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Abstract

A class of regularized conjugate gradient methods is presented for solving the large
sparse system of linear equations of which the coefficient matrix is an ill-conditioned sym-
metric positive definite matrix. The convergence properties of these methods are discussed
in depth, and the best possible choices of the parameters involved in the new methods are
investigated in detail. Numerical computations show that the new methods are more effi-
cient and robust than both classical relaxation methods and classical conjugate direction
methods.
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1. Introduction

Let R" represent the real n-dimensional vector space, and R™*" the real n x n matrix space.
In this paper, we will study iterative methods for solving the system of linear equations

Az = b, AecR"™™ and z,beR", (1)

where A € R"*" is a large sparse and possibly very ill-conditioned symmetric positive definite
(SPD) matrix, z € R" the unknown vector, and b € R™ a given right-hand side (RHS) vector.

The conjugate gradient (CG) method [9] is an efficient solver for approximating the so-
lution of the system of linear equations (1), provided the coefficient matrix A € R"*" is
well-conditioned, or a good preconditioner is cheaply obtainable when it is ill-conditioned.
A preconditioner transforms the original linear system (1) by a suitable linear transformation
such that the spectral property of the matrix A € R™*" is largely improved, and therefore,
the convergence speed of the CG method is considerably accelerated. Two typical ways of
constructing a practical preconditioner for an SPD matrix are the symmetric successive over-
relazation (SSOR) iteration [16, 1, 2, 3] and the incomplete Cholesky (IC) factorization [2, 12].
However, both SSOR and IC preconditioners are only applicable and efficient for a special
class of SPD system of linear equations, e.g., a diagonally dominant or an irreducibly weakly
diagonally dominant one which may come from the discretization of a second-order self-adjoint
elliptic boundary value problem by the finite difference method [16, 12, 2, 15]. Moreover, the
IC factorization may break down even for an SPD matrix [11]. Therefore, the existence of an
IC factor can not be guaranteed even if we neglect the influence of the rounding error, needless
to say its stability and accuracy.

Considering that the CG method is quite efficient for solving an SPD system of linear
equations whose coefficient matrix has tightly clustered spectrum [2, 6, 15], in this paper,
we present a class of regularized conjugate gradient (RCG) method for solving the system of
linear equations (1). In the RCG method, the linear system (1) is first regularized by reasonably
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shifting and contracting the spectrum of the coefficient matrix A € R"*", and its solution is then
approximated successively by a sequence of regularized linear systems. At each step of iteration,
the regularized linear system itself is iteratively solved by the CG method. Therefore, the RCG
method is actually an inner/outer iterative method [13, 14, 7, 5, 8] with a standard splitting
iteration as its outer iteration, and the CG iteration as its inner iteration. Evidently, this new
approach is quite different from the typical ones, such as the classical relaxation methods [16]
and the classical conjugate direction methods [2, 15]. Moreover, the RCG method itself can be
again preconditioned by employing an IC or an SSOR preconditioner to the regularized linear
system. Then, the CG method is directly applied to this preconditioned regularized linear
system at each outer iterate. This naturally leads to a so-called preconditioned regularized
conjugate gradient (PRCG) method for solving the system of linear equations (1). In actual
implementation of the PRCG method, we can suitably choose the shift and contract factors
in such a way that the regularized linear system has reasonably good diagonally dominant
property such that the IC or the SSOR preconditioner is existent, stable, and accurate, and
hence, make it a highly efficient method for solving the system of linear equations (1).

We prove the convergence and estimate the relative residual and error of both RCG and
PRCG methods. In particular, we discuss the best possible choices of the shift and contract
factors, as well as the best possible number of the inner CG iteration steps. Both theoretical
analyses and numerical experiments show that the new regularized conjugate gradient method
and its preconditioned variant converge much faster and more robust to the exact solution of
the system of linear equations (1) than both classical relaxation methods and classical conjugate
direction methods.

2. The Regularized Conjugate Gradient Method

For an SPD matrix A € R"*", we use o(A) to represent its spectrum set, and Ay, (A) and
Amax(A) its smallest and largest eigenvalues, respectively. Denote Z(A) = [Amin(4), Amax(A4)].

