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Abstract

In this paper, HFEM is proposed to investigate the circular arch problem. Optimal error
estimates are derived, some superconvergence results are established, and an asymptotic
exactness posteriori error estimator is presented. In contrast with the classical displacement
variational method, the optimal convergence rate for displacement is uniform to the small
parameter. In contrast with classical mixed finite element methods, our results are free
of the strict restriction on h(the mesh size) which is preserved by all the previous papers.
Furtheremore we introduce an asymptotic exactness posteriori error estimator based on
a global superconvergence result which is discovered in this kind of problem for the first
time.

Key words: HFEM, arch, superconvergence, asymptotic exactness, posteriori error estima-
tor

1. Introduction

Homotopy Finite Element Method(HFEM) is a new finite element method, but it’s idea
can be traced back to 1983 with M.Fortin. R.Glowinski’s pioneering work[30], thereafter,
D.N.Arnold[1] extend this method to shell problem using mixed finite element method. Tianx-
iao Zhou[23] applying this method to beam and Reissner-Mindlin plate model has been attained
success. This method has been used by us to overcome the locking phenomenon of arch beam
models recently [16], furthermore we had used the same idea to difference approximation of a
nonlinear fluid bed model in some a different form [14]. Now we introduce this method in an
abstract framework.

Assuming L is a differential operator, We consider the following Dirichlet problem:

Lu=f inQ u=0 onT

Q is a bounded open domain with Lipschitz-Continuous boundary I' for this Dirichlet problem,
we consider its variational equivalent form:
Find v € U such that

a(u,v) = (Lu,v) = (f,v) YoeV
a:UxV =R

where U,V are Banach spaces, It’s evident one Dirichlet problem has not one variational-
equivalent form [28]. Assuming this problem has another variational-equivalent form:
Find u € U such that

b(u,v) = (Lu,v) = (f,v) Yv eV

b:UxV =+ R

* Received.
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Now, we can consider the homotopy form of a (u,v) and b(u,v).
H(t;u,v) : [0,1]xU xV - R
H(t;u,v) = (1 — t)a(u,v) + tb(u,v)

Thus we have a new variational problem:
Find v € U such that
H(t;u,v) = (f,v) YoeV

The homotopy variational form is a triliner form with a parameter t besides the two primal
variables. There are many parameter-dependent models in beam, arch, shell problems, the pa-
rameters usually are the proportion ratio of thickness and the length of beam, or the thickness
of the arch, or the mid-thickness of the shell. The small parameter is the main source of locking.
This kind of locking phenomenon results from lacking of K-ellipticity or having difficulty in ful-
filling the Babuska-Brezzi condition. Homotopy variational principle is to construct a homotopy
between two variational forms. Tianxiao Zhou and D.N.Arnold have shown the new variational
form could not only enhance the K-ellipticity but also help to fulfll the Babuska-Brezzi condi-
tion. In most mechanical problem enhancing K-ellipticity is of most momentous. The method
presented in this paper is a panacea to problem lacking K-ellipticity in some sense. We must
remark that in most cases, the form H (¢;u,v) is not the real homotopy-form as defined in [27],
especially in the variational principle lacks symmetry, more precisly it is only a homotopy-form
in essence but not in form, this will be presented in this paper.

The circular arch model presented in this paper based upon the Timoshenko-Mindlin-
Reissner assumption. The Timoshenko-Mindlin-Reissner assumption is the basis of the gov-
erning equations for this model. The key feature of this model is that the shear strain is not
neglected, this assumption imposed in this kind of problem is a two folds swore, the applicable
of this theory to the problem in which the thickness is not small on the one hand, but on the
other hand it becomes the source of locking. For the locking phenomenon of this type, some
analyse have been performed in [16,17].

A series of papers have been contributed to analyse the finite element approximation of this
problem. In [2] Arnold.D.N. investigated the beam model and derived the sharp estimates,
furthermore he introduced one approach to analyse this kind of problem, namely he proposed
a mixed method for little parameter problem. Thereafter Kikuchi.F[9,10] carried out a detailed
analysis in arch model, in [9] he analyse a arch model without shear deformation, in [10]
the asymptotic expansion in terms of d(the little parameter) is presented. Recently Zhimin
Zhang[25], Loula.F.D [11], Reddy.B.D.[17] presented several mixed finite element methods for
these problems, optimal error estimates uniformly to the little parameter are obtained under
some restrictions. In all these restrictions the restriction on the h(the mesh size) is common and
that in [25] is the weakest. In [16] based on HFEM, a new variational problem is introduced
to analyse the model in [25] and the uniform error estimate is obtained without any restriction
on h. However the model in this paper is not the same with [25], it is the model in [11] and
like the model in [17], but it is more intricate in equation and variational principle, especially
it’s variational principle lacks symmetry. First we introduce a new variational principle instead
of the non-symmetry form in [11], Secondly as in our previous paper [16] a new mixed finite
element approximation is presented by using the idea of HFEM is presented. We point out that
our methods can extend to the model in [17] without any diffculty.

