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Abstract

Multigrid methods are developed and analyzed for the generalized stationary Stokes
equations which are discretized by various mixed finite element methods. In this paper, the
multigrid algorithm, the criterion for prolongation operators and the convergence analysis
are all established in an abstract and element—independent fashion. It is proven that the
multigrid algorithm converges optimally if the prolongation operator satisfies the criterion.
To utilize the abstract result, more than ten well-known mixed finite elements for the
Stokes problems are discussed in detail and examples of prolongation operators are con-
structed explicitly. For nonconforming elements, it is shown that the usual local averaging
technique for constructing prolongation operators can be replaced by a computationally
cheaper alternative, random choice technique. Moreover, since the algorithm and analysis
allows using of nonnested meshes, the abstract result also applies to low order mixed finite
elements, which are usually stable only for some special mesh structures.
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1. Introduction
In this paper, we consider the following generalized stationary Stokes equations:
—Ag+Vp:Zj, in Q,
divg =G, inQQ, (1.1)
u = 0, on 0.

where (2 is a bounded convex domain in R?, u represents the velocity of fluid, p its pressure; F

and G are external force and source terms. Note that the source must satisfy the compactability
condition of having zero mean value, and (1.1) reduces to the stationary Stokes equations when
G =0.

The mixed variational formulation of the generalized Stokes equations with arbitrary given
force f and source g is to find [u,p] € (H(2))? x L3(2) such that

(Vu, Vo) = (p,dive) = (f,v), Vv € (Hy(Q))?,

(1.2)
(g, divu) = (g,9), Vg€ L),
or equivalently, find [u, p] € (HE(Q))? x LE(9) such that
L(Qupl[v,a)) = (£,0) = (9:0), ¥ [v,4) € (H3()* x L5(), (1.3.1)
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where (-,-) = (-,-)q denotes the inner product in L%*(Q) or (L*(Q2))?, LZ(Q) is the space of
L?(Q2)-integrable functions which have zero mean value (cf. [7] for space notations) and

L([u,pl,[v,q]) = (Vu,Vv) — (p,divv) — (¢, div u). (1.3.2)

~ ~

Note that when f = F and g = G, (1.2) or (1.3) is the variational formulation of (1.1).

It is well known A(ch. [13] and [14]) that the problem (1.2) is uniquely solvable if f €
(H~1(Q))?, g € L3(RY). Moreover, if f € (L*(2))%, g € L§(Q) N H'(Q), then the solution
[, 7] € (H2(Q) N HY () x (H'() N L3(®)) and there holds

lollze@) +ITllme-1@) < CllFllae-2@) + lgllme-r@)], €=1,2. (1.4)

To describe mixed finite element methods for the generalized Stokes equations, we begin
with the triangulations of the domain Q. Let 7,(k > 0) be a quasi—uniform triangular or
rectangular partition of 2 with mesh size hy, that is, there exists some constant ag > 0, 6y > 0
such that

hkg > Qo Pk, Ok > 90, VK € 774, k>0, (AO)

where hg, 0 and pg denote, respectively, the diameter of K, the smallest angle of K and
the the diameter of the largest ball contained in K. For simplicity, we also assume that =
UkeT, K. Finally, in order to get optimal order algorithm we assume that the mesh sizes of
two consecutive meshes are related as follows (cf. subsection 5.4 for the other restrictions):

oy thy < by < hg, k>0, (1.5)

for some constant «; > 1. Obviously, for a nested mesh family, namely, 75 is obtained by
connecting the midpoints of the three edges of all triangles of 7;_1 or by linking the midpoints
of two opposite sides of all rectangles of T—1, (1.5) holds with ay = 2.

Let Xy C (L*(Q))?, My C L%(Q) be two finite element approximate spaces of (Hg(f2))?

and L(Q) associated with 7;. The mixed finite element method for (1.2) at level k is to find
[ug,pr] € X x My such that

(Vur, Vo)r = (pr,div o)y = (f,0)r, Vv eXy,

. (1.6)
(qadlvgk)k :(gaq)ka quMkJ
or equivalently, find [ug,pi] € X x M}, such that
»Ck([gkapk]7[£7q]) = (f::li)k _(gaq)ka v [E;q] G)Sk XMIC; (17)
where
k=Y (5K, (1.8)
KeTk

It is well-known that X and M} must satisfy the following Babuska—Brezzi condition in
order to guarantee the existence and stability of the mixed finite element approximations:

(g, div vy)|
sup

> vllgllLz@), Y q€ Mg, (1.10)
v EXg ||2k||k
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where [|vg]|2 = (Vug, Vog)k, and 7 is some positive number independent of k and hy.
In this paper, in addition to (1.10) we also assume that each finite element solution [uy, py]

of (1.6) satisfies the following error estimate:

lu = wrllLo@) + helllu = uplle + llp = pello(e) (1.11)
< Chi(lullaz) + bl (@)-

Multigrid methods are optimal order methods for solving systems of equations arising from
finite element discretizations of elliptic boundary value problems since the error reduction per
iteration cycle of such a method is independent of the mesh size h (cf. [3] and [12]). Most
works in this direction have been devoted to solving the standard finite element equations.
Only few are directed to solving the mixed finite element equations. This is mainly due to the
difficulties caused by the indefiniteness of the mixed finite element equations and by having
different orders of differentiability for the two unknown functions, also by the nonnestedness of
mixed finite element spaces for most mixed elements.

To the best our knowledge, rigorous multigrid methods for mixed finite element equation
(1.7) of the Stokes problems were only developed for nested elements (cf. [15]), mini element (cf.
[16]) and the nonconforming Crouzeix-Raviart element (cf. [4]). The framework of multigrid
methods for the mixed finite element equations of the Stokes problems was first developed in
[15] for the class of nested elements, i.e., the multilevel finite element spaces are nested. The
key ideas of [15] are to overcome the indefiniteness of the problem by applying the smoothing
part of the algorithm to the squared system and to take care the difficulty caused by having
different orders of differentiability for the velocity and the pressure by introducing a scaled
mesh—dependent norm. Later, the result of [15] was extended to the nonnested mini element
in [16], where the bubble functions were L? projected from coarser grid to finer grid and
a strengthened Cauchy inequality played an important role in the convergence analysis. In
[4] the multigrid method was analyzed for the nonconforming Crouzeix—Raviart element and
a quadrature formula was used to define the prolongation operator. In addition, in [5] the
multigrid method was developed for the Stokes equations discretized by a standard finite element
method (i.e., a divergence—free finite element space was used for the velocity).

The main goal of this paper is to develop and to analyze multigrid methods for solving the
mixed finite element equation of the generalized Stokes equations in an abstract fashion. The
multigrid algorithm to be studied in this paper is similar to the one developed in [16]. But
our objectives are to find an easy to verify criterion for “good” prolongation operators and to
develop an element—independent convergence analysis which then is applied to various mixed
finite elements for the Stokes problems. Indeed, we propose a criterion for “good” prolongation
operators, and show that the multigrid algorithm converges optimally if the prolongation op-
erator satisfies the criterion. Unlike the convergence analyses of [16], [4] and [5] which strongly
depended on the structure of each mixed element under discussion, the idea of our conver-
gence analysis is to employ separated duality arguments for the velocity and pressure and to
make full use of the mixed finite element error estimate (1.11). Moreover, nonnested meshes
are allowed in the algorithm and analysis, consequently, the abstract result also applies to low
order mixed elements which are usually stable only for very special mesh structures. For non-
conforming elements, we show that the usual local averaging technique which have been used
to construct prolongation operators can be replaced by a computationally cheaper alternative,
random choice technique. Finally, as a byproduct, the analysis of this paper provides an alter-
native convergence proofs for above mentioned existing mixed multigrid methods for the Stokes
equations.