Then any A € o(A) satisfies A € Z(A). The condition number r3(A) of the matrix A € R™*"

>\max(

with respect to the Euclidean norm is given by ka(A) = ||A||2]|4A7 |2 = Ao ()

For any

z € R", its A-norm is defined by ||z||la = V2T Az.
We use v = % to represent the horizontal intercept of the linear transformation f : R* — R*,

f@)=p+nt, pneR, n#o. (2)
Evidently, f(A) = nA(v), where A(v) = vI + A, is the transformed matrix. The linear
transformation (2) maps the spectrum set o(A) of the matrix A € R"*" onto a new set
f(o(A4)) = u + no(A) which is obviously contained in the interval p + nZ(A). If we choose
the reals p and n such that 7 # 0 and v > 0, then it immediately holds that

Hz(f(A)):u+nAmax(A) U+ Amax(4)  Amax(A)

a H+n>\m1n(A) N V+>\min(A) < Amin(A) o HZ(A)‘
Therefore, the linear transformation (2) may considerably improve the condition number of
the matrix A € R™*", provided a pair of suitable constants p and 7 is easily obtainable. The
constant p is called a shift, and the constant  a contractor when || < 1 and an amplifier when
> 1.
'l By the linear transformation (2), we can rewrite the system of linear equations (1) as
(vl + A)x =vx + b, (3)
where I € R™" is the identity matrix and v > 0 a constant. Hence, the system of linear
equations (1) is equivalent to the system of linear equations (3).
The basic idea of our new regularized conjugate gradient (RCG) method is as follows: Given
a starting vector z(9) € R"; Suppose that we have got approximations z(®), (), ... z(*) to the
solution z* of the system of linear equations (1), then the next approximation z(*+1) to z* is
obtained through solving the system of linear equations
(wI+ Az =vz® +p (4)
iteratively, with the CG method, to certain arithmetic precision. More precisely, this RCG
method can be described as follows:
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Method 2.1. (THE RCG METHOD).
1. Input the largest admissible number of iteration steps kmax and the stopping tolerance € of
the RCG method
Input the largest admissible number of iteration steps f,ax and the stopping tolerance € of
the inner CG iteration

o

3. Input the starting vector  and the iteration parameter v
4. Set k:=0
5. Compute r = b— Az, p(© = ||r||3, and 9(*) = /p(©®
6. If 9O < g||b|| and k > Eyax, then GoTo 20
7. Set {:=1and y:==x
8. Do While 91 > ed(®) and £ < lax
9. If £=1 then Set §:=0 and p :=r, Else
Compute 8 = plé=D/pl¢=2) and p =r + Bp
10. Compute w = vp + Ap
11. Compute a = p¢= /pTw
12. Compute y =y + ap
13. Compute 7 = r — aw
14. Compute p¥) = ||r]|3 and 9O = /p®
15. Set £:=0+1
16. EndDo

17. Set z:=y

18. Set k:=k+1
19. GoTo 5

20. Continue

21. EndDo

Lines 8-16 in Method 2.1 is actually the classical CG method applied to the system of linear
equations (4) at the k-th outer iterate. Evidently, when u = 0 and n = 1, or equivalently, when
v = 0, Method 2.1 automatically recovers the classical CG method [9, 6] for the system of linear
equations (1), provided we set € = € and kpax = lmax-

The input of the RCG method is the initial iterate x, the RHS vector b, the largest admissible
numbers of iteration steps kmax and £nax, and the stopping tolerances € and € for the inner CG
iteration and the RCG method, respectively, and a routine which computes the action of the
matrix A € R™™" on a vector. Note that the matrix A itself need not be formed or stored, only
a routine for matrix-vector multiplications is required.

According to the costs, we need to store only the five vectors z, y, w, p and r. Each inner
CG iteration requires a single matrix-vector multiplication (to compute Ap), two inner products
(one for pTw and one to compute p() = ||r[|3), and three operations of the form u + &v, where
u, v are vectors and ¢ is a scalar. Each outer iteration requires one additional matrix-vector
multiplication and one operation of the form u — v (to compute r = b — Az), and one inner
product (to compute p(®) = ||r||3). Therefore, if we assume that the number of nonzeros on the
i-th row of the matrix A € R"*" is w®, then each inner CG iteration requires

n n
Weg = > (200 —1)+ T +1=2 w® +6n+1
i=1 =1
flops, and the corresponding outer iteration requires
n n
Wouter = 3 (20D = 1) +3n-1=2) w® +2n -1
i=1 =1
flops. Furthermore, if we assume that the k-th iterate of the RCG method requires m(*) steps
of inner CG iteration to reach the exitting tolerance €, then the total flops of the k-th iterate
of the RCG method is
n
W = mEWey + Wonger = 2(m™ +1) Y " w® +23m™ + Dn +m® — 1.