In this paper, HFEM is proposed to investigate the circular arch problem. Optimal error es-
timates are derived, some superconvergence results are establishd, and an asymptotic exactness
posteriori error estimator is presented. In contrast with the classical displacement variational
method, the optimal convergence rate for displacement is uniform to the small parameter. In
contrast with classical mixed finite element methods, our results are free of the strict restriction
on h(the mesh size) which is preserved by all the previous papers. Furtheremore we introduce
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an asymptotic exactness posteriori error estimator based on a global superconvergence result
which is discovered in this kind of problem for the first time.

The structure of the paper follows. In section 2 we introduce the circular arch model and all
kinds of variational problems including primal variational problem, mixed variational problem
and homotopy variational problem. In section 3 we consider the finite element approximation of
the homotopy variational problem. In section 4 two type superconvergence results are derived,
In section 5 a global superconvergence is presented and an asymptotic exactness posteriori error
estimator is proved via the global superconvergence results.

2. Circular Arch Model and Variational Problem

1. Circular arch model

We conside a clamped arch model. The unilaterial case has been considered and alayzed
in [5]. This uniform arch of length L, radius R, cross-section A, moment of inertial I, Young’s
modulus E, and shear modulus G, are subjected to a distributed load F = (fy, fu, fs)- We
denote by Us = (u,v,w)t, s € [0, L], the vector generalized displacements, where u,v,w are
tangential displacement, the transverse displacement, the rotation of the cross-section respec-
tively. The stress resultant field is N(s) = (N, @, M), where N,Q, M are the axial force, the
shear force, the bending moment respectively.

The arch problem considered here is described by the two differential equations.
-equalibrium equations.

L o
SR =f ©)
o=, ®
constitutive equations
Y (4)
At B E 00 )
et 2o (6)

Where k is the shear correction factor. We shall consider the clamped problem. So these
equations have homogeneous boundary conditions.

u(0) =0=wu(L) (7)
w(0) =0 = w(L) (8)
$(0) =0=®(L) (9)
To explicate the dependence of this problem on a small parameter, we set €2 = A1L2. From

physical meaning we have € < 1.
We introduce some new variables to nondimensionalize this problem.
w w

U1=z UQZE U3:¢ (10)

_ NL? QL ML )
Y=g TR T TEr
L3 L3 L2

[ O =1 (12)

ET ET 5T EI
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We have the following non-dimensional form.
Find ’LL(:L‘) = (’LL1 (1‘), Uz (1‘), u3(x))T7 w(a:) = (’LU1 (1‘), w2 (1‘), w3 (m))t> S (0) ]-) SatiSfyingv
-equilibrium equation

—w) — Awa = fi (13)
—wh + Awy = fo (14)
—wy —ws = f3 (15)
-constitutive equations

—wy +u) + Aug =0 (16)
—pe®wy +uly — Auy —uz =0 (17)
—ws +uy =0 (18)

with boundary conditoins:
u1(0) =0 =wuy(1) (19)
u2(0) = 0 = ua(1) (20)
us(0) = 0 = ug(1) (21)
where x = +,u = %,/\ = %. we assume A > 0 to exclude the degenerate case A = 0

corresponding a straight beam. For convience we assume pu = 1.
We are now in a position to introduce the variational form of this problem, for the simplicity,
we introduce some matrices.

e 0 0 d £ X 0
2 d
E=|0 € 0 L(—)=| -x &£ -1
dz ’”
0 0 1 o o 4
d
0 -1 -4

L? is the adjoint of L.
Now we can rewrite (13)-(15), (16)-(18) in a more compact form.

L*(%)w =f (22)
Ew = L(%)u (23)
u(0) =0 =u(1)

2. Prelimilary
Let us denote J = [0, 1] and define

U= H&(Oa 1)37 W = L2(07 1)37

1
(u,v) :/ uvdz
0

where v € U and v € U and u,v = (u1,v1) + (u2,v2) + (us, v3)
lully = [lu'[| - Nlull* = (u, )
Wkp(.J), H}(J), is the usual sobolev space [26].

From Poincare inequality we know that the norm || - |7 is equivalent to norm || -||;. We define
U~! the dual space of U, and define the negative norm || - ||_;.