The organization of the rest of the paper is as follows. In Section 2, the multigrid algo-
rithm is defined for the mixed finite element equations (1.6). In Section 3, we establish some
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preliminary lemmas for proving convergence of the multigrid algorithm in Section 4, where the
convergence of the algorithm is demonstrated under three abstract assumptions on the pro-
longation operator. Finally, in Section 5 the abstract framework developed in Sections 1-4
is applied to more than ten well-known mixed elements for the Stokes problems, and “good”
prolongation operators are constructed in detail for all cited mixed elements.

2. A Multigrid Algorithm

In this section we are going to define a multigrid algorithm by following the basic idea of
the multigrid method for symmetric indefinite problems which was first demonstrated in [15]
by Verfiirth. Precisely, the smoothing part of the algorithm is applied to the squared system of
the discretized Stokes problems by mixed finite element methods, and a scaled mesh—dependent
norm is used to overcome the difficulty caused by having different orders of differentiability for
the velocity and the pressure.

In addition, since we allow the multilevel finite element spaces to be nonnested, which is
caused either by the nature of a specific element or by the nonnested refining of the meshes, it is
necessary for us to introduce a prolongation operator which is other than the natural injection
for nonnested elements. The prolongation operator is introduced in an abstract fashion, which
will be specified for each element in Section 5. To ensure convergence of the algorithm, three
sufficient conditions are imposed for a qualified prolongation operator in the next section.

Suppose that we are given a family of finite elment spaces X x My, k > 0 such that the

Babugka—Brezzi condition (1.10) holds for each k& > 0, and each resulted finite element solution
satisfies the error estimate (1.11). In Sections 2-4, we always assume above assumptions unless
stated otherwise.

Following [15], for each k > 0 we equipped X}, x M}, with the mesh—dependent norm

. . . 1 b 1
ltwsalllos = (N0l + Bl 20)* = (0, 0)i + B2 (0, pi)E. (2.1)
In addition, we assume there exists a linear operator I, ,’571 such that
Loy = [HE 1T ] s Xt X Moy = Xg x M. (2.2)

The multigrid algorithm for solving the following mixed finite element equation of (1.1) at level
k is defined as follows: Find [w,a] € X, x M}, such that

Cillw,al.[o.q) = Filv.a), ¥ [v.q] € X x M, (2.3)

~

where Fy is a linear functional on X x My, in particular, it takes the following form on the

finest grid:
Fr([v,ql) = (F, v)r — (G, q)x- (2.4)

~

Multigrid Algorithm.
(i) If £ =0, (2.3) is solved directly.
(ii) If £ > 0, let [w®, a®] € X}, x M}, be an initial guess, and define [w™!, a™ 1] € X} x Mj,

as follows:
Smoothing step: For 1 <i < m, [w',a’] is defined by

(2% )k + B (B, @k = A {Fe([v, al) = La((w'™, o', [0, 0]},
v [g,q] € Xp x M. (2.5.1)
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and

(1£i - 15"*1,2)14 +hi(a' —a g = ﬁk([ LB, [U q])- (2.5.1i)

Correction Step: Set
[E{m+17am+1] = [’fgmaam] —f—I]I:_l[’l/},p], (26)

where [, p] € Xj,—1 X M}_1 is the approximation of [¢*, p*] € X1 x M}_1 defined by applying

u iterations with zero as the initial guess of the level (k — 1) algorithm to the residual equation

Le—a (97,07, [0, d) = Fre—1([v,q)), ¥ [v,q] € Xp1 X My, (2.7)

~

where for any [v,q] € Xj—1 X Mp_1

Fior([v, ) = FellELi [0, ) - Le([w™, 0™, IE_, v, ). (2.8)

In the algorithm, m is some positive integer to be determined and p any positive integer
constant is greater than or equal to two. In addition, Ay = O(h,?) is chosen to be the
maximal absolute value of the eigenvalue for the following eigenvalue problem: Find [, vi] €

, X x My, A€ R\ {0}, such that

Lr(Lows vel [v, al) = AMlew, )i + hi (W, @)k)s ¥ [v,4] € Xi x M. (2.9)

Since L4+, -) is symmetric, eigenvalue problem (2.9) has a complete set of eigenfunctions. Let
N1 el v ,Jg} be the eigenvalues and corresponding eigenfunctions, i.e., for j = 1,2,---, Nk,

Culleh Al [,a) = Xi(gh 0 + 0400, Y vd € Xex Mo (210)

We also assume that

where d;; is Kronecker delta.

3. Preliminaries of Convergence

This section is devoted to establish some preliminary lemmas about the prolongation op-
erator [ ,’:_1 =[H ,’:_1, J,’C“_l] under three abstract assumptions. Throughout this paper (unless
stated otherwise) C' denotes a generic positive constant which is independent of the grid level
k and mesh size hy.

For any [vi, qr] € X x My, it follows from (2.7)—(2.9) that there exists ¢j, j =1,2,---, Ng,

such that

Uk;‘]k] ZCJ ‘Pkayk] (3.1)

Define the mesh—dependent norm

[N

Ny,
vk, aellllse = ¢ D GINI1T (3:2)

=1
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By (2.1), (2.9)-(2.12), it is easy to verify the following inequalities:

vk, arllllok = lllve, arlllog, ¥ [vk, ar] € Xi x M. (3.3)
Nwes aullllse < CR* Mok, aullllee,  V[ve g € Xi x My, ¢ <s. (3.4)
\Ck([wr, prls [0k aeD] < [l1[wr, pelll |2k 1[0k, el ok (3.5)

V [uk, pil; [vk, ar] € Xi x M.

We introduce the following criterion for the prolongation operator If_, = [HF_, JF |

lo = Hi_1vll2@) < Chillolle—1, ¥ v € Xp. (A1)
1 76-1dlle2@) < Cllallz), YV a € M. (A.2)
ok, ) = Li—slok—1, e—allloe < Chi(llosllmz(o) + lI7sllm (@), (A.3)

where [0, 7] is the solution of (1.3) with the force term f € (L?*(£2))? and the source term
g =0, and [0, 7;] (j = k—1,k) is the mixed finite element approximation of [of, 7] at level j.

