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Abstract

A regular splitting and potential reduction method is presented for solving a quadratic
programming problem with box constraints (QPB) in this paper. A general algorithm is
designed to solve the QPB problem and generate a sequence of iterative points. We show
that the number of iterations to generate an e-minimum solution or an e-KKT solution by
the algorithm is bounded by O(";log% + nlog(1 + v/2n)), and the total running time is
bounded by O(n*(n + logn + log2)(Zlog! + logn)) arithmetic operations.
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1. Introduction

In this paper, we consider a specail form of a quadratic programming problem with box
constrained variables(QPB) as follows:

QPB: min q(x) s.t. (z,s) € Q

where Q@ = {(z,s) € R" X R" :x +s =-e, © > 0, s > 0} is the feasible region of the problem
and s is a slack vector, and Q° denotes the set of interior points of 2, and ¢(z) = 22" Ho + ",
and H € R™*™ is a symmetric matrix, and ¢, e € R™ are given vectors and all the elements of
e are one. Without loss of generality, if the constrained variables of a quadratic programming
problem with box constraints are bounded, then the problem can be transformed into the QPB
specail form.

This problem arises in several areas of applications, such as problem of differential equa-
tions, discrete optimal control with continue time and design engineering, linear least square
problem with box constraints or as a sequential subproblem of nonlinear programming methods.
Therefore, it has a special importance.

Many different algorithms have been studied for solving this type of problem, such as projec-
tion gradient method[1], active-set method[12], matrix splitting methods|[2,3,9], and the interior
point method[10,11]. If the QPB problem is a convex problem, then it can be solved in polyno-
mial time. If the QPB problem is a nonconvex problem, then it becomes a hard problem-NP
complete problem. Some of algorithms can be also used to solve the problem, but it is dif-
ficult to obtain a global or local minimal solution[5-8]. On the other hand, searching a local
minimum or checking the existence of a KKT point are an NP complete problem for a class of
nonconvex optimization problems|[7]. Therefore, e-approximate minimizer or e-KKT point was
introduced in combinatorial optimization[6,7]. Finding an e-minimizer or e-KKT point is also
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hard problem. The complexity of finding an e-approximate minimizer or e-KKT point have
been studied by many authors, and some of the results have been used in practice[11]. It would
be mentioned that the steepest-descent-type method was used to compute an e-KKT point
of the QPB problem, and the complexity of the algorithm was analyzed, and the arithmetic
operations of the algorithm was bounded by O(n®(£)?), where L is a fixed number depending
on the problem data[6,7]. Other results are also discussed in [11].

In this paper, we present a regular splitting and potential reduction method for solving the
QPB problem. The goal of the paper is to try finding a easy way to solve the problem. The
main idea of the algorithm is to introduce a potential function for the original QPB problem
and split the matrix H into the sum of two matrices H; and H» such that (H; — Hs) is a
symmetric positive definite matrix, and a new minimization problem with Hessian matrix H;
and an ellipsoid constraint is considered instead of solving the original QPB problem. The
potential reduction techniques are used to solve the new problem such that the value of the
potential function is reduced by a constant at each iteration. An e-minimum solution and
e-KKT solution for QPB problem is defined, respectively. A general algorithm is designed
to solve the QPB problem and generates a sequence of iterative points. We show that the
number of total iterations to generate an e-minimum solution or an e-KKT solution by the
algorithm is bounded by O(”E—zlog% + nlog(1 + v/2n)), and the total running time is bounded
by O(n*(n + logn + log:)(2logt + logn)) arithmetic operations.

2. Regular splitting and potential reduction algorithm

The regular splitting and potential reduction algorithm for solving the QPB problem will be
described in this section. For the sake of convenience, some of definitions and the basic results
are firstly introduced.