1flls = sup LY

uwelU ||u||U
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It is well known that the classical displacement finite element method is based on the
following variational formulation:
Problem (P):Find u € U such that

d d
() = (B LCyu, L) = (f,0) Vo el (24)
If we denote the associated norm |jul|c = ac(u,u)?, we can prove that ||| - ||| is an equivalent
norm of || - ||y. The skill used here is developped by P.G.Ciarlet [7], we omitte the proof. Onc
can refer Zhimin Zhang [25].

Theorem 2.1. There exists a constant a > 0 independent of € such that

llullle = eflully Vue U (25)

If we rewrite (25) in a more explicit form we have corallary 2.1.
Colloary 2.1. Denote a; (u,v) = (L(-1)u, L(-L)v), then there exists a constant v > 0 such
that
ar(u,u) > Alully, VueU. (26)

By Theorem 2.1 and Lax-Milgram theorem, we have the following theorem.
Theorem 2.2. Let f € U™!,0 < € < 1, there is a unique v € U such that

ac(u,v) = f(v) YveU (27)
Moreover for kK = 0,1, - -, there exists a constants Cj depends only on £ such that
lllers + €2 luy + Muzlle + €[ Aur — up + uslle < cxll fllk-1 (28)

We put off the proof of (28) after we introduce the mixed variational principle.

First we introduce a new mixed variational formulation which differs from it’s counterpart
in [11]. We will split the matrix F into two parts: F is the e-dependent part and S is the
e-independent part.

e 0 0 0 0 O
F=10 € 0 S=10 00
0 0 0 0 0 1
and the matrix L is splitted into C, D.
<X 0 000
C=1 =\ % -1 =1 0 0 O
0 0 0 00 4

Now we introduce the mixed problem.
Problem M: Find (u,w) € U x W such that

a(u,v) +b(v,w) = (f,v) YvelU (29)
b(u,7) — (I = S)w,(I = S)1) =0 Vrew (30)
where the bilinear form a : U x U - R,and b: U x W — R are:
a(u,v) = (uy,vy) = (Du, Dv) (31)
b(u,w) = (Cv, (I — S)w) = (v] + Avg,w1) + (—Avy + vy — v3,ws) (32)

For this mixed problem, we have the following theorem. Firstly we state the remarkable
theorem of D.N.Arnold [2,Theorem 5.1] for the later’s use.

Theorem 2.3. Let V, M be Hilbert spaces, let a:V xV — Rand b:V x M — R be
bounded linear form, and € € (0,1), e < 1, if the following conditions are fulfilled:
1)a is a symmetric and positive semidefinite bilinerform.
2)there exists ¢; > 0 such that for all z € {v € V|b(v,w) = 0,Vw € M}
Cra(z,2) > ||z
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3)there exists ¢z > 0 such that for all w € M there exists v € V with Cyb(v,w) > |jv||v||w]||ar-
Then for each pair (f,g) € V! x M !, there exists a unique pair (u,w) € V x M such that

a(u,v) + b(v,w) = (f,v) YveU (33)
b(uvy) - ez(w,y) = (g)y) Vy eEM (34)
lullv + llwllsr < CUfllv—2 + llgllar—1) (35)

where C' is independent of e.

Lemma 2.1. There exists C; > 0 such that for all v € {v € Ulb(v,w) = 0,Yw €
MY}, Cra(u, u) > [Jul?,
This lemma is almost the same as the lemma 2.1 in [25], where A = 1 is proved, this verifys
the condition (2) of theorem 2.3. Condition (3) can also be verfied by the same trick used in
[25], we will prove a more general case later. Applying theorem 2.3 we obtain the existence,
uniqueness results of problem (M), more pricisely, there exists a unique solution of (M) such
that

llully + [lwll < Cli £l (36)

from (30) we have w; = e ?(u} — Auz), ws = € 2(Au; — uh + u3), substitute these two into (36),
we have
lully + € 2[lu) = Mol + €[ Aur — uh +usll < ClIfll-1 (37)

Using (37) and induction method, we obtain (28).

3. Homotopy variational problem

From the bilinear form a(u,v) and the proof of lemma 2.1[25], we will find it lacks K-
ellipticity. To enhance it’s K-ellipticity, Loula etc in [11] introduced a Prtrov-Galerkin method,
their variational principle differs to ours. In fact our mixed variationed principle is superior to
theirs’ at least in light of symmetric.

In contrast with Loula’s non variational principle approach, we will present a new variational
principle under the name of Homotopy variational principle, we will find later our method
enhancce it’s K-ellipticity in a more nature way.