It is easy to see that (A.1), (A.2) and the inverse inequality imply that
IS sTo, dlllos < Cllilvsalllosr, ¥ [v,ql € Xioy x My (3.6)
In the rest of this section, we are going to establish several lemmas, which will be used in next

section to prove the convergence theorem.
Lemma 3.1. Let (IF |)* : X} x My, — Xp—1 X My_1(k > 1) be defined as follows:

ﬁk—1(([1]§71)*[gk, k), [gk—l, qr-1]) = ﬁk([gk, k), I,’i,l[gk_l, qk-1]),
V [vk-1,qk—1] € Xpp—1 X My—1, [vr,qk] € Xp X M. (3.7)
Then we have
1K) Tors aellllzi—1 < Cles aellllzes Y [vr, g € Xi x M. (3-8)
Proof. Tt follows from (3.2), (3.5), (3.6) and (3.7) that

I(ZE—0) [0k, alll]2, 51

|Lk—1 ((Iffl)*[gk; k) [Vk-1, qre-1])]

= sup

Oi[vk_l,Qk_ﬂexk_l XMk_l |||[Ek*17 qk*1]|||07k71
Lok, ar], Iy [Vr—1, qr-1])]
= sup
O;é[vk_l,pk_ﬂeXk_l XMk_l |||[£k*17 qk*1]|||0yk71
v ks @l TGy (V15 ge—1]lllo.k
< sup
0A[Vi—1,qk—1]EX k1 X Mj_1 |||[2k71 ) Qk71]|||0,k71

< Cllllvks ar]lllz,k Vv, qr] € Xp x M.
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Lemma 3.2. Let [0y, ] be the solution of (1.7) with f =0, then

loklle + [I7kllL2(0) < CllgllL2(0)- (3.9)

Proof. Choosing [v,q] = [0k, k] in (1.7), then we have

lowlli < llgllz2@llmellz2)- (3.10)
It follows from (1.10) that
» (7, divor)el ((Vor, Vor)el
Iell2@) <79~ sup —————— =17 sup < lloklls- (3.11)
vieXe okl vieXe  lloklle

So (3.9) follows from (3.10) and (3.11).
Lemma 3.3. Let [0,7], [0, 7] (j = k—1,k) be the solutions of (1.3) and (1.7) with g =0,

respectively. Then we have

Nlok—1, 1] = (TE-1) [oks Tellllo k-1 < Chllfll2(0)- (3.12)
Proof. Let
(€A = [oh—1,Tk—1] — ([115_1)*[%,7'19] € X1 X My—1. (3.13)
Then
lok—1, 1] = TE—1) o, Tlllo k—1 = 1€][Z2() + hE—11IMIZ2(0)- (3.14)

We now consider the following auxiliary problem and its finite element approximation: Find
[n,0] € (H}(2))? x L3(2) such that

L([n,0],[v,a) = (&,v), V[v,q] € (Hy(R)* x Lj(Q); (3.15)

~

Find [ng—1,0k—1] € ‘)N(’“’l X Mj,_1 such that
Ekfl([gkflyfskfl; [0, q) k-1 = (é;g)kfly Viv,ql€ X1 X My_y. (3.16)
By (1.4) with £ = 2 and (A.3) we have
Inllz2@) + 10l (@) < CllEllL2(@)- (3.17)
|||[2k—1:5k—1] - If—l[zk—lafsk—lmo,k < Chi(HZHH?(Q) + 18] 2 (@))- (3.18)
So from (1.5), (3.7) and (3.16)—(3.18) we have
||£||22(Q) = (&, &)r-1 = La—1([nr-1,0—1],[§, A
= ﬁk—l([zk—la Ok—1), [Ok—1,Th—1) — Ek—l([Qk—1,5k—1]a ([12671)*[%,%])
= Lr-1([ok—1, k1], [Qk71,51«71]) - Ek([gkﬂ'k];Illjfl[gkflafskfl])
= ({;Qkfl)kfl - (i;Hlljflzkfl)k
< IF @ llme—1 — H/’«HQI«AHL%Q)

< Chll fllz) €l L2()-
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Hence
||£||L2(Q) < Chl%”{”L?(Q)- (3.19)

To estimate ||A||L2(q), we consider another auxiliary problem and its finite element approx-
imations which are defined as follows: Find [n’,d'] € (H3(Q))? x L3(2) such that

L([n",0,[v, ) = \a), ¥ [v,q] € (Hg())* x Lg(9); (3.20)
Find [n}, 1,0} ;] € Xx—1 X Mg_q such that

Lio1([Mi—1, 05—l [0, d]) = A @1, V[V, 0] € Xjoy X My (3.21)
It follows from Lemma 3.2 that
1Mk—1llk—1 + [10k—1llz2(0) < ClIAl|z2(0)- (3.22)
Moreover, by using (3.7), (3.13), (3.21), (3.22), (1.5) and (A.1) we have
B sy = 4 M1 = Laa (o, By i 6, A)
= L1 (-1, il [ow—1, 7e11) = Looa (0, ], (TE1) " [o8 7))
= Li1(lgr—1, 1, [Miem15 k1)) = L lgrs 7] Lia (-1 1))
= (J::Q;g—ﬂkfl - (£>H§—122—1)k
< ||J:||L2(Q)||2;c—1 - H/’f—122—1||L2(Q)
< Chiellf Ml 11— -1

< Chill fllzz@)lIN 22 ),

hence
Ml L2(@) < Chillfll2(0)- (3.23)

Finally, (3.12) follows from (3.14), (3.19) and (3.23).
Lemma 3.4. Let [0,7],[0;,7;] (j = k—1,k) be the solutions of (1.3) and (1.7) with f =0,

respectively. Then we have
ok ] = Ii—1lok—1, T ]llloge < Chillgllzz(a)- (3.24)
Proof. Notice that
ok, 7] = TE—alok-1, Te—a]llIg 4 = ok — Hi_aon-1lli—y + hille — JEoime1llZa (), (3:25)
by (A.2) and Lemma 3.2 we get

7 — T mr—llLz@) < lmellez) + IE-1mr-1ll2 )
< mllzz) + Cllme-1llL2(0)
< Cllgllzz()- (3.26)
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To estimate [|oy — Hf j0x_1]|12(q), we consider the following auxiliary problem and its

finite element approximations: Find [n,d] € (H}(Q2))? x LZ(2) such that

L(n,0],[v,a) = (o — Hi_10k-1,v), ¥ [v,9] € (Hg(2))* x L§(9); (327)

~ ~
~

and find [n;,d;] € X; x M (j = k — 1, k) such that

’Cj([njaéj]a [an]) = (gk - Hlls—lzkflag)ja v [an] € Xj X MJ" (328)

~ ~

Then, from (1.5), (1.11) and (1.4) with £ =2,

Ik = ne—1lle + 10k = Ok—1ll12(0) < Chillor — Hi_yok-1ll12(0)- (3.29)

and by using Lemma 3.3 for [ng, k], and [ng—1,dk—1]
k=15 0k—1] = (TE—1)*[1e: Okllloe—1 < Chillor — Hi_10k—1l12(0)- (3.30)

Furthermore, by (3.7), (3.28)—(3.30) we get
llow — H_y0k-11l72(0)
= (on — H§_1gk—1,gk - H],:_1gk—1)k
= Li([nx, 0], [ok, 7] - iy [o k-1, Tk-1])
= Lrlgr, 7l 18, k1) = Lr—1([Tk—1, Ti—1]; (If_l)*[zkﬁk])

= (9,00 — (9,0 )1
< lgllzz@)llon = 'l 20, (3.31)

where we have defined
[€,0') = (I 1)" [k, O] (3.32)

Hence, it follows from (1.4), (1.5), (1.11), (3.30) and (3.32) that

10k — 0"l L2(0)
<0k — Ok—1ll2(@) + Ior—1 — 0"l| L2
<16k = Or—1llL2@) + Ry k=1, 0k—1] — (Z5_1) [0, O]l l]o,k-1

