Journal of Computational Mathematics, Vol.20, No.6, 2002, 561-574.

EXPERIMENTAL STUDY OF THE ASYNCHRONOUS
MULTISPLITTING RELAXATION METHODS FOR THE LINEAR
COMPLEMENTARITY PROBLEMS*"

Zhong-zhi Bai
(State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics
and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese
Academy of Sciences, Beijing 100080, China)

Abstract

We study the numerical behaviours of the relaxed asynchronous multisplitting methods
for the linear complementarity problems by solving some typical problems from practical
applications on a real multiprocessor system. Numerical results show that the parallel
multisplitting relaxation methods always perform much better than the corresponding se-
quential alternatives, and that the asynchronous multisplitting relaxation methods often
outperform their corresponding synchronous counterparts. Moreover, the two-sweep re-
laxed multisplitting methods have better convergence properties than their corresponding
one-sweep relaxed ones in the sense that they have larger convergence domains and faster
convergence speeds. Hence, the asynchronous multisplitting unsymmetric relaxation iter-
ations should be the methods of choice for solving the large sparse linear complementarity
problems in the parallel computing environments.

Key words: Linear complementarity problem, Matrix multisplitting, Asynchronous itera-
tive methods, Numerical experiment.

1. Introduction

Given a matrix M = (my;) € R™" and a vector ¢ = (gx) € R", the linear complementarity
problem LCP(M, q) is to find a vector z € R™ such that

Mz+q>0, z>0 and 2zI(Mz+4¢) =0.

Recently, many practical and efficient parallel iterative methods in the sense of matrix multi-
splitting were proposed for solving the LCP(M, q) on the high-speed multiprocessor systems,
and the convergence properties of these methods were studied in depth for some standard ma-
trix classes. For details we refer to [4] and references therein. In original, these methods were
developed from the matrix multisplitting iterative methods for the system of linear equations
(see Bai [1] and Bai, Sun and Wang [7]), as well as from the sequential iterative methods for
solving the linear complementarity problems (see Cottle, Pang and Stone [9]).

Based on several splittings of the system matrix M € R™*", the LCP(M,q) can be de-
composed into independent linear complementarity problems of smaller sizes. Through solving
these sub-problems in parallel on the multiprocessor system without any communication bar-
rier, Bai and Huang [6] presented an asynchronous multisplitting iterative method. This asyn-
chronous multisplitting iterative method was established in accordance with the principle of
using sufficiently and communicating flexibly the known information. Hence, it has the poten-
tial to achieve high parallel computing efficiency in actual computations. For the convenience

* Received May 5, 1999.
DSubsidized by the Special Funds for Major State Basic Research Projects G1999032803 and Supported by
the National Natural Science Foundation of China (19601036).

562 7.7. BAI

of real applications, Bai and Huang [6] further presented an explicit alternative, called the
asynchronous multisplitting unsymmetric AOR method, of the above mentioned asynchronous
multisplitting iterative method, by making use of the overrelaxation and acceleration tech-
niques. This asynchronous multisplitting unsymmetric AOR method includes two relaxation
sweeps within each of its iterations, and each sweep possibly includes its own pair of relaxation
parameters. Therefore, it can cover a series of relaxed asynchronous multisplitting methods for
solving the LCP(M, ¢). Moreover, a numerical example was given in [6] to show that these re-
laxed asynchronous multisplitting methods are quite efficient for solving the large sparse linear
complementarity problems on the high-speed multiprocessor systems.

In this paper, we further study the numerical behaviours of the relaxed asynchronous mul-
tisplitting methods by solving some typical problems from practical applications. For various
choices of the relaxation parameters and in both of sequential and parallel settings, a variety of
experiments were implemented for the asynchronous multisplitting unsymmetric AOR method
and its synchronous and sequential alternatives, as well as some of their typical cases from
special choices of the relaxation parameters. Numerical results show that the parallel multi-
splitting relaxation methods always perform much better than their corresponding sequential
alternatives, and that the asynchronous multisplitting relaxation methods often outperform
their synchronous counterparts. Moreover, the two-sweep relaxed multisplitting methods have
better convergence properties than the corresponding one-sweep relaxed ones in the sense that
they have larger convergence domains and faster convergence speeds. Hence, the asynchronous
multisplitting unsymmetric relaxation iterations should be the methods of choice for solving
the large sparse linear complementarity problems in the parallel computing environments.

