superconvergene points within an element
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for the gradient Duy, has not found, but the tangent derivative D uj along each side has su-
perconvergence at 2-Gauss points on this side. It is a pity that these results make Zhu produce
an illusion that triangular elements on each side have same superconvergence structure as that
of the rectangular elements.

In recent years Zhu proposed a proposition that any degree triangular elements have also
Gauss-Lobatto structure of superconvergence along each side, like that of the regular rectangular
elements. He claimed [17] that “we find third order Gauss points (for the tangent derivative) and
third order Lobatto points” for cubic triangular elements. Recently, he repeated this conclusion
in his paper [18] “Superconvergence analysis for cubic triangular element of the finite element”
published in Journal of Computational Mathematics, Vol.18, No.5, 2000, pp.541-550. From the
analysis in the last section, we see that Zhu’s proposition is contradictory to present theoretical
analysis and numerical results. He disregarded Babuska’s results mentioned above.

Below, we shall point out another essential mistake of Zhu’s proof in [18]. Assume that u is
quartic polynomial and u; is cubic superclose polynomial to up, then the remainder R = u —uy
should consist of five independent terms, in which three terms can be defined by the values of u
on three sides ¢ in a triangle F = {0 < s,t < 1,s+t < 1}, whereas other two terms E;, Ey will
disappear on ¢. Using the area coordinate A\; = s, Ao = ¢, A3 = 1 —s —t, one has four functions
® = MA2A3, E1 = A\, Ex = A\adp, E3 = A3¢. Zhu [18] wanted to construct two new bases Iy, s
by use of them and wrote in [18] p.544:

"Let Iy, = By, + arFEs + bro, k= 1,2, which satisfies A(lk, ¢)E =0, (lk, ]-)E =0.

Suppose that the following condition holds*:

(A): {l1,l} is linear independent,

where symbol | means | = Y ijma Gt D=3, oy cijsit

* At least, condition (A) holds for equilateral triangular element.

Now we show that this assumption (A) is invalid.

First, as Ay + As + A3 = 1, then only three functions in four ¢, E, Es, E5 are linear indepen-
dent, and their linear combinations [1,l> are demanded to satisfy two constrains A(l,d)r =
0,(lk,1)g = 0. Therefore, I; and Iy will be surely linear dependent. The assumption (A) is
theoretically impossible.

Second, we can numerically calculate these functions Iy, ls by an integral formula

alBiy!

NN dsdp = ——— 10
/E PRBEE = By +2)!

Obviously, (Ey,1) = (E»2,1) = 2/6!. Using Green formula and noting E; = 0 on o, from
A(Ey,¢)p = [, ExDpodl — [, ExA¢dsdt = 0, we know that the condition A(Ey,$)p = 0 is
equivalent to (Ey, A¢)p = 0. As A¢p = —2(z + y), we can calculate

Alp,9)p =2(d,x +y)p = 8/6!, A(Ek,d)p = 2(M¢,z +y)p =20/TL
Now consider new bases (as ¢, E1, Ey, E3 are linear dependent, E3 is omitted)
h=E +aE+b¢=(r+ay+b1)g, la=FEs+aE; +b2¢ = (y + azz + b2)9,

so we directly have a linear system of two equations

20 8 2 1
Allg,d)p = ﬁ(l +ag) + abk =0,(x, g = a(1 +ag) + =

Its solution is by = 0,ar = —1,k =1,2,i.e.ly = Fy — Es,l> = E5 — E; are linear dependent.