< Chillox — Hi_y01-1]l12(0)- (3.33)

Finally, (3.24) follows from (3.25), (3.26), (3.31) and (3.33).
Lemma 3.5. Under the assumptions of Lemma 3.4, we also have

Mo k—17%-1] = (Le—1)*[ork, Te]lllo,e—1 < ChullgllL2(e)- (3.34)

Proof. Similar to the proof of Lemma 3.3, we introduce the notations (3.13), and the
auxiliary problems (3.15), (3.16), (3.20), (3.21). Then by similar arguments as used in (3.17),
(3.18) and (3.22), we can show

k=1, 0k-1] = I¢ 1 [Mk—1, 6k—1]lllok < ChilI€]l2()- (3.35)
10%—1llz2(0) < ClIAlz2(0)- (3.36)
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Moreover, by using (3.7) and (3.13)—(3.16) we get
||£||%2(Q) = (& &)1 = Lr—1([Mr-1, 061, [€, A])
= Li—1(r-1,0k-1]; [0k—1, T1]) = L1 ([Mk—1,0%1], (I&=1)*[ok, 7))
= Li—1([gr—1, 1], k-1, 0—1]) = La([gr, 7], 11’5_1[Qk71; Ok-1])
= (9, 0k—1)k—1 — (9, JE_10k—1)k

< lgllzz@llok—1 — J,’f,lok,lnm(g)

< Iy Mgl e 1 me=150k=1] = If_1 [mk—1, 6k—1]llo.k

< Chellgllz @) lEll L2 (@)

hence
||£||L2(Q) < Chillgllz2(o)- (3.37)

On the other hand, by using (3.7), (3.13), (3.20), (3.21) and (A.2) we have
||/\||2L2(Q) =N A)k—1 = ﬁk—l([gkqafs;cq]a [E;/\])
= L1 ([0—15 k1] [ok—1, 1 ]) = Laoa (M1, 01, (I&-1)*[o %, k)
= Li-1([gr-1, o1l M1, Ga]) = La(lgr, ], 111571[2271; 0—1])

= (9,0%—1)k—1 — (9, JI’;—15;9—1)1«

< lgllz2@) 16, 1 — J& 10k 1 ll2()
< Ollgllzz) 10k 11120

< Cllgllzz) IMz2 (@),

hence
Al z2() < Cllgllr2(@)- (3.38)

Finally, (3.34) follows from (3.14), (3.37) and (3.38).

4. The Proof of Convergence

In this section we will prove the convergence of the multigrid algorithm in Section 2 by
induction under abstract assumptions (A.0)-(A.3). A uniform error reduction rate bounded
away form one is first proved in the two—grid case provided that sufficiently many smoothing
steps are performed. By the standard perturbation technique, the result is then extended to the
multilevel algorithm. Since the smoothing property was shown in [15], it will not be repeated
here. To prove the approximation property, the duality techniques which have been used in the
proofs of Lemma 3.3-3.5 will be utilized again here.

Let

lel,e']=[w—w'a—a'], j=0,1,2-- m+1, (4.1)

be error functions of the ith iteration of the multigrid algorithm defined in Section 2 with m
smoothing steps at level k. The following smoothing property was proven by Verfiirth in [15].
Lemma 4.1. (smoothing property) For any initial guess, there holds

e™, ez < Chy*m |11, elllo,e- (4.2)
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Next, we are going to establish the approximation property under the assumptions (A.0)-
(A.3) on the prolongation operator If_,.
Lemma 4.2. (approximation property) There holds the following inequality:

v, = IEy (TE ) o, alllow < ORI, alllloe, ¥ [vial € Xix My (43)

Proof. For any [v,q] € X x M, let

[¢,6] = (Tt—1)"[v,q) € Xp—1 X M1 (4.4)

~

It follows form (2.3), (3.2), (4.4) and Lemma 3.1 that

o] = L () TosdllB s = o = B Gy + B llg — T blEagys  (45)
and
TS, Ol12,e—1 < CllI[v, allll2,x- (4.6)
To estimate ||v — Hf , ||12(q), we consider the problem (1.3) with f = v — Hf | ¢ and
g =0. By (1.4) with ¢ =2, (A.3) and Lemma 3.3 we obtain
Ej([gﬁTj]:[q’ihr]):(E_HI{:C—ICJS)]': V[’li),?“] E)N(j XMj: ]:kak_l (47)
ok, 7] = Te-rlok—1, m-1lllox < Chigllo — Hi_y Cllzao. (4.8)
okt ret] = () Tk mullllowe—s < CRllo — HE_,Cllia(0). (4.9)
Therefore, from (1.5), (3.5), (3.7), (4.4)—(4.9) we have
o = HE, (IR =(v = HE, G0 — HE_ O, (4.10)

=Lr(lgk, 7l [0, ) = La([gp: 7], L1 €, 6])
=Li([ork, k]s [0, ) = Lr—1 ((Lg=1) "ok, 78], [€,6])
=Li([ok, 7], [0, q]) = Lr-1([O k-1, Th—1], [E’;])

+ L1 ([gr-1, mem1] = (1) [78, 7], €, 6])
=Li([ok, ] = Li—a[ok—1,Tr-1], [v, 4])

+ L1 ([gr-1, mem] = (1) [78, 7], €, 6])
<ok 7] = Li-r[ok—1, Te—alllok v, allll2.r

Mgk, 7] = (=) g Tl lllo =1 LS, Ol 21
<Chillv = Hi_yClle2 [z @l

Hence,
lo — HE, Cllze@) < CREIlIv, allll2.e- (4.11)
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Similarly, to estimate |l — J{_,6||r2(q), we consider the problem (1.3) with f = 0 and
g=gq—JF 6 € L3Q). Then it follows from Lemmas 3.4 and 3.5 that

Li(lojsm), [w,r]) = (a = JE_18,7);, ¥ [w,r] € X; x My, j=k—1k (4.12)
|||[gk,7'k] - [114671[gk—1:7'k—1]|||0,k < Chillg — JE_16]l 2 (- (4.13)
Mlok-1, 7k—1] = (LE_1) ok, wlllloe—1 < Chilla — Jg_10ll2(a)- (4.14)

By (1.5), (3.5), (3.7), (4.4), (4.12)—(4.14) we have

llg — J/?719||2L2(Q) =(q— J1]§7197 q— J1]§719)k
= Ek([gkﬂ—k]; [27 q]) - 'Ck([gh’rk]:]l]:fl[(;e])

~

= Lok, 7] = Iy [ok—1,70-1), [0, q))
+ Li1 (o1, k1] = (T5_1)*[ow, 7], (<. 8D

< Wlok, 7] = Le—slok—1: Tr—allllollllv alll 2.k
g k17l = () gk mellllo e IS, Ol

< Chillg = Je_1Ollz v, allll2.k-

Hence,
llg = T§-18llz2(0) < Chilllv, g]ll|2,- (4.15)

Finally, (4.3) follows from (4.5), (4.11) and (4.15).

Since we have shown both smoothing and approximation properties, by the standard per-
turbation argument for showing convergence of a W—cycle multigrid algorithm (cf. [3], [4] and
[15]), we then get the following convergence theorem for the multigrid algorithm defined in
Section 2.