2. The Relaxed Asynchronous Multisplitting Methods

We assume that the considered multiprocessor system consists of o processors, and the host
processor may be chosen to be any one of them. For a matrix M € R™™", let M = B; + C;
(i = 1,2,...,a) be a Q-splittings (see [2, 3, 9, 11]) and E; € R™™" (i = 1,2,...,a) be «

(e

nonnegative diagonal matrices satisfying ZE’ = I (the n x n identity matrix). Then the
i=1
collection of triples (B;, C;, E;)(i = 1,2,...,a) is called a multisplitting of the matrix M, and
the matrices E;(i = 1,2,...,a) are called weighting matrices. We introduce the following
necessary notations for describing an asynchronous multisplitting iteration: Ny = {0,1,2,...};
for Vp € Ny, J(p) is a nonempty subset of the number set A = {1,2,...,a}; and for Vi € A
and Vp € Ny, s;(p) is an infinite sequence of nonnegative integers, such that: (1) for Vi € A,
the set {p € Nyl|i € J(p)} is infinite; (2) for Vi € A and Vp € Ny, it holds that s;(p) < p; and
(3) for Vi € A, it holds that plLrgo si(p) = oo. If we denote s(p) = 1r<nii£1a si(p), then it holds that

s(p) < pand lim s(p) = co. Assumption (1) demands that all processors of the multiprocessor
p—00

system must proceed their local iterations without dead breakdown, Assumption (2) demands
that the currently unavailable information should not be used in the current computations, and
Assumption (3) demands that every processor of the multiprocessor system must adopt new
information to update its local variables continually.

Let (Bp,:,Cpi, Ei)(i =1,2,...,a), p € Ny, be a sequence of multisplittings of the matrix M.
Then the following asynchronous multisplitting relaxation method for solving the LCP(M,q)
was presented in Bai and Huang [6]:

Method 2.1. (ASYNCHRONOUS MULTISPLITTING RELAXATION METHOD).
Given an initial vector 2° € R™. Suppose that we have obtained the approximate solutions
2t 22,..., 2P of the LCP(M,q). Then the next approximate solution 2P*! of the LCP(M,q) is

Experimental Study of the Asynchronous Multisplitting Relaxation Methods for LCP 563

computed according to the formulas:

o : . 2P 4 (1 —)25 ifie J

p+1:§:E, i P _ wzP' + (1 —w)z®W,if i € J(p), i—1.9

“ - i@ and 2 { 2P, otherwise, PT S
P

where zP* is an arbitrary solution of the LCP (B, ;, qp.:):
2>0, Bpiz+qp; >0 and 27(Bpz+gqpi) =0
with g,; = C,p;2%(P) + ¢, and w(# 0) is a relaxation factor.

In Method 2.1, each processor is allowed to update or to retrieve the global approximate
solution residing in the host processor at any time. Hence, new information can be used on time
once it is available. Moreover, considerable savings in computational workloads are possible,
since a component of zP* does not need to be computed if the corresponding diagonal entry of
the weighting matrix E; is zero. The role of the weighting matrices E;(i = 1,2,...,a) may be
regarded as determining the distribution of the computational task to the individual processors.

However, at every iterate step p of Method 2.1, each processor needs to solve an implicit
linear complementarity problem LCP(B);,qp;). This makes Method 2.1 be less convenient
in practical computations. To overcome this disadvantage, Bai and Huang [6] further defined
a block and multi-parameter generalization of Method 2.1. It was called the asynchronous
multisplitting unsymmetric AOR method. To formulate this method, we separate the number
set N = {1,2,...,n} into a nonempty subsets J;(i = 1,2,...,«) such that U} ,J; = N, and
for i € A, we introduce matrices

R AE I AR A
e = g em ugt < f T R
o = ogrer g = [Y, HE=d
B = amedeme,) = { 4720 mrred,

such that M = D+ L, ; + Up; + Wy, i = 1,2,...,a, p = 0,1,2,..., where M € R"*" is
the system matrix of the LCP(M,q), and D = diag(M) is a nonsingular matrix. Evidently,
for Vp € Ny, L, (i = 1,2,...,a) are strictly lower triangular matrices, U, ;(i = 1,2,...,q)
are strictly upper triangular matrices, W, ;(i = 1,2,...,a) are zero-diagonal matrices, and
E;(i = 1,2,...,a) are nonnegative diagonal matrices. We call the matrix collections (D +
Lpi,D+U, i, Wy, Ei)(i =1,2,...,a), p € Ny, a sequence of block triangular multisplittings
of the matrix M.

The asynchronous multisplitting unsymmetric AOR method can now be described as follows:

Method 2.2. (ASYNCHRONOUS MULTISPLITTING UNSYMMETRIC AOR METHOD).

Given an initial vector 20 = ([2%),...,[2°].)T € R". Suppose that we have obtained the

approximate solutions z!,22 ..., 2?7 of the LCP(M,q). Then the next approximate solution

2P = ([2PFYy, ..., [2PTYn)T of the LCP(M,q) is computed according to the formulas:

(7], if i € J(p),

(0%
1), (0),p,i P, — —
[2PT] = Elek [z and [2P*] —{ ["]s, otherwise, =1,2,...,n,
1=

564 7.7. BAI

where for k£ € J;,

k—1
0, if Y ul?(E; - 2];)
j=1

+w2[M5p’. + qli > Mgk [Pk,

(2P =
, 7 (m) iy W2 i
E e+ Zu =[P = M gl
\ 0therw1se
and
k=1
0, it Y B - [P))
j=1
(27 = +w1[MZS"(p) + gl > mpr 25 P,
, i w o
20 n:;kzz (20 = 7)) = (M2 + gy,
kk
0therw1se

\

Here, v;(j = 1,2) are relaxation factors, and w;(# 0)(j = 1,2) are acceleration factors.