Proposition 1. (z*,s*) € R™ x R™ is a minimum solution of the QPB problem, then there
is (y,2) € R™ x R™ such that the following relationships hold

' +s*=e z">0, s¥>0, (2.1a)
Hz*4+c+y—2=0, y>0, z>0, (2.1b)
yT'z* =0, z7s*=0. (2.1c)

The formula (2.1) is the first order optimality conditions or KKT condition of the QPB problem.
Let O = {(z,y,2) E R*" x R*" X R" : Hr +c+y—2 =0,z >0,y > 0,2 > 0}. Thus, Q is the
set of dual feasible region of the QPB problem.

Definition 1. (Hy, Hz) € R™*™ x R™*™ is said to be a regular splitting of H € R™*" if (i)
H = Hy + H, and (ii)(H; — H») is a positive definite matrix.

Let I, and u. denote the minimal and maximal objective value of the QPB problem on 2,
respectively. Then we can define an e-minimal solution or e-KKT solution of the QPB problem,
respectively.

Definition 2. (z,s) €  is said to be an e-minimum solution of the QPB problem, € € (0, 1)

if qz(i)f_lle < €. Similarly, (z,s) €  is said to be an e-KKT solution for the QPB problem if

(z,y,2) € Q, and % <e.

Asis well known, the potential reduction algorithm is usually required to start at an analytic
center point or an approximate analytic center point of the feasible region for the solved problem.
So, it is easy to show that 20 = %e and s° = %e are the analytic center point of the feasible region
€, and that there are two ellipsoids V4 and Vs such that Q D Vi = {(z,s) € Q,[[(X°)~(z —
DO)|[2 +[/(50) (s = 7)< 1}, and © C Vo = {(z5) € [|(X0) ) (& — 2®)][2 +]](5°) (s -
s9)||? < 2n}. Where X, S denote the diagonal matrices with elements of z,s, respectively.
In other word, 2 is inscribed and outscribed by Vi and Va, respectively. Thus, we have the
following conclusion.
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Proposition 2. Vz € Q°, then

Zlog ) > —nlog(1 +v2n), Zlog ) > —nlog(1 + v2n). (2.2)

Proof. Tt follows from the definition of the outscribed ellipsoid V5 that z°,z are both in Q
0
and 2% <1+ v2n. This gives Z— > 1+\/—, which implies the first part of the proposition is

true. Slmllarly, the second part of the proposition is also true.
Proposition 3. If d € R” and ||d||x < 1, then

n 2
T T |ld] 15
e d> log(l+d;)) >e'd— ——=—. (2.3)
2 l 21— [|d]0)
Now a potential function F'(x,s) used to solve the QPB problem is defined as
F(z,s) = (n+ p)log(q Z logz;s; (2.4)

where (z,s) € Q°, parameter p > 0, and w < [, here w is fixed number during the iterative
process. Assuming that V(z,s) € Q°, and (2, s%) € Q°, we have
tt=z+ @t —z)=az+dr, sT=s+(s" —s)=s+ds. (2.5)

Substituting the above expression into the potential function F'(x,s), it is easy to derive that

) _ n + +

F(zt s F q(a: ) w _ :U_Z S_Z

(5%) = Flass) = (04 lop( 7 =0 = S ton -+ 109 )
g(a®) —w . -1 -1
=(n+ p)log( @) = ) Z(log(l +x; dx;) + log(1l + s; “ds;)). (2.6)

i=1

On the other hand, if set A = ¢(z) —w,g = g(z) = Hx + ¢, and (dz,ds) is very small, then
from the definition of ¢(x) and (2.5), it is clear that

(q(z™) — w) () —w + 2de’ Hdw + g" dx
log =log
q(z) —w q(z) —w
=log(1 + %(%dazTHd:U + gldr)) < i(ldazTHd:U + gldz). (2.7)

Furthermore, if || X ~'dz||? +||S7'ds||? < a? < 1, and set § = Hz + ¢ — nAﬂ)X_ e, then it
follows from (2.6)-(2.7) and the proposition 3 that

n+p, 1. o A poy o?
H %
A ( dx” Hdzx + § +pe S d8)+(1—a)

Now assume that (Hy, Hy) is a regular splitting of the matrix H, then the following quadratic
programming problem(BQP) with an ellipsoid constraint is introduced in order to achieve a
potential reduction.