Theorem I. (Convergence Theorem) Let p > 1 in the multigrid algorithm. Then, under
the assumptions (A.0)-(A.3) there ezists a constant 0 < v < 1 and a positive integer m, all
independent of the level number k, such that if

68", 571 = 19 Alllowk < ™, g (4.16)

then
[w,a] = [w™ ™, ™ llox < YIM[w, a] = [w®, a®][]o,k- (4.17)

5. Applications

The objective of this section is to apply our general multigrid algorithm developed and
analyzed in previous sections to some well-known mixed finite elements for the Stokes problems.
To accomplish the goal, we only need to explicitly define the prolongation operator I, ,16“71 for each
specific element and to verify that I¥_, does satisfy the assumptions (A.1)—(A.3). We divide
all cited elements into four groups, which are nested conforming mixed elements, nonnested
conforming mixed elements, nonconforming mixed elements, and nonnested mixed elements
caused by nonnested mesh refinings which are either necessary or artificial. We show that our
abstract framework provides an alternative convergence analysis for the multigrid algorithms
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proposed early in [4], [15] and [16], moreover, it also applies to various other mixed elements for
the Stokes problems. In addition, we prove that the usual local averaging technique which have
been used to construct prolongation operators for nonconforming elements can be replaced by
a computationally cheaper alternative, random choice technique.

In subsections 5.1-5.3, the nested mesh refining is assumed, that is, 7 is obtained by
connecting the midpoints of the three sides of all triangles of 7;_; or by linking the midpoints
of two opposite sides of all rectangles of T;—1. So the assumptions (A.0) and (1.5) hold naturally.
In subsection 5.4, elements which result in nonnested mesh refinings in a multilevel algorithm
are considered. It is interesting to point out that by looking from a different point of view,
i.e., to think the elements as composite elements, then these elements can also be treated as
nonnested elements but with the nested mesh refinings.

5.1. Nested Conforming Mixed Finite Elements

We first consider the nested conforming mixed elements for the Stokes problems. The
multigrid method for those elements has been studied in [15]. In this subsection, we will
provide an alternative convergence analysis to the one given in [15] by showing that our abstract
framework applies to those elements. In the following, only three such a kind elements are listed
as examples, the argument obviously applies to other nested conforming elements.

Example 1. P, — Py element

In this element, 7} is a triangulation of € for each k > 0, and X, M}, are defined as follows:

X = {v € (Co(@), vl € (Po(K)), K € Ti). (5.1)
My = {q € LA(9), qlx € Po(K), K € Ty} (5.2)

Example 2. Composite P — Py element
In this example, for each k > 0,7 also is a triangulation of Q, and Xy, M}, are defined as

follows (cf. [11]):
X ={v € (Co(@))*, v|x € (P1(K))*, K € Ty} (5-3)
My ={q € L§(Q), qlx € P(K), K € Ti}. (5.4)

(5.3) shows for any v € X, K € Ty, v|k is a four—piece linear function.

Example 3. (o — P, element
In this example, for each k& > 0,7} is a rectangular partition of Q, and Xy, M}, are defined

as follows

Xp = {v € (Co()P, vl € (QuK)? ¥ K € Ta (5.5)
Mk:{QELg(Q), q|K€P1(K), VKE%} (56)

It is well-known that above three elements are stable (cf. [6], [11]), and it is easy to see
that they are nested elements, namely,

Xpo1 X M1 C X x My,

so for these elements we can choose the prolongation operator to be

Lioy = [Hy_y, Ji—a) = lix,in] : Xpor X My — X x M, (5.7)
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where and later ix and iy stand for the natural injections in X and M}, respectively. So

It | =[ix,inm] is the natural injection in X}, x Mj. Therefore, it is natural that (A.1)—(A.3)

hold. ThuNS, we have the following theorem
Theorem II. For any nested stable conforming mixed finite element for the Stokes problems,
Theorem I holds with IF_, defined by (5.7).

5.2. Nonnested Conforming Mixed Finite Elements

We now consider the conforming mixed elements whose multilevel finite element spaces are
not nested. This class includes two kinds of elements, elements enriched by bubble functions
(e.g. mini element) and composite elements. The multigrid method for mini element was first
developed in [15], where the bubble functions were L? projected from coarser grid to finer grid.
In the following, we will show that the bubble function part of a coarse level correction can be
ignored in the prolongation step for all elements enriched by bubble functions, this then results
in using the natural injection of the principal part as a prolongation operator.

Among nonnested conforming elements, the following four typical elements will be discussed
in detail.

Example 4. Mini element

This element was introduced by Arnold-Brezzi-Fortin [1] as a remedy for the unstable
P, — P, element. Let 7; be a triangulation of Q for each k& > 0, define X, and M, to be

X ={v € (Co(R))*, v|x € [A(K) ®span{hid2As}]*, ¥ K € Ty} (5.8)
Mlc :{qEC(ﬁ)ﬁL(Z)(Q), q|K €P1(K), VKGE}; (59)
where \; (j = 1,2, 3) are the barycentric coordinates. It is easy to see that

My, C My, Xp1¢Xi, k>1L

Example 5. Bernardi-Raugel element
This element was presented by Bernardi and Raugel (cf. [6]) as a simplification of P, — Py
element. For each £ > 0 we define X and M, as follows

Xp={v e (Co())?, vk € (PL(K))? @span{gl,gz,gg}, VKeT:} (5.10)
My ={q € L§(), q|lx € Po(K), V K € T}, (5.11)
where 7}, is a triangulation of 2, p; is given by
]Nﬁl = >\2>\3Q1, 132 = >\1>\322, 133 = >\1>\2Q3,

where A\; (j = 1,2,3) are the barycentric coordinates and n; (j = 1,2, 3) are the unit normal

vectors to the opposite edges to the vertices p; (j = 1,2, 3). Clearly, we have
My C My, Xp1 ¢ Xy, k21

Example 6. Crouzeiz—Raviart P; — P, element
For each k > 0, let T be a triangulation of 2 and X and My be defined by

Xi ={v € (Co(Q)), v|k € [P2(K) ®span{hideAs}]*, V K € Ty} (5.12)
M, :{QELg(Q), q|K€P1(K), VKEE} (513)
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Again, A; (j = 1,2,3) are the barycentric coordinates. It is easy to see that

My, C My, Xp1¢Xg, k>L

Example 7. Composite P, — P, element
For the triangulations Ty, k& > 0, X and M), are defined as follows

Xy ={v € (Co(@)?, vk, € (P(K))?, K =ULK;, ¥ K € Ti}. (5.14)
Mlc :{qELé(Q)ﬂC(ﬁ), Q|K EPI(K)a VKEE}: (515)

where K; (i = 1,2,3) are obtained by connecting the three vertices of K with its barycenter.
It is not hard to check that this element is stable and satisfies (1.11). Obviously,

My, C My, Xp1¢Xp, k>L

To apply our abstract framework to above four elements, we define the prolongation operator
IF  =[Hf ,JF ] Xg—1 X Mg—1 — X, X M}, as follows:

JE | =ip: Mgy — Mg, the natural injection, (5.16)
Hf | =15 xIIF : Xj_1 — Xy, (5.17)

where II¥ denotes the standard linear interpolation operator associated with 7y, for the elements
in Examples 4, 5 and 7, and the quadratic interpolation operator associated with 7;_; for the
element in Example 6. In other words, the contribution of the bubble functions is ignored in
the prolongation step.