Evidently, when a = 1 and s;(p) = p(i € A,p € Np), Method 2.1 and Method 2.2 respec-
tively reduce to sequential relaxation methods, and when J(p) = A and s;(p) = p(i € A,p € Ny),
they respectively reduce to synchronous multisplitting relaxation methods. We remark that
Method 2.1 and Method 2.2 are quite suitable for both the tightly coupled multiprocessor and
the multicomputer having a shared global memory.

Method 2.2, its synchronous and sequential counterparts, together with some of their typical
cases resulted from special choices of the relaxation parameters, will be the experiment methods
of this paper.

3. The Experimental Objects

In this section, we present detailed descriptions about the tested problems, the computing
environment, the perfomed methods, and the starting and the stopping criterions, which were
used in our actual numerical computations.

3.1 The Experimental Problems

Denote by BTD(Sk, Tk, Ri) a block tridiagonal matrix with S, T} and Ry, being submatrices
of suitable sizes located at its (k,k—1), (k, k) and (k, k + 1) positions, respectively, and denote
by tri(sg, tx, 7)) a tridiagonal matrix with sg, t; and ri being entries located at its (k,k — 1),
(k, k) and (k, k + 1) positions, respectively. We consider the following three practical examples
of the LCP(M, q).

Example 3.1. The linear complementarity problem with the system matriz M € R™*"
corresponding to the Laplacian 5-point finite difference operator:

M = BTD(-I,T,~I) e R™*", T = tri(—1,4,-1) € R™*",

and the known vector ¢ € R" suitably chosen, e.g., ¢ = (1,—1,...,(=1)»"',(=1)")T € R",
where n = n%. Note that M € R™™" is an H,-matriz. Therefore, the LCP(M,q) has a unique
solution [5].

Experimental Study of the Asynchronous Multisplitting Relaxation Methods for LCP 565

Example 3.2. The linear complementarity problem with the system matriz M € R™"
corresponding to the Journal Bearing finite difference operator:

M= BTD(_ﬁkflI;Tk) _ﬁk]—) € Rnxn) Tk = tm’(_ﬂjflynk + Uip _ﬁ]) €]RﬁXﬁ>

and the known vector ¢ € R™ suitably chosen, e.g., ¢ = (507,507, ...,50m)" € R", where &
denotes the ratio of the circumference of a circle to its diameter,

1 1 1
ﬂk:(k+§)3: nkZ(k+§)3+(k—§)3, E=1,2,... 0.

Note that M € R™™" is a K-matriz. Therefore, the LCP(M,q) has a unique solution (cf. [9]).

Example 3.3. The linear complementarity problem with the system matriz M € R™*"
corresponding to the Laplacian 9-point finite difference operator:

M = BTD(S,T,S) € R™", T = tri(—4,20,—4) € R"™" S = tri(—1,4,—1) € R™*",

and the known vector ¢ € R"™ suitably chosen, e.g., ¢ = (1,—1,...,(=1)""1 (=1)")T € R".
Note that M € R™™" is an H, -matriz. Therefore, the LCP(M,q) has a unique solution.

We remark that the finite difference discretizations at equidistant grids of a free boundary
value problem about the flow of water through a porous dam (see [10]) may result in linear
complementarity problems of the types of Example 3.1 and Example 3.3. For the practical
background, the mathematical description and the numerical treatment of the journal bearing
problem, we refer to [9] for details.

3.2 The Experimental Environment

We run our programs on an SGI Power Challenge multiprocessor computer as PVM applications.
This parallel machine consists of four 75 MHz TFP 64-bit RISC processors. These CMOS
processors each delivers a peak theoretical performance of 0.3 GFLOPS. The data cache size is
16 Kbytes.

3.3 The Experimental Methods

The tested methods in our numerical experiments are the asynchronous multisplitting unsym-
metric AOR method and its synchronous and sequential counterparts, together with some of
their typical cases from special choices of the relaxation parameters. They are listed in the
following three tables:

(a) the sequential relaxation methods in [8] and [12]:

Method | 71 | w1 | 72 | we Description
SOR w | w | 0] 0 | the successive overrelaxation method
SSOR | w | w | w | w the symmetric SOR method
USOR | v | v | w | w the unsymmetric SOR method
AOR v | w | 0| O | the accelerated overrelaxation method
SAOR | v | w | 7 | w the symmetric AOR method
(b) the synchronous multisplitting relaxation methods in [3] and [11]:

Method | 71 | w1 | 72 | w2 Description

MSOR | w | w | 0 | O | the multisplitting SOR method
MSSOR | w | w | w | w | the multisplitting SSOR method
MUSOR | v | v | w | w | the multisplitting USOR method
MAOR | v | w | 0 | 0 | the multisplitting AOR method
MSAOR | v | w | v | w | the multisplitting SAOR method

566 7.7. BAI

(c) the asynchronous multisplitting relaxation methods:

Method Y| w1 | 2 | we Description

AMSOR | w | w | O | O the asynchronous MSOR method
AMSSOR | w | w | w | w | the asynchronous MSSOR method
AMUSOR | v | v | w | w | the asynchronous MUSOR method
AMAOR | v | w | 0 | O | the asynchronous MAOR method
AMSAOR | v | w | v | w | the asynchronous MSAOR method