rcg
i=1



440 7.Z. BAI AND S.L. ZHANG

In particular, in the case of w® = w(i = 1,2,...,n) and m® = m(k = 1,2,...), the flops of
each global iterate of the RCG method is
Wieg =2((m+ 1w+ 3m+ 1)n+m — 1. (5)

3. Convergence Analysis

For a nonnegative integer k, we use P(¥) to denote the set of polynomials of degree at most
k such that p(®) (0) = 1 holds for any p*) € P(¥)_ In addition, we define quantities

B () = din | max P (2)],

590) = s+ 2 G ),
I00) = o + A R )
YO @) = 2(%) :

SO0 = @t e VAT )
o) = — 2y w0 ),

Ut @) T Amin(A)
These notations will be used throughout the remainder of this paper.

The following lemma gives the sharpest possible bounds about the quantities 7*) (1), 6% (),
and (%) (1),

Lemma 3.1. [/, 6, 15] If A € R™™" is an SPD matriz, and v satisfies Amin(A) + v > 0,
then 3% (1) <~ (1), and hence, 6 (v) < 6®) (v) and 8 (v) < 6*) (1),

For the relation between the relative residual in the Euclidean norm and the relative error
in the A-norm, we have the following result.

Lemma 3.2. [10] Let A € R™*" be an SPD matriz. Then for any z € R",

1
142 2]]2 = [|z]|a

VAmin(A)[1z]la < [|4z]l2 £V Amax(A)l|2]| 4.
In addition, the classical error bound for the CG method applied to the solution z* of the
system of linear equations (1) is given in the following lemma.
Lemma 3.3. [10, 6, 15] Let A € R™™" be an SPD matriz. If the CG method is started
from an initial iterate (00 € R"™, then after k steps of iterates, it generates an approzimation
) to the solution x* of the system of linear equations (1), which satisfies

12® = 2%(la <FP )2 —27|la <A P (0|2 — 27| 4,

and

where

in  max |p®(z)],

206 (0) = 5 (1)} =
FEN(0) =75 (V)|V*0 p(kr)lé'p(k)zEa(A)

and

k
ka(A) — 1
) (0) = 4 *) ()], —o = 2 Vka(4) -1 )
v K2 (A) =+ ].
With Lemmas 3.1-3.3 in hands, we can now demonstrate a precise estimate about the
convergence speed of the RCG method.
Theorem 3.1. Let A € R™" be an SPD matriz and v > 0 be a constant. If the RCG
method is started from an initial iterate £(©) € R™, and applies m*) steps of CG iteration to

get the next approzimation z*+1) to the solution * of the system of linear equations (1), then
it holds that:
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(a) (b — Azl < 5 @)][b — Azl < 5 )| — Az,

(b) [l —z*|ly <D @)[|lz®) — ¥ ||y < 80" () [|lz*) — z*|,.

Proof. Denote b¥) (1) = va® +b, £(**) the exact solution of the system of linear equations
(4), i.e., it satisfies A(1)z**) = b® (), and y*™"™) the final result of the inner CG iteration
at the k-th outer iterate of the RCG method. Then from Lemma 3.3 we know that

m(®) * ~(m® *
[lyem) — 7k)||A(u) <F™ W) [|ly "0 — ot 7k)||A(1/)

k,m®)) _

holds. Furthermore, since y(¥0) = £(¥) and y( (1D the above estimate immediately

leads to

54 —aCB L) < T @) = 20 4, (6)

Define the residual vector of the RCG method at the k-th outer iterate by (¥ i.e., r(*¥) =
b— Az*). Then we have
x(k+1) _ :U(k) — Afl(Ax(k+1) _ A:E(k)) — Afl(,r,(lc) _ ,r,(kJrl))'

This equality and actual computations straightforwardly yield

Aw)zF+D —pF) (1) (vI + Azt — (pz®) 4 p)
v(z D — pk)y _ (k1)
vA~ 1(7«(19) — (k1)) (k1)
vA r®) (I + v A 1)rk+D)
vA=Lr k) — A(p) A~

Therefore,
rtD = A@) T A A B 4 (60 (1) — A(v)x(kHD)] 7)
= A@) Hrr® + AB®) (v) — A(v)z*+D)]
and
o — gkt = g1kt
= AW e — o) + (69 (0) — A@)a )], ®
Because

r®) =b— Ag® = (wz® £ b) — W™ + Az®) = b® (1) — A(v)a®,
from (6), and by making use of Lemma 3.2 we have
160 (v) — A(w)z* D], 1A (A(v ) 1b(’“)( ) — a5,