F(zt,s%) — F(z,s) <

(2.8)

1 A
min @(zx,s) zﬁdeHlda: + gl de — n—_'_peTS_lds (2.9a)

st || X tdz|]* +||Sds|]P <o’ <1, dx+ds=0. (2.9b)

Assume that (dz,ds) is an optimal solution of the BQP problem, and A denotes the Lagrange
multiplier associated with the ellipsoid constraint. Let p, = —AX 'dz, p, = —\S lds.
Thus, one can see that

1PI1* = 1lpal* + llpsl* = X (| X~ dar][* + |5~ ds||*) = Aa”.
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where pT = (pI, pI'). Obviously, it follows from the above relation that ||p|| = A\a, A= HTH
This gives the conclusion(it will be shown in the next section)
n+p a? n + p
Flat %) - Fle,s) < " Lafpl| + 2 = —a(" L)) - -2,

Clearly, it is desirable to choose a suitable parameter p and a such that the potential

function is reduced by a constant at each iteration. A regular splitting and potential reduction

algorithm can be constructed from starting point 2° = s = %e and an iterative sequence

(z*, s*) is generated by solving the problem BQP, then one can easily show that

2 —w n o ok
F(a*, s*) — F(a°,s%) = (n+p)log(%) Z(log 0 + log 0)

If gg 3 < ¢, then one can directly derive that £ (z )l L < qE.:: ;Je < ZEZO; g < €. This means
that (2%, s*) is an e-minimal solution. Therefore, 1t is easy to see that if F/(z*, s*) — F(2°,s°) <
(n+ p)log(-: —2nlog(1++/2n) holds, then (z*, s¥) is an e-minimizer for the QPB problem. Thus,

it is hopeful that if @ = 1 and nA—THPkH > 3 holds at each iteration, then an e-minimizer for

the QPB problem can be generated in the number of O((n+ p)logt +nlog(1++/2n)) iterations.
Thus, a regular splitting and potential reduction algorithm can be described as follows:
Algorithm A:
Assume that choose parameters p +n = (2”+f), a = z,and € € (0,1) and (Hq, H») is
a regular splitting of matrix H, and that 2% = s = e € Qi 1s a given initial vector. Calculate

q(2°) and lower bound value w. Let k := 0, then carry out the following steps.

(i) Compute q(z*). If Q( ) 2 < ¢, then terminate and (z*,s") is an e-minimal solution for
the QPB subproblem; else go to next step.

(ii) Solve the BQP subproblem. If nA—THP’cH < 2, then terminate and (z*,s*) is an e-KKT
solution for the QPB problem; else, go to the next step.

(iii) Let %! = 2% + do¥, %! = sk 4 ds* and k := k + 1, return to the step (i).

It follows from the construction of the algorithm that the main computational work is from
solving the BQP subproblem at each iteration.

3. Complexity analysis of the algorithm

This section deals with the complexity analysis of the algorithm A defined in the previous
section. For the purpose, several lemmas are described as follows.
Lemma 3.1. Suppose that (z,s) € 2°, a = i and (dz,ds) is an optimal solution of the

BQP problem, if “£2||p|| > 2, then
5
F(zt, st) - F < —— 31
(%, 5%) = Flas) < -2 (3.1)
Proof. Assume that (dz,ds) is the optimal solution of the BQP problem. Thus, it follows

from the 1-st order optimality conditions of the BQP problem that there are A and § € R"™ such
that

A
Hidz + Hr +c— ——X e — g+ A\X"2dzr =0, (3.2a)
n+p
- S™le — g+ AS%ds = 0, (3.2b)
n+p

|| X~ dz||® + ||S~ ds|)? < o? (3.2¢)

dr +ds =0, (3.2d)
)