For the convenience of application and without loss of generality, the block triangular mul-
tisplittings (D + Ly, D + Up i, Wi, E;)(i = 1,2,...,a), p=0,1,2,..., are now chosen to be
stationary ones (i.e., they are independent of the iterate index p), and they have the following
structures:

= ey cgren pe [g, fork,j € Jiand k>,
Lyi = (L") e RY L5 - 0, otherwise,
iy omaxn i) _ [maj, fork,j € Jiand k< j,
Upi = (Upy") € R, Uy ~ 10, otherwise,
} ' 0, for k = j,
Wy = WE) erR™™, Wk = L0, fork,je

mygj, otherwise,
1, for 1 <k<mn, i=1,

‘ . () nxn (i) _ 0.5, forn; n+1<k<nmn, 2<i<aq,
Ei = diagle,”) ER™, e” =0 05 for i+ 1<k <figh, 1<i<a-—1,
1, forign+1<k<n, i=a,

a+1
Int(e) denotes the integer part of the corresponding real number.

where for i = 1,2,...,a, fi; = Int (—”) and J; = {fiy_17 + 1, fig_1fi + 2, ..., 17} Here,

3.4 The Starting and the Stopping Criterions

All the computations are started from an initial vector having all components equal to 40.0,

T
and terminated once the current iterations z? obey % <1077,

4. Numerical Results

The three examples of the LCP(M, q) of various sizes are tested by the sequential, the
synchronous and the asynchronous relaxation methods in Tables (a)-(c) in Section 3.3 when
the processor number « ranges from {1,2,3,4}, respectively. For n = 4900 and « = 3, some
of the representative numerical results are listed in the following tables and depicted by the
following figures. We use CPU to denote the CPU time (in seconds) required for an iteration to
reach the above stopping criterion, co to denote that an iteration does not satisfy the stopping
criterion after 5000 iterations, and SP to denote the speed-up of a parallel execution, which
is defined to be the ratio of the CPU times of the sequential to the corresponding parallel
runnings.

4.1 Performance of Example 3.1

The computing results of this example were reported in Bai and Huang [6]. However, for the
sake of conveniently comparing them with those of the other two examples so that the numerical

Experimental Study of the Asynchronous Multisplitting Relaxation Methods for LCP 567

behaviours of the parallel multisplitting relaxation methods can be revealed in depth, we still
copy them here.

Tabel (A;): CPUs for the sequential SOR-like methods

w 0.6 0.7 0.9 1.1 1.3 1.5
SOR | 91.92 | 73.14 | 48.09 | 32.51 | 21.38 | 13.23
SSOR | 45.98 | 37.03 | 24.27 | 16.26 | 10.72 00

Tabel (A2): CPUs and SPs for the multisplitting SOR-like methods

w 0.6 0.7 0.9 1.1 1.3 1.5
MSOR. CPU | 48.12 | 37.70 | 24.92 | 16.82 | 11.10 | 6.97
Sp 1.91 194 | 193 | 1.93 | 1.93 | 1.90

CPU | 23.23 | 19.06 | 12.55 | 8.47 | 5.62 00

MSSOR Sp 198 | 194 | 193 | 192 | 191 -

Table (A;) presents the CPUs for the sequential SOR and SSOR methods at some values
of the relaxation parameter w. Table (Ay) presents the CPUs and the SPs for the synchronous
multisplitting SOR and SSOR methods at the same values of the relaxation parameter w as
in Table (A;). We note that for the MSOR method, the optimal CPU 6.97 is attained at
w = 1.5, and the optimal SP 1.94 is attained at w = 0.7, however, for the MSSOR, method,
the optimal CPU 5.62 is attained at w = 1.3, and the optimal SP 1.98 is attained at w = 0.6.
Therefore, the synchronous multisplitting SOR and SSOR methods cost smaller CPUs at a
larger parameter, and achieve higher SPs at a smaller parameter. The reason is that the
MSOR, and MSSOR. methods converge much faster than their corresponding sequential ones
when the parameter is far away from the optimum, and they have comparable convergence
speeds with the corresponding sequential relaxation methods when the parameter is much close
to the optimum. Roughly speaking, the CPUs of the MSSOR method are approximately halves
of those of the MSOR method, and the SPs of the MSSOR method are majorly higher than
those of the MSOR method, correspondingly. The average of the SPs for the MSOR method is
1.923, while that of the SPs for the MSSOR method is 1.936.