; /)\max ) ||33 *,k) _ x(k+1 ||A
< V(AT ()20 — »’U('“ laqw)
< %ﬂjg;; ) ()| Aw) (@0 — 2 @), ©)

= m(A( )7 ( D@ (1) — A(v)z @]

m®))
= VE(AW)F V)|

Now, through taking || - ||2-norms on both s1des of ( ), substituting (9) into the obtained
inequality, and then applying Lemma 3.1 to the resulted estimate, we obtain

[l vl A@) 7l llr Pl + (| A(r) 7 Allo[16™) (v) ) )A(u)x(k+1>||2
IA@) 2 + 1A@) T All2 k2 (A(v ))7( ( ™1

S W) Ir® ]y < 8 () [|r 9.
Similarly, through taking || - ||2-norms on both sides of (8) we can obtain

lo* — 2®+1 |y 1AW la[vlle” — 2@ |15 + b3 (v > — A@w)z* D]
1AW la[vlle” — 2@ |l + /R (AT @) [[r®) 1)
JAW) o[ + | All2 /2 (Al ))7( ) YW)]llz* — 2P|
80 (w)||z* — 2Py < 8 () ||la* — 2P|,

ININA

A IAIA
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Theorem 3.1 presents upper bounds for the reduction rates of both relative residual and rela-

tive error of the RCG method. Obviously, the residual reduction ratio 5m™) (v) at the k-th step

of the RCG method can be decomposed into two parts: one is doyter (¥) = m which is the
(k)

contract factor of the outer iteration, and another is 6i($er )(V) = #}ﬁl) K2 (A(I/))’}/(m(k)) (v)

which is the contract factor of the inner CG iteration. Similar observation holds for the error

reduction ratio G(m(k))(l/). The size of the quantity s5im ))(1/) depends upon the number of the

mner
inner CG iteration steps m®) | and affects the convergence speed of the RCG method itself.
In description of the RCG Method 2.1, this quantity is automatically governed by the exitting
tolerance € and the admissible number of iteration steps ¢max of the inner CG iteration. Hence,
good choices of both € and ¢,,,x are crucial for guaranteeing the RCG method to achieve high
computing efficiency in actual applications.

The identity (7) and the exitting criterion of the inner CG iteration in Method 2.1 provide
with us one possible way to choose € and f£,2x. Note that the fastest residual reduction ratio
of the RCG method is limited by the quantity douter(). Therefore, it is reasonable for us to
choose € and #p,,x such that the RCG method keeps a prescribed residual reduction ratio, say
¢ =1+ (1 — ¥)douter(v), where ¢ € [0,1) is a constant.

From (7) we have

P& 00 < vl A@) e B2 + (|AW) FAll[[B™ () — A(w)z ]|
5outer(V)||7'(k) 2 + m”b(k) (v) — A(l/)g;(k—i-l) ll2,
and from the definition of Method 2.1 we have
6 ) = A@) = 3 < lfr @) (10)

Hence, it follows that
Amax (A)e€
|0, < <50uter(u) + ﬁi}jm) Ir )],
Now, if we take € so small such that € < % and
Amax (A)e

(souter(y) + m

< 9,
or equivalently,
v < Amax (A4) (¢ — 6)7
ko(A)e — 1)
then the residual of the RCG method in the Euclidean norm satisfies
[P D, < ollrle,  k=0,1,2,.... (12)

For the number m(®) of the inner CG iteration, from (9) and (10), and according to
Lemma 3.1 we immediately know that (12) and (11) hold when

m®
k2 (A(v)) —1
/T (V)

It follows straightforwardly from this restriction that

|-
(2 ng(A(l/))>

gmax = .
" ( k2 (A1) — 1)
Ve (A)) + 1

(11)

Moreover, considering that
Lmax
6i(nner)(,/) < P(1 = douter(v)),
we immediately have € < #(A).
The above analysis is summarized in the following theorem.
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Theorem 3.2. Let A € R"™" be an SPD matriz and v > 0 a constant satisfying v <

%. If the RCG method is started from an initial iterate (°) € R"™, and each inner

CG iteration is exitted once its current residual reaches a reduction ratio € < or its