Ma? — ||X~tdz|]? — |S~Yds|) =0, A >0, (3.2
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hold. Now multiplying both sides of (3.2a) and (3.2b) by dz!" and ds’, respectively, and adding
the both sides of them together, then from (3.2d)- (3.2e ) it gives that
1 A A 1
—de"Hydr + (Hx + ¢ — ——X'e)Tde — ——e?S7'ds = ——da" Hydzx — \a®,  (3.3)
2 n—+p n+p 2

From (2.9) and (3.3), and the regular splitting of the matrix H, it is easy to show that
2

F(zt,s7) - F(z,s) < nTH[—%d:UTHld:U —Aa? + %meHgdw] + loi "
RV %dwT(Hl — Hy)da] + 1O:2a . _”Tﬂmz N %
o[- 0) + =] = a2l + ). (3.4)
since ||p|| = Aa.. If ZE2||p|| > 2 and a = 1, then it is clear that
Fle*,57) = F(a,) < (-2 4 3) =~ X o5 = — 22,

which proves the conclusion of the lemma.

Remark: From the formula (3.4), it is clear that the semi-positive definiteness of the matrix
(Hy — H>) can also guarantee the value of the potetial function is reduced by a constant at each
iteration.

Lemma 3.2. Assume that A € R™*™ and r > 0 is given scale, and let d(r) be the minimizer
for the following problem

1 ,
min q(d) = 5dTHd+ cl'd, st. Ad=0, ||d||*<r®

Then ¢(0) — ¢(d(r)) > (%)*(¢(0) — ¢(d(R))) holds for 0 < r < R.

Now we consider the following quadratic programming problem

min (g(a) — a(*)) = 5(z — ) H(z ~ %) + (&~ 2°)

DN | =

st. (z—2")+(s=5") =0, [[(z—2")|*+]l(s = s°)I* <
Assume that (Z, §) is the minimal solution of the above problem, and let

w = (") — 2n(q(2°) - q(2)), (3.5)
then w < l.. From the Lemma 3.2, it is straightforward to show that the above inequality is

true.
Lemma 3.3. Suppose that p+n = w and w is chosen as in (3.5) and a = % in

condition (3.2), if ||pF|| < ;3%, then #*+! = gk 4 dak, sF1 = sF 4 ds* is an eKKT solution
for the QPB problem.

Proof: It follows from the first order optimality conditions of the BQP problem and the
definition of ||p*|| that

A A
k k k k k k_oyky=1, = k k
= X"(H d H. - — (X — (X)) = X u(Ag) —
P = X (o +do¥) + Hyah + = S (0 e ) = Xhuln) - S,
A A
k k k_roky—1, _ - k- k
— §F(— 2 (S%) e — (M) = —SFG(h) — .
ps (a0 e v ) = e
where u(\y) = Hy (2% + dz*) + Hoz® + ¢ — §(\g) = HizF T + Hozk + ¢ — ().
By the assumpti0n||p’“||<nA—_i_’°p,which implies that nA—T||pk||<1. Namely,
NP k2 — (P2 k2 k2
LAY = L2k + 1 )
n+ n+ _
= 152X u() — el + 1| - L8 g0) — el < 1. (3.6)
Ak Ak
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Since X* = diag(z*) > 0, S* = diag(s*) > 0, from (3.6), it is easy to derive that
w(A) = Hy (2" + da*) + Hoa® + ¢ — g(h) >0, —5(A) > 0.

If set y(Ar) = —F(Ax), then the above formula can be rewritten as
w(Ae) = Hy(z" + da®) + Hyx* + c+y(A\) >0, y(Ae) > 0. (3.7)
By the above relationship it is easy to verify that
NP e MED ntp (@) | e @0
orF || "Fx — —
L2 = Xk - (B My (222 el
n+p o ot O)TyOw) ot p (8M)Ty)
HIIPELE Sty () — () SRy (LTI g
e e @) e @)U
1L () — () S e () SR
ntp ey e )Ty e e () Ty()
I st g0n) - (LI e (2 I,
(n + p)(@*)Tu(\e) 2, (P () Ty () 2
> _ _
| R RTI — gfp ERITYA
(n+p) @) Tuk) ()T R)
> - -1
>n| WAy 1" +n| WAL 1]
By the above formula and (3.7) one can see that
kT k\T
P N )Yy L (L,
nAy nAy n VLD