Tabel (A3): CPUs and SPs for the asynchronous multisplitting SOR-like methods

w 0.6 0.7 0.9 1.1 1.3 1.5
CPU | 42.41 | 33.59 | 22.09 | 14.99 | 10.04 | 6.34
AMSOR SP 217 | 218 | 218 | 217 | 2.13 | 2.09
CPU | 21.30 | 16.80 | 11.26 | 7.70 | 5.12 00
AMSSOR Sp 216 | 2.20 | 2.16 | 2.11 | 2.09 -

Table (A3) presents the CPUs and the SPs for the asynchronous multisplitting SOR, and
SSOR methods at the same values of the relaxation parameter w as in Table (A4;) and Ta-
ble (A2). We note that for the AMSOR method, the optimal CPU 6.34 is attained at w = 1.5,
and the optimal SP 2.18 is attained at both w = 0.7 and 0.9, however, for the AMSSOR
method, the optimal CPU 5.12 is attained at w = 1.3, and the optimal SP 2.2 is attained at
w = 0.7. Therefore, the asynchronous multisplitting SOR and SSOR methods cost smaller
CPUs at a larger parameter, and achieve higher SPs at a smaller parameter. The reason is that
the AMSOR and AMSSOR methods converge much faster than their corresponding sequential

568 7.7. BAI

ones when the parameter is far away from the optimum, and they have comparable convergence
speeds with the corresponding sequential relaxation methods when the parameter is much close
to the optimum. Roughly speaking, the CPUs of the AMSSOR method are approximately
halves of those of the AMSOR method, and the SPs of the AMSSOR method are majorly lower
than those of the AMSOR method, correspondingly. The average of the SPs for the AMSOR
method is 2.15, while that of the SPs for the AMSSOR method is 2.14.

Table (As) and Table (As) show that the asynchronous multisplitting SOR and SSOR
methods outperform the synchronous multisplitting SOR and SSOR methods, and the multi-
splitting SSOR-like methods outperform the corresponding multisplitting SOR-like methods,
respectively, in terms of both elapsed time and parallel speed-up.

Tabel (A4): CPUs for the sequential AOR-like methods

¥ 0.4 0.6 0.8 1.0 1.2 14 1.6 1.7 1 1.8 | 1.9

w 1.0 1.0 1.0 1.1 1.1 1.1 1.2 1.2 | 1.2 | 1.2
AOR | 63.03 | 54.90 | 47.08 | 35.65 | 28.53 | 21.42 | 13.06 | 9.79 | 6.50 | 3.03
SAOR | 29.69 | 26.03 | 22.97 | 17.79 | 14.87 | 11.42 | 7.21 | 5.59 | 3.91 | 2.04
USOR | 39.31 | 31.74 | 25.37 | 18.41 | 13.94 | 9.93 00 00 00 00

Tabel (A;5): CPUs and SPs for the multisplitting AOR-like methods

¥ 0.4 0.6 0.8 1.0 1.2 1.4 16 | 1.7 | 1.8 | 1.9
w 1.0 1.0 1.0 1.1 1.1 1.1 1.2 1 1.2 | 1.2 | 1.2
MAOR CPU | 33.17 | 28.74 | 24.52 | 18.59 | 15.00 | 11.35 | 7.04 | 5.43 | 3.68 | 2.00
Sp 190 | 191 | 192 | 192 | 1.90 | 1.89 | 1.86 | 1.80 | 1.77 | 1.52
MSAOR. CPU | 15.14 | 13.59 | 11.97 | 948 | 7.31 | 6.16 | 4.01 | 3.12 | 2.21 | 1.29
Sp 196 | 1.92 | 1.92 | 1.88 | 2.03 | 1.85 | 1.80 | 1.79 | 1.77 | 1.58
CPU | 2045 | 16.53 | 13.19 | 9.76 | 7.46 | 5.25 00 00 00 00

MUSOR Sp 192 | 192 | 1.92 | 1.89 | 1.87 | 1.89 - - - -

Tabel (Ag): CPUs and SPs for the asynchronous multisplitting AOR-like methods

¥ 0.4 0.6 0.8 1.0 1.2 14 16 | 1.7 | 1.8 | 1.9
w 1.0 1.0 1.0 1.1 1.1 1.1 1.2 1 1.2 | 1.2 | 1.2
AMAOR CPU | 28.80 | 25.16 | 21.91 | 16.53 | 13.35 | 10.25 | 6.30 | 4.84 | 3.30 | 1.82
Sp 219 | 2.18 | 215 | 2.16 | 2.14 | 2.09 | 2.07 | 2.02 | 1.97 | 1.66
CPU | 13.64 | 12.14 | 10.72 | 840 | 6.86 | 547 | 3.52 | 2.72 | 1.96 | 1.19
AMSAOR Sp 218 | 2.14 | 214 | 2.12 | 2.17 | 2.09 | 2.08 | 2.06 | 1.99 | 1.71
CPU | 18.15 | 14.67 | 11.78 | 873 | 6.63 | 4.76 | ¢ 00 00 00

AMUSOR SP 217 | 2.16 | 2.15 | 2.11 | 2.10 | 2.09 - - - -

Table (A4) presents the CPUs for the sequential AOR, SAOR and USOR methods at some
values of the relaxation parameter pair (y,w), which includes the optimal points in Tabels (A;)—
(A3). Table (Aj5) presents the CPUs and the SPs for the synchronous multisplitting AOR, SAOR
and USOR methods at the same values of the relaxation parameter pair (y,w) as in Table (Ay4).
We note that for the MAOR method the optimal CPU 2.0 is attained at (y,w) = (1.9,1.2),
and the optimal SP 1.92 is attained at both (y,w) = (0.8,1.0) and (1.0,1.1); for the MSAOR
method the optimal CPU 1.29 is attained again at (y,w) = (1.9,1.2), and the optimal SP 2.03