Should point out that finding linear independent basis {l1,l>} is possible , if add other lower
terms. However, at that time, l1,l5 # 0 on the side o, i.e. the superclose polynomial u; does not
possess Gauss-Lobatto structure. This is just EOA to be done by author in [8]. A superclose
uy for cubic triangular element is constructed in the next section.

by =0, k=1,2.
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3. A Superclose Polynomial for Cubic Element

By integrating Legendre’s polynomials [;(t) = 0 (t* — t)7 /4! in (0,1), we can define M-type
polynomials: Mo =1, My = 2t —1, My = t(t — 1), My = t(t — 1)(2t — 1), My = t(t — 1)(5t* — 5t +
1),..., which have M;,, = &/~"(t> — t)7/j!,j > 1. Obviously M;(1 —t) = (=1)IM;(t),j > 0,
M; 1 Pj_3,j >3 and M; L M;_,. Now we construct basis functions in £ = {0 < s,t <
Ls+t < 1} = {]—7tys})pj = {¢j0>¢j17¢j2}7 where ¢j0 = M](t) _( ) ¢32> ¢Jl =
M;j(s) —¢j2, J > 2,022 = —st, 30 = —st(s—1),Paz = st(5st —1), 33 = ¢ = st(1 —s—1), a3 =
s, psq = to. Note that ¢ = @3 = ¢gga = 0 on 0. When t = 0,s = 0,t = 1 — s, we have
pj = {07 M]’(S),O},pj = {Mj(t)707 0}7pj = {07 0, M](S)}aj > 2, respectively.

To avoid the trouble on the boundary I, assume that u(z,y) is any smooth support function
in Q. Denote still by u(s,t) the u(z,y) in a standard element 7 = {0 < z,y < h,z+y < h},z =
hs,y = ht. Obviously, 0:0{u = h"JDiDJu = O(h'*7). Any quartic polynomial P, has
3 x 4 4+ 3 = 15 parameters, and the function u can be expanded in 7 as

4 2
= L(t,s,u) + Z Z bjidji + Z bjidji + O(h5), (3)

j=2 i=0 3<i<j<4

where L(t,s,u) = us + (u2 — ug)t + (u1 — u3)s is a linear interpolation of u. We have on three
sides s =0,t =0,t=1-—s,

uz + u us +u
u= 32 2+ (ug — ug) My (¢ +ZbJOM = 32 Lt (ug — ug)Mi(s +§jbﬂM
u—u2+u1+(u — ug) M ( +E bjoM;( (4)
— 2 1 2 1 32

respectively, i.e. which can be uniquely defined by the values of u on 0. Whereas b3, bys, byy
are defined by the values of u in E, for example, by use of Taylor expansion and orthogonal
projection and so on. Here and below, the high order remainder O(h%) is omitted, which does
not influence our analysis and results.

Assume that uy is a desired cubic superclose function of u, and its remainder is

R=u—-u;=L(t,s,R)+ > > budji+ Y, bt (5)

j=2,3,4 i=0,1,2 3<i<j<4

where by; = O(h*),0 < i < 4, are the coefficients given, and others are the constants to be
defined.

We first require R L {M;, M3} on o. Noting that Gram matrix of {M;, M3} is positive, it
leadstob30:b31 :bgg:Oanng—Rngl—Rg :Rl—R2:0, SOR1 :R2 :R?,:d
is still undefined. This is an interesting phenomenon. Secondly require R 1 1 on o, we have
bQO = bOQ = b22 = 6d, and then

4
R = dp+b¢+zb4i¢4i, (6)
i=0
where d and b = bs3 are the constants to be defined, and p = 1 4 6(d2g + P21 + Pa22) =
14+6(s>+t2+st—s—t),¢=st(l—s—t). Note that p = l5(t) = 6t — 6t + 1,15(s),l2(s) on
three sides are Legendre’s polynomials. Thus, we see that R L P, on o.
Further we require that R satisfies two orthogonality conditions in E:

AE(R7 p) =0, AE(R7 ¢) =0. (7)