Y
ZNQ(A)
current iteration step reaches a maximum limit

2(A -1
lax = In S /In —Hz( () ,
2/ka2(A(v)) VE2(A(w)) + 1
where 1 € [0,1) is a prescribed constant, then the iterate sequence {:U(k)}]?;o generated by the
RCG method converges to the unique solution ™ of the system of linear equations (1). Moreover,
it holds that
||b_A$(k+1)||2 S¢||b_A$(k)||27 k:0717277
where ¢ =1 + (1 — 1) douter (V).
Another route for determining the parameters v and € (through /£,,,x) is as follows. Accord-
ing to both convergence speed (see Theorem 3.1 (a)) and computational workload (see (5)), we

can choose v and £pax such that the computational efficiency Erog(fmax, ) corresponding to the
RCG method is maximized, where
In (§(Emex) (1
grcg(gmaxa V) = _M7
Wrcg (Zmax)
with
Wieg (bmax) = (2wn + 61 4+ 1)lnax + (2wn 4+ 2n — 1)

being defined by (5), and

it () — — Y Pl )/ (A0 (wcz(Aof)) - 1)‘“‘“ |
@ T v @) \Vm@e) 11
Through simply denoting &cg(fmax; V) by € (Umax, V), and letting s = fiax and
_ hua(4) = EAin(4)

2 -1 ’
we can rewrite Ereg (fmax, V) in the variables s and ¢ as
Ind(s,t)
)= ——~2"

5(87 ) W(S) )

where
1 5 2k(t—1)5t1 B
d(s,t) = 1 <I<& -7+ W , Wi(s) =c(n)s+d(n),

with

k=ko(A), c¢c(n)=2wn+6n+1 and d(n)=2wn+2n-—1.
Now, straightforwardly computing the partial derivatives of the function & (s, ¢) with respect
to s and t, respectively, yields that a maximum point of £(s,t) is a solution of the following
system of nonlinear equations:

it = w2 s (s, 1) = 0,
G(st) = 86(;{ Dy,
which is equivalent to
B (k —1)0(s,t) +t* — K t—1
gi(s,t) = 2W(s) T 1)? In <t—|—1>
—c(n)(k — 1)d(s,t) ln(6(ts,t)) =0, (13)
g2(s,t) = K(t* 4+ st(t+1)241) <t;—1 —t3=0.

We can verify that this system of nonlinear equations has at least one positive solution, which
could be solved by the classical Newton method [10].
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Theorem 3.3. Let A € R"™" be an SPD matriz, with at most w nonzeros on each of its

rows. Then the best possible number £}, of the inner CG iteration steps and the best possible

parameter v* of the matriz transformation are determined by the smallest positive root of the
system of nonlinear equations (13), where

()
- \26) o (82(4) = (1)) Amin(4)
max t*_l (t*)2—1 .
In
t*+1
In this case, a lower bound of € is given by
oo [t =1 e
=2 (t* + 1) :

Therefore, for a prescribed constant ¢ € [0,1), if the RCG method is started from an initial
iterate 0 € R", and each inner CG iteration is exitted once its current residual reaches

a reduction ratio € = min{%m),e*} or its current iteration steps reaches a maximum limit

lrax = mMax { IL“((EI)) ,E;‘nax}, then the iterate sequence {:c(’“)},é“;o generated by the RCG method

converges to the ;szrilque solution x* of the system of linear equations (1), and it holds that
b — Az* V|, < gllb — Az B, k=0,1,2,...,
where ¢ = d] + (1 - w)(souter(y*)-
Theorem 3.3 presents an intuitive understanding and theoretical illustration about iteration
parameters in the RCG method. However, since an approximate solution of the system of

nonlinear equations (13) and the extreme eigenvalues of the matrix A € R™*" are not trivially
obtainable, this theorem has little applicability in actual computations.