Experimental Study of the Asynchronous Multisplitting Relaxation Methods for LCP 569

is attained at (v,w) = (1.2,1.1); and for the MUSOR method the optimal CPU 5.25 is attained
at (y,w) = (1.4,1.1), and the optimal SP 1.92 is attained at (y,w) = (0.4,1.0), (0.6,1.0) and
(0.8,1.0). Therefore, the synchronous multisplitting AOR, SAOR and USOR methods cost
smaller CPUs at a larger parameter pair, and achieve higher SPs at a smaller parameter pair.
The reason is that the MAOR, MSAOR and MUSOR methods converge much faster than
their corresponding sequential ones when the parameter pair is far away from the optimum,
and they have comparable convergence speeds with the corresponding sequential relaxation
methods when the parameter pair is much close to the optimum. Roughly speaking, the CPUs
of the MSAOR and MUSOR methods are approximately halves of those of the MAOR. method,
and the CPUs of the MUSOR method are a little bit more than those of the MSAOR method,
correspondingly. The average of the SPs for the MAOR method is 1.85, the average of the
SPs for the MSAOR method is also 1.85, while that of the SPs for the MUSOR method is
1.9. Table (Ag) presents the CPUs and the SPs for the asynchronous multisplitting AOR,
SAOR and USOR methods at the same values of the relaxation parameter pair (y,w) as in
Table (A4) and Table (45). We note that for the AMAOR method the optimal CPU 1.82
is attained at (y,w) = (1.9,1.2), and the optimal SP 2.19 is attained at (v,w) = (0.4,1.0);
for the AMSAOR method the optimal CPU 1.19 is attained at (y,w) = (1.9,1.2), and the
optimal SP 2.18 is attained at (y,w) = (0.4,1.0); and for the AMUSOR method the optimal
CPU 4.26 is attained at (y,w) = (1.4,1.1), and the optimal SP 2.17 is attained at (y,w) =
(0.4,1.0). Therefore, the asynchronous multisplitting AOR, SAOR and USOR, methods cost
smaller CPUs at a larger parameter pair, and achieve higher SPs at a smaller parameter pair.
The reason is that the AMAOR, AMSAOR and AMUSOR methods converge much faster than
their corresponding sequential ones when the parameter pair is far away from the optimum, and
they have comparable convergence speeds with the corresponding sequential relaxation methods
when the parameter pair is much close to the optimum. Roughly speaking, the CPUs of the
AMSAOR and MUSOR methods are approximately halves of those of the AMAOR method,
and the CPUs of the AMUSOR method are a little bit more than those of the AMSAOR
method, correspondingly. The average of the SPs for the AMAOR method is 2.06, the average
of the SPs for the AMSAOR method is 2.07, while that of the SPs for the AMUSOR method
is 2.13.

Tables (A4)-(Ag) show that the asynchronous multisplitting AOR, SAOR and USOR meth-
ods outperform the synchronous multisplitting AOR, SAOR and USOR methods, respectively,
and the two-sweep relaxed multisplitting methods outperform the one-sweep relaxed multisplit-
ting methods, correspondingly, in terms of both elapsed time and parallel speed-up. Moreover,
the two-parameter relaxed multisplitting AOR-like methods have larger convergence domains
than the corresponding two-parameter relaxed multisplitting SOR-like methods.

In Figures (A41)-(43), we give the behaviours of the asynchronous multisplitting AOR, SAOR
and USOR methods, respectively. The r and w axes in each figure correspond to the v and
w axes, respectively. It is clearly demonstrated that all these methods have good convergence
properties over a wide range of the relaxation parameters.

4.2 Performance of Example 3.2

The computing results of this example are depicted in Figures (B;)-(B7). In these figures,
the x-axis corresponds to the relaxation parameter, and the y-axis corresponds to the CPU
in logarithmic scale. Note that here we only investigate a representative curve from the two-
dimensional surface of the CPU vs. the relaxation parameters v and w for the two-parameter
relaxed methods, which was cut off by the hyperplane w = 1.3.

In Figures (By) — (Bs3), the classes of USOR, AOR and SAOR methods were compared
in both sequential and parallel settings. Figure (B;) depicts the performance of the USOR,

970

AMAOR, Three-Processor Case

@ &
g8 &

CPU time (seconds)
e om
5 3

oo

r-axis

Figure (Ai:): The behaviour of AMAOR
method for the problem with n = 4900. The
divergent points are represented in the graph

by CPU time being 30.

AMUSOR, Three-Processor Case

X

X
X

X0
%

%

o‘oz

<2
<2

)
Y

SOORK

55
"
="
B
%
%

&
050
4565

%

e

DR
o
D0

%
o
PR
SOORK

b
%

O
X

»
5

%
oY

"
X .00000
%
"%

&

O
o
%

X
oz

2
z
%
%
%
K5
6
&5
%

O
%
i
%

(
(565
565
%
"

o

CPU time (seconds)
e om
5 3

&

O
RS
e
R

2
3

@

(X
KK
58
LS
0
o

O
&

9%
Q

@

%

X

%
&5
&5
QAKX

9%

w-axis

25 0

r-axis

Figure (Asz): The behaviour of AMUSOR
method for the problem with n = 4900. The
divergent points are represented in the graph
by CPU time being 30.