Obviously, HF_, in (5.17) is well-defined, and JJ_, defined by (5.16) satisfies (A.2). More-
over, by using the standard scaling argument, we can prove the following lemma.

Lemma 5.1. For Hf_, defined by (5.17), (A.1) holds, i.e.,

lo = HE yvllia@) < Chillollir, Yo € Ximr, k21, (5.18)

for each X_1 which is defined in Examples 4-7.
Proof. For any K € T_1, let

Hg = Hf |k : Xk — )SZ|K;

where X7 is the conforming linear finite element space with respect to 7 for the elements in

Examples 4, 5 and 7, and the conforming quadratic finite element space with respect to Ti_1
for the element in Example 6.
Obviously, Hx is a linear operator from the finite dimension space X_1|x to the finite

dimension space X}|x and satisfies
Hipo =po, Ypo € (Po(K))>.

Furthermore, it is easy to check that ||[Vv||r2(0)(k) is a norm over (Xx_1|x)/(Po(K))?. There-

fore, by the scaling argument, we have that for the reference element K

lo — Hgvlli, < ClIVul

L2(K VEE)N(];_HI?.

L2(§)’
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This implies that

||2 - HKEHL?(K) < CthvE“LZ(K): VE € {(k71|K- (5.19)

Then, summing up (5.19) over all K € T_1, we get (5.18).
It now remains to check (A.3). In fact, for [oj,7;] € X; x M; (j =1,2), [o,7] € (H*(2) N

H}(Q))? x (HY(Q) N L3()) in (A.3) defined in Section 3, from (1.11), (3.2) and (3.3) we get
o, 71 = [op mlllo < ORIz + lrllis () (5.20)

Let
r__ P P I __ !
o' = (I, x Hk_l)g, ' =1_,T,

where II} | is defined in (5.17). Here and later IIj_; denotes the standard finite element
interpolation operator of Mj_;. Then

[O'I,TI] € (%k—l X Mk—l) n ()N(k X Mk).

~

Moreover, it follows from (5.16), (5.17) and the interpolation theory that
I o' 7) = [, 7, (5.21)
o, 7] =o', 7 Mok-1 < Chi_y(lollmz(o) + Il ()- (5.22)
Therefore, by (A.1), (A.2), (3.6), (5.20)—(5.22), we have
ok, 7] = i1 [ok—1, Te—1]lllok
< ik 7] = 10" 7l + N[ 15711 = [0, 7 llowe
< Clllioesmi) = 10", ™Mo + ok-1s 7] = [0, 7 llo1)

< Chi(”gHH?(Q) + 7l a1 ()

This shows (A.3) holds with I} | being defined by (5.16) and (5.17) for Example 4-7.

To sum up, we have

Theorem III. For the nonnested conforming mized finite elements for the Stokes problems,
namely mini element, Bernardi-Raugel element. Crouzeiz—Raviart Pyt — Py element and the
composite P, — Py element, Theorem I holds with I} | defined by (5.16) and (5.17).

Remark 5.1. For mini element. if we choose I ,’:_1 be one constructed in [15], clearly, this
It satisfies the assumptions (A.1)—(A.3). Hence, our abstract framework gives an alternative
convergence analysis for the algorithm in [15].

Remark 5.2. For Crouzeix-Raviart P, — Py element, if we choose Hf | = II} x IIF,
where II} is the quadratic interpolation operator associated with 7y, then I, ,’:_1 also satisfies
(A.1)—(A.3), but it is effected by the bubble function now.

Remark 5.3. It is not difficult to see that our abstract framework with the prolongation
operator being chosen as above also applies to other conforming mixed elements constructed
by adding bubble functions, e.g. enriched Taylor—-Hood element and other composite elements

(ct. [6], [11]).
5.3. Nonconforming Mixed Finite Elements

Nonconforming mixed finite elements for the Stokes problems are also used very often in
practice. Crouzeix—Raviart nonconforming element is the simplest and most popular one in this
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class. Some early multigrid result was given in [4]. In this section, we introduce a simple and
different prolongation operator [ ,’:_1 for two typical elements of this class, our prolongation is
defined as a simple modification of the standard interpolation operator either by the usual local
averaging technique or, in particular, by a computationally cheaper alternative, the random
choice technique. The two elements are considered in detail are Crouzeix—Raviart element and
Fortin—Soulie element.

Example 8. Crouzeiz—Raviart nonconforming element

It is the most well-known nonconforming finite element. Now for each k£ > 0, T, is a triangle
partition; Xy, My are defined as follows

X ={v € (L*(Q))?, v|x € PI(K), VK € Ty, and v is continuous (5.23)
at the midpoints of the interelement boundaries and vanishes at
the midpoints of edges along 0Q2}.

My, ={q € L}(), q|x € Po(K), ¥V K € T} (5.24)

Obviously, we have
My—1 C My, Xp1¢ Xy, k>1

So this element is nonnested. To apply our abstract framework, we define the prolongation
operator If | =[HF | JM 1: X1 x My_1 — Xy x My, as follows:

H ,’:_1 i X1 — Xy is the local averaging modification of the standard interpolation
operator associated with Crouzeix—Raviart nonconforming element. Specifically, for any v €
Xy 1, H,’jilv satisfies

v(mi), miEK, Ke’ﬁcfl,

~

Hllcgqg(mi) = 1
R[v(ml)] or §(E|K1 (m,) + E|K2(mi)), m; € 0K, ﬁ@KQ, K, K> € 72;,

~

where m; stands for a midpoint of the internal edges of the elements in 7}, and 29
R[g(mz)] € S(m;) = {£|K1 (my), 2|K2(mi)), m; € 0K, NOK,}, (5.26)
that is, R[g(mz)] randomly takes one of the two values in the set S(m;).
J,f_1 =ip : Myg_1 — My, the natural injection operator. (5.27)
Lemma 5.2. The operator HF | defined by (5.25) satisfies (A.1), that is,
o = Hi_yvlliz0) < Chillolle-1, Yo € Xgon, k> 1. (5.28)

Proof. For any K € Tj,_1, let 7(K) = U{K' € T;—1, meas(0K' NOK) > 0} and

H, = HII:—1|T(K) : )’gk71|T(K) — )ka|K
If meas(97(K) N Q) > 0, it is easy to check that [Po(7(K))]* C X 1|, (k) and

H;pg = po, Vpo € [Po(T(K))).
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Moreover, we can show that ||Vv||p2(,(k)) is a norm over X 1|, (k)/[Po(7(K))]?, hence by the

standard scaling argument we have that for the reference element K and corresponding ?(I/(\' )

10 = H20ll ) < ClIVEI 2 3R)) VO € )N(k AR

this implies that

||'U — H 'U”LZ(K < Chk“VU”LZ (K))» VE € )Sk71|T(K)). (5.29)

If meas(07(K) N 9N) = 0, clearly, ||[Vv||L2(-(x)) is a norm over Xy 1| (k), so (5.29) still

holds. Finally, (5.28) follows from summing up (2.29) over all K € Tj_;.
Now, since (A.2) holds trivially. it remains to check (A.3), by repeating the argument used in
subsection 5.2 we can show that (5.20) still holds for Crouzeix—Raviart nonconforming element.