4. The Preconditioned RCG Method

To further reduce the condition number x2(A(v)), and hence improve the performance of
the RCG method, we can precondition the system of linear equations (4) by an SPD matrix
M(v) € R™*", termed as the preconditioner, that is close to the matrix A(v) € R"*" and may
be obtained by the IC factorization [12, 15], then the eigenvalues of the matrix (M (v)~1A(v))
will be clustered near one, and by Theorem 3.1, the RCG method that employs the inner CG
iteration to the preconditioned system of linear equations

M) *A@w)z = M(v) " (vz'™® +b)
at the k-th outer iterate will have considerably fast convergence rate. This motivates the
following preconditioned regularized conjugate gradient (PRCG) method.
Method 4.1. (THE PRCG METHOD).
1. Input the largest admissible number of iteration steps kmax and the stopping tolerance € of
the RCG method

Input the largest admissible number of iteration steps £max and the stopping tolerance e of
the inner CG iteration

o

3. Input the starting vector x and the iteration parameter v
4. Set k:=0
5. Compute r = b — Az, p(© = ||r||3, and 9@ = /p(©
6. If 9O < g[|b|| and & > Eyax, then GoTo 22
7. Set £:=1and y:==z
8. Do While 91 > ed®) and £ < liax
9. Solve M (v)z =r
10. Compute 7(6=1) = 2Ty
11. If £=1 then Set 8 :=0 and p := z, Else
Compute g = 7D /72 and p= 2z + Bp
12. Compute w = vp + Ap
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13. Compute o = 71 /pTw

14. Compute y =y + ap

15. Compute r = r — aw

16. Compute p¥) = ||r||? and 9O = \/p(0)
17. Set £:=/0+1

18. EndDo

19. Set z:=y

20. Set k:=k+1
21. GoTo 5

22. Continue

23. EndDo

The input of the PRCG method is the same as that for the RCG method and the routine
to solve a linear system with the preconditioner M (v) as its coeflicient matrix. Aside from
the preconditioner, the arguments of the PRCG method are the same as those to the RCG
method. The cost of the PRCG method is identical to the RCG method with the addition of
the application of the preconditioner M (v) in line 9 and the additional inner product required
to compute 7(¢=1) in line 10.

Analogously to Theorem 3.1, a precise estimate about the convergence speed of the PRCG
method is described by the following theorem.

Theorem 4.1. Let A € R"™" be an SPD matriz, v > 0 a constant, and M (v) € R"*"
a preconditioner of the matriz A(v) € R™™. If the PRCG method is started from an initial
iterate £(©) € R", and applied m*® steps of the preconditioned CG iteration to get the next
approzimation £**tY) to the solution =* of the system of linear equations (1), then it holds that:

—(m(®) ~
(@) [Ib— Az+D [l <5 )1 — Az ®)]y < 5 w)][b — Ax® ||,

—(m®) ~
(b) a+) — 25|, <8 @)[l2® - 2*ls < 8D )l ®) — 2*],

where
~F(y) = min max Qre
7 ) p(k)E'P(k)zEU(M(V)—;\A(V)zllI;k( I
—(k) v max —1 =
o) = V 4+ Amin(4) * v }\L /\maZ(A) w2 (M) Vi (M@) AT )
0 = — 2 2me ) e (T AT ),

V + Amin (A) v+ Amin(A)

() = 2<¢muwwrﬂum)—1>k
VeI A +1)

W) = V+Mmuo*Vfii;ZW“M“”““”“”qA“”$m“*
)y = — vy e ) eI AR ).

vV + Amin (A) v+ /\min(A)

5. Numerical Results

In this section, we compute three examples of the system of linear equations (1) to test
numerical behaviours of the RCG and PRCG methods. Each iterate is started from an ini-
tial vector having all entries equal to zero, and terminated once the current iterate attains a
prescribed stopping tolerance € or a prescribed largest iteration step kpax. The new methods
are compared with the CG method and the SGS (Symmetric Gauss-Seidel) method or SSOR
method of optimal relaxation factor (SSOR(wop:) method), from aspects of both number of
the iteration steps (denoted by “IT”) and precision of the approximated solutions (denoted by
it)

“ERROR” and defined by ERROR = 1= ="lz).



446 7.Z. BAI AND S.L. ZHANG

Our first example is the system of linear equations (1) of which the coefficient matrix is the
Hilbert matrix

1 1 1 a1
2 3 n—1 n

1 1 1 1 1

2 3 4 n n+1

1 1 1 I

A= 3 1 5 n+1 n+2 c ]Rnx”7 (14)

1 1 -+ . 1 _1

n—1 n nTl 2n—3 2n—2

1 -+ i< 0 _r _1

n n+1 n+2 2n—2 2n—1

and the RHS vector is chosen such that the exact solution z* having all entries equal to 1.
It is well known that this matrix is very ill-conditioned when n is slightly large. The total
numbers of iteration steps (IT) and the relative error of the approximated solutions (ERROR)
corresponding to the RCG, CG and SGS methods are listed in Table 5.1. Evidently, the RCG
method converges very faster and produces a much more accurate solution to the system of
linear equations than the other two methods.