As R 1L P, and ¢ = 0 on o, by Green formulas Ag(R,p) = fa RD,pdl — (R,Ap)g = 0 and
Ag(R,¢) = fa ¢D,Rdl — (¢, AR)r = 0, we know that two conditions mentioned above are
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equivalent to the following conditions
(R, 1)p =0, (¢,AR)p =0. (8)
By the integral formula of area coordinate, we have, for ¢ = st — st — st2,
(6,1) = 1/5% (¢,5) = (1) = 2/6!,(9,5°) = (,) = 6/, (¢, 51) = 4/7!,

and (8) leads to a linear system of two equations,

1
(R,1) = — d+ §b+ 4,3(b40 + bap — ba) + 6,(b43 +bss) =0,
24 8 96 120
(,A) = ad - Eb o —(bao + ba1) + Tb42 7, (b43 +bys) =0,

and their solution is 504d = —2(b40 + b41) + 20b45 — (b43 + b44), 28b = —50(b40 + b41) + 80b42 —
11(bas + b4q)}. Substituting them into R, we get a fine expression

4
R = Z ba;gai(t, s), 9)
=0
where 5
gao = My(t) — b, gar = My(s) — ¢, ¢ = g + 4/J+ ¢,

20 1 11
42 :¢42 + 4P+ ¢7 943 = S¢_Z7 ga4 :t¢_Z7 Z = 4p+ 8¢ (10)

50 30

We see that R on o is a linear combinations of My and Iy, which have no common roots, and
R = d = O(h*) at three vertexes in E (i.e. the vertex is not superapproximation point). Below
we show that these g4; have no common real roots in E. In fact, if g43 = g4 = 0, then their
difference (s — t)¢p = 0 leads to s =¢. On the line s = ¢, cancelling p from g4o = g43 = 0 (i.e.
by g4 +20g43 = 0) and reducing a factor s2, we get the first equation 3552 — 30s + 6 = 0. And
cancelling s* form g4o = g43 = 0 (i.e. by 2942 + 5943 = 0), we have 553 — 252 + 504p—|— 105 =0
Cancelling p by g4; = 0 and reducing a factor s, we get the second equation 230s* —1863+35 =0.
Obviously, two quadratic equations above have no common real roots. Thus, the remainder
R in E has no superapproximation points independent of u. Besides, we can also show that
the gradient DR or average gradient DR have no superapproximation points in F, besides
symmetric points. Note that if take the fourth order derivatives in (9), these coeflicients by;
can be expressed by D?Dfu, a + 8 = 4. Thus we get another error expression

1
120{(940 + 942)0fu + (ga1 + 942)0%u + 69420207 u

—4(5943 + g42)838tu - 4(5944 + g42)83(9t3u}. (11)

Now, denoting by v = L(s,t,v) + 3_,_o 1 o(B2i¢2i + B3i63:) + B33¢ any test function and
noting that R L P, on o, A;(R,P,) = 0 and A,(R,¢) = 0, and we have a fine expression of
integral along the contour O,

2
v) =Y Bsi(r){| RDngsidl — / RA¢gidrdy}y = ch® | F(D*uw)Djvdl,  (12)
=0 or T or
where (3; = Ch? fai D}vp(t)dl are used. Note that (12) is also valid for any smooth support
function u, but should add a high order remainder O(h®)||v|[5 ; .. Summing these integrals over
all 7 C J" and cancelling the integrals along all common sides, we shall get a desired estimate
A(R,v) = O(h?)[[v]2,1.0-
Finally, should point out that when w is any smooth function, u; defined above is discontin-
uous between the elements, as the constant d(1) = O(h*) are different in the adjacent elements
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7 and 7'. But their difference d(7) — d(7') = O(h®) are of high order, we can construct a piece-
wise linear function Ly € S" such that w = Ly — d(7) = O(h®) and a new u} = u; —w € S" is
continuous in 2. Obviously, this correction does not damage all estimates above. This means
A(up, — u},v) = O(h)||v|]2,1,0. Thus we have still up — uj = O(h®In h) by use of the discrete
Green’s function. Now, from u — up = u — us + O(h® Inh) we can directly derive the desired
conclusions. About the details of proof, see our papers [6,7,8]. Especially, from this we know
that u — up = d(7) + O(h® Inh) at each vertex is not supeconvergent, i.e. Zhu’s proposition is
invalid.
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