Moreover, let
! 1

o'=0", T =1I)_;T,
where 0’ is the continuous linear interpolation of a with respect to 7T;_1, we can show that

(5.21) and (5.22) also hold for Crouzeix—Raviart nonconformmg element. Hence, (A.3) holds for
the above I ,’:_1 Thus, our analysis applies to Crouzeix—Raviart nonconformmg finite element.
Example 9. Fortin—Soulie nonconforming element
This is a P,—P; type triangular mixed element. Let 7 be the family of triangle partition,
and define X, M}, as follows (cf. [10])

X ={v € (L*(Q))?, v|kx € (P2(K))* V K € Ty, and v is continuous at (5.30)

the Gauss—Legendre points of the interelement boundaries and
vanishes at the Gauss—Legendre points of edges along 0€}.
My, ={q € L}(Q), q|x € P/(K), ¥ K € Ty} (5.31)

It is easy to check that
My 1 C My, Xp1¢ X, k>1
Similar to Example 8, we define 1,16971 = [H,’ctl, J,f,l] : X1 X My, — X, x My, as follows:
HF |+ Xy_1 — X such that for any v € Xy_1, HF | v satisfies

U(ti), t; € K, Keﬁ_l,

~

H,’:flv(ti) = 1 (532)
- R[E(ti)]a or §(£|K1 (ti) + 2|K2(ti))7 ti € 0K, ﬁaKz, K17 K, € 7767

where ¢; is a Gauss—Legendre point of the internal edges of the elements in T and R[v(t;)] is
defined by (5.26) with ¢; in the place of m;.

J,f_1 =ip : My_1 — My, the natural injection operator. (5.33)

Clearly, (A.2) holds. By repeating the proof of Lemma 5.2 we can show (A.1) holds. Then
by a similar argument as the one for Example 8 except replacing o', 7' in (5.37) b

o =oll, =1 1,
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where UI I denotes the conforming quadratic interpolation of a with respect to 7;_1, we show

that (A 3) is valid. Thus, the abstract result applies to Fortln Soulie nonconforming element.

Theorem IV. For the nonconforming mized elements for the Stokes problems, namely,
Crouzeiz—Raviart element and Fortin—-Soulie element, Theorem I holds with [,’:_1 being defined
by (5.25) and (5.27) and (5.32) and (5.83).

5.4. Multigrid Methods with Nonnested Meshes

In this section we will show that our abstract framework also applies to some other nonnested
mixed elements where the nonnestedness is caused by using nonnested meshes, which is either
due to artificial arrangement or to the nature of the element in question. For early results on
multigrid methods with nonnested meshes for second order elliptic equations, we refer to [17]
and the reference therein.

Example 10. Composite P, — Py element with nonnested meshes

We first consider the composite P, — Fy in Example 2, where the multigrid method is
studied in the case that the mesh family is nested. In the following we will show that our
abstract framework also applies to this element in the case that the mesh family is not nested.
We remark that for the composite P, — Py element, the use of the nonnested meshes is not
required by the element. For simplicity, we adopt the nonnested mesh refining techniques of
[17] in this subsection.

Recall that for the triangulation 7 (k > 0), the finite element spaces corresponding to the
composite P; — Py element are defined by

X = {v € (Co@), vlx € (PUK)?, K €T} (5.34)
My, = {q € L3(Q), qlx € P(K), K € T1.}, (5.35)

where 7;% is obtained by connecting the midpoints of the three sides of all triangles of 7.
Here we do not assume the nestedness of the mesh, i.e., Tx_1; may not be a subpartition of
Tr. Thus we have
Xp—1r & Xpy My & My, k20.

That is, the multilevel finite spaces are not nested for both velocity field and pressure field.
To ensure convergence of the multigrid algorithm, in addition to the assumption (A.0), we also
impose the following restrictions on the meshes which were suggested in [17]:

sup {cardinality({K' € Tp—1| K'NK #0})} < Bo, k>1, (5.36)
KeT

sup {cardinality({K' € Tp1| K'NK #0})} < By, k>0, (5.37)
KeTk
oy hy < hgyr < g, k>0, (5.38)
0N < Nip1, 0N, <Niy, k>0, (5.39)

for some constants Bp > 1, a; > 1 and as > 2. Where
N = dim(Xy) = O(h,?), Nj = dim(Mg) = O(h;?).

Obviously, for any nested mesh family, 5y =1 or 4, a; = 2 and ay = 4.
Next, we define the prolongation operator

Illcgfl = [Hllceflﬂjlffl] : )Sk—l X Mgy — )N(Ic x My,
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as follows:
Hy = [By, B0 Xpoy — Xy,

where Ej, is the standard interpolation operator of the conforming linear element with respect

1
to the triangulation 7,7, i.e.,

(Bxo)(@) = Y v()ri(z), Vo€ Co(f), (5.40)

3
piEN,

1 1
where N2 is the set of vertices of the triangulation 7,* and ¢ ;(z) is the nodal basis function

1
of the conforming linear element at the vertex p; of the triangulation 7,2.
J,’ctl : My_y — Mj, such that for any q € My_1, J,fflq satisfies

1
JE lq= = /qux, VK € Ty. (5.41)

Clearly, Hf | and Jf | are well-defined. Moreover, we have
Lemma 5.3. Suppose {T;.} (k > 0) satisfies (1.6) and (5.36)—(5.39), then the operators
HEF | and JF_| defined above satisfy the assumptions (A.1) and (A.2) respectively, namely,
v = Hy_10llp2(9) < Chillvlli-1, Yo € Xj. (5.42)

”Jlfflq”L?(Q) < Cllgllzz), Vg€ My_y. (5.43)
Proof. To show (5.42), it suffices to show that

||’Uj — EkUjHL2(Q) < Chk”'UjHHl(Q): ] =1,2; VE = (Ul,Ug) € Xp_1. (544)

~

By Proposition 2.2 of [17] we know that (5.44) does hold. Thus, so does (5.42). Finally, (5.43)
can be easily checked by direct computations and making use of (5.35), (5.41) and Cauchy-
Schwarz inequality.

Lemma 5.4. Under the same assumptions of Lemma 5.3, we have

lw — Hi_yv|[r2() < pollw = vllr2(), Yo € Xp1, we Xy, (5.45)
Ir = Ji_vdll2e) < I —allez), Vo € Mi—y, 7 € My, (5.46)

for some positive number pg which is independent of w, v and k.