Table 5.1. Total iteration numbers and relative errors for linear system (14).

RCG method CG method SGS method
n v = 0.0000 v = 0.001
IT T ERROR | IT | ERROR | IT | ERROR IT ERROR
400 | 56 | 5.67E-03 | 85 | 5.39E-03 | 149 | 2.98E-01 | > 2E+05 —
600 | 69 | 4.98E-03 | 96 | 4.89E-03 | 148 | 2.41E-01 | > 2E+05 —
800 | 67 | 5.66E-03 | 102 | 5.25E-03 | 894 | 7.55E-01 | > 2E+05 —
1000 | 70 | 5.59E-03 | 103 | 5.24E-03 | 647 | 4.94E-01 | > 2E+05 —

The iteration parameters are: ¢ = 107%, € = 0.01, 1) = 0.1, kpax = 1000 and £max = 20.

Our second example is the system of linear equations (1) of which the coefficient matrix

A = (aij) € R™" is given by

‘ 1242 3n(n +1)
1-49)2 — —2i fori=j
a;j = (r+1-9) n(n+1)(2n+1) < 2n+1 Z> , e (15)
ij = ~ 12ij snfn+1) . for i # j
n(n+1)2n+1) \ 2n+1 ') i

and the RHS vector is chosen such that the exact solution z* having all entries equal to 1.
The spectrum of this matrix is o(A) = {1,2%,...,n?} and its condition number is k2 (A4) = n?.
Therefore, it is very ill-conditioned when n is quite large. The total number of iteration steps
(IT) and the relative error of the approximated solution (ERROR) corresponding to the RCG
and CG methods are listed in Table 5.2. Again, it is obvious that the RCG method has much
better convergence property than the CG method in both steps of the iterates and precisions

of the solutions.

Table 5.2. Total iteration numbers and relative errors for linear system (15).

RCG method CG method
n v =0.00 v=0.1 v=03
IT ERROR IT ERROR IT ERROR IT ERROR
300 | 4012 | 5.81E-06 | 4312 | 1.23E-05 | 4537 | 2.81E-05 | 4937 | 1.83E-05
400 | 7037 | 4.03E-05 | 5412 | 5.39E-06 | 5962 | 4.01E-05 | 7162 | 3.55E-05
500 | 6236 | 1.29E-04 | 6815 | 3.79E-05 | 8362 | 1.17E-04 | 6437 | 3.00E-05
600 | 8237 | 1.88E-04 | 9030 | 7.79E-06 | 8962 | 3.46E-05 | 9081 | 1.47E-04

The iteration parameters are: € = 1077, € = 0.01, ¢ = 0.1, kmayx = 1000 and ;00 = 25.

At last, we consider the Poisson’s equation

0?u  O%u i
g T ~ ol (16)
u(ty,ta) =0, on o9,
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where Q = (0,1) x (0,1) is a unit square in R*, 9Q is the boundary of the domain 2, and
f: R? > R%isa given function of variables t; and t,. We discretize the unit square with mesh
spacing h and use u; ; to denote an approximation to the solution of (16) at the grid point
(¢h,jh). Then, by approximating the derivatives of (16) by the usual second-order difference
approximations we obtain the system of linear equations

it1,j + Uio1j + Ui T U1 — dug = B2 fig, t,j=1,2,...,N,

Ui = i1 = Ug,j = ui,j =0,
where (N + 1)h = 1.

This system can be written in the form (1) by letting

:UT:(U171,...,ULN,Ugyl,...,UQ’N,...,UN71,...,’U,N7N),
with the coefficient matrix
T I 4 -1
-1 T -I -1 4 -1
A= ER™" T = € RVN (17)
I T -I -1 4 -1
-1 T -1 4

and the RHS vector b € R" consisting of the quantities _h/2ﬁ7j in the proper positions, where
n = N2.
The spectrum of the matrix A is given by
4 + 2(cos(kmh) + cos(jmh)), k,j=1,2,...,N,
and the largest and smallest eigenvalues are, respectively,
Amax(A4) = 4(1 + cos(7h)), Amin(A) = 4(1 — cos(mh)).
Therefore, the condition number of the matrix A is

L+cos(mh) 4, 4 5 4
k2 (A) 1= cos(mh) ~ th +0(1) — (N+1)°+0(1) = N + O(1).