7.7. BAI

AMSAOR, Three-Processor Case

CPU time (seconds)
N s @
8 &8 8

oo

25 0
r-axis

Figure (A2): The behaviour of AMSAOR
method for the problem with n = 4900. The
divergent points are represented in the graph
by CPU time being 40.

—— USOR
-—- MUSOR
AMUSOR
107" I L L
.5 15 2 25

Figure (B1): CPU vs. parameter curves for the
USOR-like methods.

MUSOR and AMUSOR methods. Evidently, the AMUSOR method always outperforms the
MUSOR. method, and the MUSOR method almost always outperforms the USOR method
except for the points nearby the optimum. Figure (B2) depicts the performance of the AOR,
MAOR and AMAOR methods. Obviously, the AMAOR method always outperforms the MAOR,
method, and the MAOR method almost always outperforms the AOR method except for the
points nearby the optimum. Note that the AMAOR method has larger convergence domain than
the MAOR method. Figure (B3) depicts the performance of the SAOR, MSAOR and AMSAOR
methods. Clearly, the AMSAOR method always outperforms the MSAOR method, and the
MSAOR method almost always outperforms the SAOR method except for the points nearby
the optimum. That both synchronous and asynchronous multisplitting relaxation methods
perform worse than the corresponding sequential relaxation method in the nearby of the optimal
points of the relaxation parameter is probably because the convergence properties of the parallel
methods are not better than the sequential method when the relaxation parameters are much

close to the optimal values.

In Figures (B4) — (Br), the classes of SOR, SSOR and AOR methods were compared in both

Experimental Study of the Asynchronous Multisplitting Relaxation Methods for LCP 571

107 ! L L L
.5 15 2 25

Figure (B3): CPU vs. parameter curves for the
AOR-like methods.

10 T

10°

10 ¢

10’ |

SOR
SSOR

ot ! ! L L L L L L L
0.4 0.6 0.8 1 12 14 16 18 2 22 2.4

Figure (B4): CPU vs. parameter curves for the
SOR and SSOR methods.

1

SAOR
-—- MSAOR
AMSAOR|

107 ! L L
.5 15 2 25

Figure (Bs): CPU vs. parameter curves for the
SAOR-like methods.

—— SOR !
-—- MSOR
AMSOR]

0 ;.4 0‘6 0‘.8 i 112 1.‘4 1‘6 1‘.8 é 212 2.4
Figure (Bs): CPU vs. parameter curves for the
SOR-like methods.

1

sequential and parallel settings. Figure (B,) depicts the performance of the SOR and SSOR
methods. Figure (Bs) depicts the performance of the SOR, MSOR and AMSOR methods.
Evidently, the MSOR method always outperforms the SOR method, and its convergence prop-

—— SSOR —— AOR
-—- MSSOR -—- SAOR
AMSSOR| USOR
107" I I L L L L L L 107" I L L L
04 0.6 038 1 12 14 16 18 2 22 24 15 2 25

Figure (B7): CPU vs. parameter curves for the
AOR, SAOR and USOR methods.

Figure (Bg): CPU vs. parameter curves for the
SSOR-like methods.

572 7.7. BAI

erty is quite comparable with the AMSOR method, except for the points nearby the optimum.
Around the optimal point, the MSOR method has the best numerical behaviour, while the
AMSOR method has the worst one. However, the AMSOR method has larger convergence do-
main than both MSOR and SOR methods. Figure (Bg) depicts the performance of the SSOR,
MSSOR and AMSSOR methods. Obviously, the MSSOR method always outperforms the SSOR
method, and its convergence property is quite comparable with the AMSSOR method, except
for the points nearby the optimum. Around the optimal point, the MSSOR method has the
best numerical behaviour, while the SSOR method has the worst one. However, the AMSSOR,
method has larger convergence domain than both MSSOR and SSOR methods. Figure (Br7)
depicts the performance of the AOR, SAOR and USOR methods.

Figures (B4) — (By) show that the asynchronous multisplitting relaxation methods almost
always outperform the synchronous multisplitting relaxation methods and the sequential relax-
ation methods. That the convergence speeds of these three classes of methods are quite different
in the nearby of the optimums of the relaxation parameters is probably because of the drastic

difference of the convergence properties of these methods when the relaxation parameters are
close to the optimums.

4.3 Performance of Example 3.3

10°

10° b

10' b

10° b

USOR
-—- MUSOR
AMUSOR]

107

!
.5

25

10°

AOR
MAOR
AMAOR

!
.5

25

Figure (C»): CPU vs. parameter curves for the
AOR-like methods.

Figure (C1): CPU vs. parameter curves for the
USOR-like methods.

The computing results of this example are depicted in Figures (C1)-(C7). In these figures,
the x-axis corresponds to the relaxation parameter, and the y-axis corresponds to the CPU in
logarithmic scale. Again, note that here we only investigate a representative curve from the two-
dimensional surface of the CPU vs. the relaxation parameters v and w for the two-parameter
relaxed methods, which was cut off by the hyperplane w = 1.3.