Proof. Since (5.46) can be obtained by direct computations and making use of (5.35), (5.41)
and Cauchy—Schwarz inequality, in the following we only provide a proof for (5.5).
To show (5.45), it suffices to show the following inequalities:

lwj — Exvjllze) <pollwj —vjllrz), J=1,2;
Yo = (v1,v2) € Xg—1, Yw = (wy,ws) € Xy. (5.47)

We now show (5.47) for j = 1. For any K € 776%, let

Sk =U{ K | K'eT2,, KnK £0}.
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Thus, (5.36) implies that there would be no more than 45 triangles in Sk. Noticing that
— Ejv; is a linear function on K, we have

e e e {[ — Epv1)(p1) + (w1 — Egor)(p2))? (5.48)
+[(w1 — Exv1)(p2) + (w1 — Egvr)(ps)]?
+[(w1 — Brv1)(ps) + (w1 — Egvr)(p1)]*}
3
<Chi Z[( 1 — Byor)(py) + (w1 — Epvr)(pj)),

where p;, j =1,2,3 are the vertices of K, ps and p; stand for the same vertex. Also noticing
that (5.36) and (5.37) imply

sup {cardinality({K" € 7;%_1| K'NK #0})} <48y, k>0, (5.49)
KET%

sup {cardinality({K" € 77j_1| K'NK #£0})} <48y, k>1, (5.50)
1
KeT?

by an argument similar to the one used in [17] to derive (2.2) of the reference, we can show the
following estimate holds:

[(w1 = Egv)(p;) + (wy = Egor)(pj1)]? < Cllw = vllZas,), 7=1,2,3. (5.51)
Finally, combining (5.48)—-(5.51) we get

w1 = Brvr 720y < D llwr = Exorl[oe) SC Y lwn —vil|72sy)

1 1
2 2

KeT,

<480 Y lwr —villFagrey < pollwr — vil[72 0

1
K'eTZ,

KeT,

where pg is a positive constant which is independent of wy, vi, hgx—1 and hg.

So we have shown (5.44) holds for j = 1. Similarly, we can show (5.44) is also true for j = 2.
Therefore, the proof of Lemma 5.4 is completed.

By using Lemma 5.4, we can easily show the assumption (A.3) holds. In fact, by (5.45),
(5.46), (1.11), (5.38) and the triangle inequality, we have

ok 7] = Te—1[ok—1, Te—1]lllo,k
< max(po, Dl|llok, 7] = [or—1, Th-1]lllo,x
< Cllllors 7] = [o; mUlllok + [lllo, 7] = [ok—1, Tk—1]lllo,6—1}

< Chi[”g”m(m +I7lla @)

where [0, 7] and [0, 7;] (j = k—1, k) are the solutions of (1.3) and (1.7) with g = 0, respectively.
Therefore, we conclude

Theorem V. For the composite P, — Py element with nonnested mesh refinings, under the
assumptions (A.0) and (5.36)-(5.39), Theorem I holds with IF | being defined by (5.40) and

(5.41).
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Example 11. A stable P, — P, element

Let {7\7«}1«20 be a family of nested quasi-uniform triangulations of Q. Let {7;}r>0 be the
family of barycentric trisected triangulations which is subordinated to {ﬁ}kzo in the sense of
that each Ty is obtained by connecting the three vertices of every triangle of 7A7C to its barycenter.
It is easy to see that {7k }r>0 is a family of nonnested meshes which satisfies (A.0). We remark
that to use the nonnested meshes {7 }r>0 is to guarantee the stability of the following P> — P;
element. -

Let X, and M}, be defined as follows:

X ={v € (Co(Q)% vk € (R(K))? VK € Ti}. (5.52)
Mk:{pELg(Q), p|K€P1(K), VKE%} (553)

It is shown in [2] that this is a stable element for the Stokes problems, i.e., X and Mj

satisfies the Babuska-Brezzi condition (1.10), and the error estimate (1.11) holds. Since the
family {7%}r>0 is nonnested, we have

%k—l ¢*§k: My ¢Mk7 kzl
To apply our abstract framework, we define the prolongation operator
Loy =[HE 1 Jeal s Xpoy x Mo — Xp x My,

as follows:
Hf | =1 x Oy or Mg x Mg 0 Xpoy — X, (5.54)

where ﬁk and Il stand for the standard conforming linear or quadratic finite element interpo-
lation operators associated with 7 and 7, respectively.

J,f 1 Mp_1 — Mj, such that for any K € Ty,

/ Jj_1qdzx =/ qdz, Vg€ My, K€ (5.55)
K K

The following example shows that such J,’:% does exist:

q|k (), ifre KCK' € Ty_1,

|17| fK gdr,  otherwise. (5.56)

Ji_1dlk(z) = {

Next, we are going to show that the prolongation operator If_, defined above satisfies the
assumptions (A.1)—(A.3).
Lemma 5.5. HF | defined by (5.54) satisfies (A.1), i.e.,

lo = Hig_1vllL2() < Chillvlle-1, Vv € Xy (5.57)

Proof. We only give a proof for HF | = II; x IIy, a proof for HF | = IIj, x II), can be
written up similarly. R
Noticing that for any K € Ty_1,

Hyi = H} ||k = I x ﬁk|K : )N(k—1|K — )N(k|K
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is a linear operator a finite dimensional space to another finite dimensional space and satisfies

Hgpo=po, Y po€ (Py(K))>.

On the other hand, for any v € X1k, if v|k, € (Po(K;))?, i =1,2,3, then v € (Py(K))?,
where K = U?_, K;, K; € Ty—1. This implies that ||[Vv||p2(k) is a norm on X_1|x /(FPo(K))?.

Thus, on the reference element K , we have
o = Htllpeiy < CUVElag) V2 € Xl

Now by the standard scaling argument we conclude that

||"li - HKEHL?(K) < CthvE“L?(K); v vE )S’C*1|K' (5.58)

Finally, (5.57) follows from summing up (5.58) over all K € Tt

By an argument similar to the one in the proof of Lemma 5.3, we can show the following
lemma holds.

Lemma 5.6. JF_, defined by (5.56) satisfies (A.2), i.e.,

175 _1dll20) < Cllallz), Vg € My—1. (5.59)

To check (A.3), let [0j,7;] (j =k —1,k), [o,7] € (H*(Q) N H}(Q))* x (H*(Q) N L3(NY)) be
the solutions of (1.3) and (1.7) with g = 0, respectively. Then by (3.1), (3.3) and (1.11) we get

e, ) = [oj, llllo.; < Chj(lollazo) + Il ), §=Fk= 1k (5.60)

Let o be the linear conforming finite element interpolation of o and T be the piecewise

constant interpolation of 7 both associated with ﬁ,l. Then [7,7] € (Xg_1 X Mp_1)N (X x M)

and
HY 6=5, J_7=7. (5.61)

Finally, from (5.60), (5.61), (5.57) and (5.59) we have

ok, ] = L1 [ok—1, Te—1]lllo.
<ow, 7] = [, TWllo.e + 111151 (18, 7] = [ok—1, Te—1])lll0.k
< Chi(llollmz@) + ITlla @) + CIE, 7] = [ok—1, k—1]lllok—1

< Chi(HZHH?(Q) + |7l E (2)-

Thus, (A.3) is verified. Therefore we have

Theorem VI. For P, — P, element with the barycentric trisected triangulations, Theorem
I holds with If_, being defined by (5.54) and (5.56).

Remark 5.4. Similarly, we can show that the abstract result of Sections 1-4 applies to
other stable low order mixed finite elements for the Stokes problems (cf. [2]).

Remark 5.5. If we regard the above P> — P; element as a composite element built on the
triangulations 7y, k > 0, then the multilevel finite element spaces for both the velocity and the
pressure are still nonnested, but the meshes become nested. Hence, this element also belongs
to the class of elements in subsection 5.2 and can be treated accordingly.
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