Thus, it is straightforward to derive that
2n —/n < (@) Tu(Ng) + (s¥)Ty(A\g) < 2n +/n
n+p Ay = n+p
On the other hand, it follows from the definition of the algorithm A that z**! = z* + dz* >
0, s*T1 = s¥ + ds* > 0. So, one can see that
wirt = (@ Tu)+ Ty () = (@97 (X5 LX u() + (55)7 (%) 1S5y (Ap)
<INEF) TR @) Tue) + (16S)7HSHHH (%) Ty ()
<L+ a)((@)Tul) + (M) Ty(A)) < 2((=")Tu(he) + () Ty (W)
From the above relationship and (3.9), we have

wisr _ 2@ Tu0w) + )Ty _ 2@n+ Vi) _ e
AV Ay -~ n+p T 2n
This gives n + p = M, which will guarantee that (!, s¥*1) is an e-KKT solution.
Obviously, it follows from the definition of e-KKT solution that
WE+1 WE+1 WE+1 WE+1
— = - —). 3.9
el S @ S @) @ g - a@) 39
Moreover, by the above formula, the conclusion of Lemma 3.2 and (3.5), one can derive that
We+1 _ Wk+1 < €
Ap  q(@¥) = q(2%) + 2n(q(2°) — q(2)) ~ 2n

(3.8)

Now if g(z*) < ¢(2°), then Feehi2iey < Eo— s enaE @ S 2n o150
Wk+1 Wk+1
2n(q(z*) — q(2)) ~ 2n(q(z*) — q(2)) — (2n —1)(q(z*) — q(=°))
_ WE41 < €

q(2*) — (@) + 2n(q(2°) —q(2)) = 20’
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Both of them lead to uew_";r(lz) < e. From the above relationships and the definition of e-KKT
solution it is straightforward to show that (z**1 s#¥*1) is an e-KKT solution. This proves the
lemma.

Theorem 3.4. Suppose that H € R™ ™ is a symmetric matrix, (H;, Hs) is a regular
splitting of the matrix H, and that w and p are chosen as in algorithm A, respectively, a = %,and
the sequence (z*, s¥) is generated by the algorithm A. Then the number of total iterations to
generate an e-minimal or an e-KKT solution for the QPB problem is bounded by O(@log% +
nlog(1 + +/2n)).

Proof. This theorem is an immediate consequence of lemma 3.1 and lemma 3.3.

4. Solving the BQP subproblem

This section describes how to solve the BQP subproblem and analyzes the complexity bound
on obtaining an approximate solution. It is clear that computing the optimal solution of the
BQP subproblem is equivalent to solve the system of equations (3.2). It may be difficult to
solve (3.2) exactly, but an approximate solution can be generated to guarantee the lemma 3.1
and 3.3, and theorem 3.4 hold. First of all, Subtracting (3.2b) from (3.2a), and by (3.2d), it is
easy to derive that

A
[(Hy + MX ™2+ S )]de = —[Hx + ¢ — n—ﬂ)(x—1 —S7He]. (4.1)
Since it is trivial when A = 0, we assume that A > 0 and H; = diag(hy,ho,---,h,), and
let ¢ = [Hz + ¢ — nAﬂ)(X_1 -8 Ye], Z = X72 + 572 Thus, by (4.1) and (3.2d) one
can see that dr; = —p—t, ds; = 5. It follows from A > 0 and (3.2e) that
|| X tdz||? + ||S~'ds||? = a®. The above relationships imply that

n — n

_ —2 —2 & o c o
SN = (| D (2% +; s el Zizi(hz—li"+)\)2 a=0. (4.2)

i=1 =1

Now the main point is how to generate a suitable A > 0 such that (4.2) holds.
Lemma 4.1. As the assumptions as in Theorem 3.4, and let Ay, = g(z*) — w, then