In Figures (C1) — (C3), the classes of USOR, AOR and SAOR methods were compared in
both sequential and parallel settings, and in Figures (Cy) — (C7), the classes of SOR, SSOR and
AOR methods were done in these situations, too. The numerical behaviours of these methods
for this example are quite analogous to those for Example 3.2, correspondingly.

5. Conclusions

The numerical computations show that: in terms of CPU time and parallel efficiency, the
asynchronous multisplitting relaxation methods are superior to the corresponding synchronous

Experimental Study of the Asynchronous Multisplitting Relaxation Methods for LCP

10

10°

10 ¢

SAOR
MSAOR
AMSAOR|

107

!
05 15 2

0 1
Figure (Cs): CPU vs. parameter curves for the

SAOR-like methods.

25

973

SOR
SSOR

10° ! ! L
0.4 0.6 0.8 1 12 14

L
16

L
18

2

L
22

24

Figure (C4): CPU vs. parameter curves for the

SOR and SSOR methods.

SOR

SSOR
-—- MSOR -—- MSSOR
AMSOR] AMSSOR|
107 ! ! L L L L L L L 107 ! ! L L L L L L L
0.4 0.6 0.8 1 12 14 16 18 2 22 2.4 0.4 0.6 0.8 1 12 14 16 18 2 22 2.4

Figure (Cs): CPU vs. parameter curves for the
SOR-like methods.

Figure (Cs): CPU vs. parameter curves for the
SSOR-like methods.

multisplitting relaxation methods, the multisplitting accelerated overrelaxation methods are su-
perior to the corresponding multisplitting successive overrelaxation methods, and the two-sweep
relaxed multisplitting methods are superior to the corresponding one-sweep relaxed multisplit-

10 T

10

10 -

AOR
- SAOR

USOR
o

10 ! L L L
15 2 25

Figure (C7b): CPU vs. parameter curves for the
AOR, SAOR and USOR methods.

Experimental Study of the Asynchronous Multisplitting Relaxation Methods for LCP 9

ting methods. In particular, the advantages of the AMAOR and AMSAOR methods over the
AMSOR, AMSSOR and AMUSOR methods, respectively, are, roughly speaking, that (i) when
the latter ones diverge, the former ones can still converge; (ii) when the latter ones converge,
the former ones converge faster with higher parallel efficiency; and (iii) the former ones are
less sensitive to the relaxation parameters and they have larger convergence domains than the
latter ones. Moreover, the numerical property of the AMUSOR method is almost comparable
with that of the AMSAOR method. Therefore, we can conclude that the two-sweep multi-
parameter relaxed asynchronous multisplitting methods have better numerical properties than
their corresponding synchronous alternatives, and they should be our choice of methods in
actual computations.

References

setckptjcm1393.bbl
References

[1] Z.Z. Bai, Parallel Iterative Methods for Large-sparse Systems of Algebraic Equations, Ph.D. Thesis,
Shanghai University of Science and Technology, March, 1993.

[2] Z.Z. Bai, Parallel chaotic multisplitting iterative methods for the large sparse linear complemen-
tarity problem, J. Comput. Math., 19 (2001), 281-292.

[3] Z.Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem,
SIAM J. Matriz Anal. Appl., 21 (1999), 67-78.

[4] Z.Z. Bai, D.J. Evans, Matrix multisplitting methods with applications to linear complementarity
problems I: Parallel synchronous and chaotic methods, Calculateurs Parallés, 13:1 (2001), 125-
154; II: Parallel asynchronous methods, Intern. J. Computer Math., 79:2 (2002), 205-232.

[6] Z.Z. Bai, D.J. Evans, Matrix multisplitting relaxation methods for linear complementarity prob-
lems, Intern. J. Computer Math., 63 (1997), 309-326.

[6] Z.Z. Bai, Y.G. Huang, A class of asynchronous parallel multisplitting relaxation methods for the
large sparse linear complementarity problems, J. Comput. Math., to appear, 2000.

[7] Z.Z. Bai, J.C. Sun, D.R. Wang, A unified framework for the construction of various matrix mul-
tisplitting iterative methods for large sparse system of linear equations, Computers Math. Appl.,
32 (1996), 51-76.

[8] R.W. Cottle, G.H. Golub, R.S. Sacher, On the solution of large structured linear complementarity
problems: The block partitioned case, Appl. Math. Optim., 4 (1978), 347-363.

[9] R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complementarity Problem, Academic Press, New
York, 1992.

[10] C.M. Elliott, J.R. Ockenden, Weak Variational Methods for Moving Boundary Value Problems,
Pitman, London, 1982.

[11] N. Machida, M. Fukushima, T. Ibaraki, A multisplitting method for symmetric linear complemen-
tarity problems, J. Comp. Appl. Math., 62 (1995), 217-227.

[12] O.L. Mangasarian, Solution of symmetric linear complementarity problems by iterative methods,
J. Optim. Theory Appl., 22 (1977), 465-485.