In our computations, we choose f : R* — R? such that the exact solution z* of the system
of linear equations (17) having all entries equal to 1. The IC factorization with no additional
fill-in (IC(0)) [1, 12, 11, 2, 15] is used to precondition both RCG and CG methods. The resulted
PRCG method is compared with the resulted PCG method and the SSOR(w,pt) method, as
well as the RCG method.

For different v and h, the total CPU times (TIMING) and the relative error (ERROR)
corresponding to the PRCG, PCG and the SSOR(wopt) methods are listed in Table 5.3, and
those corresponding to the RCG method are listed in Table 5.4. Here, each TIMING and each
ERROR in Tables 5.3 and 5.4 is, respectively, an average of 30 repeated running timings and
errors of the same program.

Table 5.3. CPU times and relative errors for linear system (17).

PRCG method PCG method SSOR (wopt) method

h! v = 0.095 x h? v = 0.0006 Wopt = Traarem)
TIMING | ERROR | TIMING | ERROR | TIMING | ERROR | TIMING | ERROR

14 0.1106 | 6.41E-07 | 0.0740 | 1.95E-06 | 0.0970 | 2.38E-06 | 0.2348 | 1.07E-07

16 0.1499 | 2.02E-06 | 0.0992 | 3.02E-06 | 0.1626 | 2.63E-06 - -

24 0.7177 | 2.11E-06 | 0.6406 | 2.78E-06 | 0.7568 | 2.52E-06 - -

32 26791 | 4.22E-06 | 2.0184 | 4.33E-06 | 2.7011 | 3.87E-06 - -

40 6.0413 | 5.65E-06 | 5.6947 | 5.21E-06 | 6.0635 | b.77E-06 - =

48 | 13.1693 | 7.72E-06 | 10.2591 | 7.07E-06 | 14.1659 | 6.19E-06 - -

56 | 29.1890 | 7.35E-06 | 22.8013 | 6.59E-06 | 30.1533 | 7.15E-06 - -

64 | 69.3848 | 7.72E-06 | 41.7172 | 7.65E-06 | 74.6402 | 6.58E-06 - -

The iteration parameters are: € = 1076, € = 0.01, ¥ = 0.1, kmax = 1000 and £,. = 30.

From Table 5.3, we clearly see that the PRCG method outperform the PCG and SSOR(wopt)

methods in the senses of both CPU times and relative errors. Through comparing Table 5.3

with Table 5.4, we observe that when the mesh spacing h is not too small (e.g., h = ﬁ, %, or
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more), the RCG method with a suitably chosen v outperforms both PRCG and PCG methods;
and when the mesh spacing h is quite small (e.g., b = 2=, & or less), the PRCG method

64

outperforms the RCG method for a small parameter v (e.g., v = 0.095h2 or v = 0.0006),
however, this situation could be reversed for a reasonably large parameter v (e.g., v = 0.006).
Therefore, the new RCG and PRCG methods are more efficient and robust than both the CG
method and the optimal SSOR method.

Table 5.4. CPU times and relative errors of the RCG method for linear system (17).

Rt v =10.095 x h* v = 0.0006 v = 0.006 v = 0.06

TIMING [ ERROR [ TIMING [ ERROR | TIMING [ ERROR [ TIMING | ERROR

14 0.0196 2.042E-07 0.0199 2.44E-07 0.0270 4.61E-07 0.0432 2.05E-06

16 0.0391 5.59E-07 0.0325 3.27TE-07 0.0442 1.63E-07 0.0742 3.12E-06

24 0.1588 3.15E-07 0.1940 1.97E-07 0.2531 1.0IE-06 0.4281 5.66E-06

32 0.6096 4.30E-07 0.6033 2.42E-07 0.7986 1.64E-06 1.3799 7.62E-06

40 1.9803 1.53E-07 1.6684 9.77TE-08 2.1876 2.46E-07 3.6309 9.42E-06

48 8.9936 1.28E-07 4.5574 2.19E-07 4.4441 5.99E-07 8.1461 9.42E-06

56 36.2691 7.03E-08 20.2750 [ 1.13E-07 | 16.5696 | I.81E-07 | 19.5382 | 2.56E-06

64 | 444.1473 | 2.82E-07 | 387.4398 | 1.44E-07 | 18.7799 | 1.12E-07 | 45.6351 | 2.87E-07

[1]
2]
3]

[15]
[16]

The iteration parameters are: ¢ = 107%, € = 0.01, 1) = 0.1, kpax = 1000 and £max = 30.
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