0< A\ < 17Ay. (4.3)

Proof. Tt follows from the definition of the function ¢(z), the algorithm A and (3.3)-(3.4)
that

1
q(z) — q(z) zideHd:c + gldx

1 A
=— 5da;T(H1 — Hy)dx + —. peT(X’ld:U + S7tds) — Ao (4.4)

This gives

. 1
Aa? = q(z) — q(zT) el (X Yz + S tds) — id:cT(Hl — Hy)dx

n+p
< qz) - gla™) + —o—eT (X 'dz + 5~ 1ds)

n+p
A
< —q(z™) + X~dz|| + ||S™ds|]) < —q(zt) + ——/nv2na.
< a(@) = g(@) + el (X def] + 157 ds]) < ale) = q(a™) n+p\/ﬁ na
From the assumption that g(z) — q(z7) < ¢(z) —w and n + p = w , it is clear that

A< (ge) —w)(= + Mﬁ) < (a(w) = w)( 5 + %»
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Since € is very small and n > 2, and o = %, set A = Ay, A = )\, then, it is easy to see that
0 < A < 17Ay, which proves the lemma.
Now we try to estimate the computational work to obtain the solution of the equation (4.2).

hi; n

_ 2
First of all, if set a; = \;—;—i, by = 7+, and let A=/ (b,i—l>\)2 it is not difficult to verify
that

W) 12 af _ Lsn_d
dv 2 A =i+ A (b + A T

Therefore, ¢(A) is a monotonic decreasing function on [0,00) and limy_, o ¢(A) = —a. Thus,
a bisection method can be used to search the root of the equation (4.2) while A € (I,u) since
[,u can be obtained from (4.3). There is no doubt, there is an unique solution of the equation
(3.2) for given (z*, s*) at the k-th iteration, namely, (dz*, ds*), A, 7* solve the equation (3.2).
Actually, it is not necessary to solve the equation (3.2) exactly, one can try to find an approxi-
mate solution A for a given € € (0,1), and if A is chosen as the rightend point of the bisection
interval, then it is obvious that

0<A— X <& (4.5)

Moreover, it is easy to show that such A can be obtained in log (“;l) bisection steps.

Now an algorithm B is described to generate an (zF*!, s¥*1) is either an e-KKT solution for
the QPB problem, or a solution such that potential function F'(z, s) is decreased by a constant.
Algorithm B:

Assume that € = T

Tﬁ_’;)a = 4n(2$ii/ﬁ)a7 and A\ = 8.5A;. Let ¢;, ¢; and p; denote the values
of ¢(u;), p(u;) and p(u;) associated with \?, respectively, and [;, u; denote the left endpoint and
right endpoint of the bisection interval(lp = 0,uo = 17Ag), 6; = u; — l;, i:=0, then carry out

the following steps.

(i) Compute p; and 0;. If ||p;]] < (nATkp) and 0; < €, then terminate; else, go to next step.
(i) If p; < —% and ¢; < €, then terminate; else, go to next step.

(111) If gf),' > 0, set li+1 = )\i,u,-_H = U,i,)\i+1 = )\z + 0.5(Ui+1 — li+1); else, set li—i—l = l,-,ui =
AL =100+ 0.5(uiry — liy1), and i := i + 1, return to (i).

Lemma 4.2. Assume that (z*,s*) is an interior point of Q,n + p, a, and w are chosen as
in algorithm A, and that the equation (3.2) is solved by the algorithm B and A is chosen as the
right endpoint of the bisearch interval. If the algorithm B terminates at step (i) or (ii) then an
approximate solution (z* +dz()), s¥ +ds())) is either an e-KKT solution for the QPB problem
or a solution such that the potential function F(z,s) is decreased by a constant.

Proof: Let A be the right endpoint of the interval generated by the algorithm B, then Ax < .
Assume that the algorithm B terminares at step (i), and (dz(\),ds(\)) is the solution of the
equation (3.2) associated with A, thus, |[(X =2 + S~2)dz()\)|| < a since A\ < . Therefore, it is
easy to see that
Ay

(n+p)

Moreover, it is clear that z¥ + dz(\) > 0,s* + ds(\) > 0. It follows from lemma 3.3 that
(z* + dz(N), s* + ds()\)) is an e-KKT solution for the QPB problem.
On the other hand, if the algorithm B terminates at step (ii), then we have

P = AlI(X* + S ) de (V]| < @) <

(p)\(x, S) = P (iU, S) + ((p)\(.’L', S) - P (;L', S)):
and it is not difficult to verify that

1 1
oz, s) — pa, (z,8) = ideHlda: + gl dx — i(d:l?k)THld:Uk + gt da®

1
= 5(Hldgg + 9)  (dx — da*) + 2 (Hydz® + §)T (dz — da®),

1
2
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where § = Hyz + ¢ — ﬁ()(*1 — S71e. From the formula (3.2), one can see that

A A
ox(z,s) — pa(T,8) = —§d:cT(X_2 + 87 (dz — dz*) — 719(d:ck)T(X_2 + 87 (dx — dz*)
1 1
= —5(,\ —Ap)a? — 5(A —\p)deT (X2 4+ S7)dak < éa®. (4.5)
It follows from the step (ii) of the algorithm B that 0 < A — X\ < € and p; < —%.
Furthermore, from (3.4) and (4.5) we have
A aA
= _ < — k QL < _ k
(p)\(:U,S) P (ZL“,S) + ((p)\(:U,S) Pk (:U,S)) = Oé||p || + 4(’Il +p) = 2(n +p)
Then, it is straightforward to show that |[p¥|| > -22t-. From the definition of the algorithm

4(n+p)
we have z¥ + dz(\) > 0,s% + ds(A) > 0, and a = §. Thus, we have

2
F(2* + dx,s* + ds) — F(z*,s%) < _2antp)

2
& o} 1

< ——.
a - 24
This proves the conclusion of the lemma.

Now it follows from the conclusions of the lemma 4.1 and 4.2 that if € is chosen as in
algorithm B to generate an (z¥*!, s¥*1) is either an e-KKT solution for the QPB problem, or a
solution such that the potential function F'(z, s) is decreased by a constant. Then the number
of total bisection search steps to obtain such solution (z¥*+1, s*1) is required by O(log% +logn)
at each iteration, and it is only necessary to calculate the value of the function ¢(A) for a
given )\ at each bisection step. Furthermore, if H; is chosen as a diagonal matrix, the cost
of each bisection step is O(n) arithmetic operations for computing ¢(A) . Thus, in order to
obtain an (zF*+1, skT1) such that either the potential function F(x, s) is decreased by a constant
or (zF*1 s¥*1) is an e-KKT solution for the QPB problem, the total arithmetic operations is
bounded by O(nlogn + nlog%) for the given (z*,s*) and € In addition, by the formula (4.3),
the cost of computing Ay, ¢ is O(n?) arithmetic operations at each iteration.

Now one can immediately have following conclusion.

Theorem 4.3. As the assumptions as in lemma 4.2, in order to generate an (z*+!s**1) such
that either the potential function F(z, s) is decreased by a constant or (zF*1, s¥1) is an e-KKT
solution for the QPB problem. Then the total running time is bounded by O(n(n—f—logn—l—log%))
arithmetic operations at the k-th iteration.

From the conclusion of the theorem 3.4 and 4.3, one can directly see the following conse-
quence.

Theorem 4.4. As the assumptions as in theorem 3.4, and € is chosen as in lemma 4.2, then
the total running time of the algorithm A is bounded by O(n?(2log* 4 logn)(n + logn + log?+))
arithmetic operations.

In some cases, we may previously know the global minimal value [, of the QPB problem,
then it is not necessary to compute the value w. one can choose n + p = 4(2”7?‘/5) and the
complexity bound can be reduced by a factor n.

From the algorithm B, one can easily revise the algorithm A and have a new algorithm.

The author would thank referees for many valuable comments and suggestions.
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