Problem (H): Find (u,w) € U x W such that

(I — M)E *Lu, Lv) + (M Du, Dv) 4+ (Cv, M(I — S)w) = (f,v) Vv eU (38)
(Cu, M(I — S)7) — (I = S)w,M(I —S)T) =0 Vrew (39)
where I denotes the unit matrix.
1—aqe
M = 0 1—ase? 0
0 0 a3

Where «; € [0,1],¢ = 1,2,3, are given as stabilized factors of new type. (38), (39) is
equivalent to equations of (22), (23). In fact, we construct a homotopy of the primal variational
principle and the mixed variational principle. To see this more clearly, we rewrite the mixed
variational principle as follows: Find (u,w) € U x W such that

B(u,w;v,7) = (f,v) V(v,7) e UxW (40)

where
B(u,w;v,7) = a(u,v) + b(v,w) — b(u, ) + (I — S)w, (I — S)7)

To construct a homotopy of ac(u,v) and B(u,w;v,7), we introduce a donation. If M is a
matrix of 3 x 3, we denote M*(u,v) = (Mu,v), where (u,v) is defined as before, we can show
our new variational principle is the homotopy variational principle of (24) and (40) in the sense
of * donation.

H(M;u,w;v,7) = (I — M) % a.(u,v) + M x B(u,w;v,T) (41)
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So we have a variational-equivalent problem: Find (u,w) € U x W such that Problfm (H):
H(M;u,w0,7) = (f,0) Y(v,7) €U x W (42)

It’s easy to see this variational problem can rewrite as a mixed variational problem as follows:

Problem (H): Find (u,w) € U x W such that
a(u,v) + b(v,w) = (f,v) YveU (43)
b(u,7) — (M - S)r,(I - S)w) =0 VreWw (44)
where @(u,v) = ((I — M)E~'Lu, Lv) + (M Du, Dv),b(v,w) = (Cv, M(I — S)w)
From another point of view for our variational form (43), (44), we will find the essence of the
homotopy variational principle is to replace the equilibrium equation with a homotopy-family

form of two different equilibrium equations.
Equilibrium equation 1:

d
L* —_— p—y 4
(Gw=1f (45)
Equilibrium equation 2:
d d
L*(—)E7'L(—)u = 4
(BT L u = f (46)

Based upon these two equilibrium equations, we have another equilibrium equation of
homotopy-family form. From (43), we have

(I = M)E™! Lu, Lv) + (M Du, Dv) + (Cv, M(I — S)w) = (f,v)
from equation (18) we have
(M Du, Dv) = (Mw, Dv) = (Dv, M Sw) = (Lv, M Sw)
note (Dv, M (I — S)v) =0 we have
(I — M)E *Lu, Lv) + (M(I — S)w, (D + C)v) + (Lv, MSw) = (f,v)
(I = M)E~*Lu, Lv) + (Mw, Lv) = (f,v)

namely
L*((I = M)E™'Lu + Mw) = f (47)

We can easily see that equilibrium equation (47) is the homotopy-family of the equilibrium
equation (45) and (46). This is the mechanical essence of the Homotopy Finite Element
Method(HFEM) for this problem.

From now on, we set a; = ap = = (1+€?) "}, a3 = 1. We can easily see ([ —M)E ! = M

Lemma 2.2. There exists C; > 0 such that for all v € V

Cra(v,v) > |lvll;
Proof. After a simple computation, we have
a‘(“)”) = aa(U,U) > %al(vvv)
from corollary 2.1 we have a;(v,v) > 7||v[|?. Set C; = %, the proof is finished.

Remark. We can find the K-ellipticity in our new variational principle is enhanced really,
since the K-ellipticity holds over the whole space U instead of only over the kernal space of
b(v,w) which is presecved by all the previous papers. In fact, In all the previous works the
proof of the ellipticity of the mixed problem is delicate for this kind of problem. By the way,
it is easy to see their trick of proving the ellipticity essentially depends on the one-dimensional
character. But our proof used here can extend to high-dimensional without any difficulty. We
will find the enhanced K-ellipticity plays an essential role in our discussion.

Lemma 2.3. There exists a constants Cs > 0 such that for all w € W there exists v € U
with

Cab(v,w) > [ollull(T = S)uw]
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Proof b(v,w) = (Cv, M(I — S)w), we set w = (I — S)w,w € L(0,1)?, Using the same trick
of [25]. we can prove that for all w € W there exists v € U and a constant ¢ such that
cb(v,w) > ||v||v||w]||, set Ca = ¢, the proof is finished.

If we set w = (I — S)w, W = (I —S)W, As a results of theorem 2.3, lemma 2.2 and lemma

2.3, we can also obtain the existence, uniqueness and regularity results of problem (H) as before.

3. Finite Element Approximation

We introduce some standard notations. Let A = {¢o,---,¢n} be a partition of (0,1),0 =
o < 1 < - < on = 1, J; = (¢j-1,95),L; = ¢j — ¢j-1,h = mazi<j<m{L;}, and the
partition is quasi-uniform. Denote P*,(A) the space of piecewise polynomials of order k which
are not continuous at nodal points.

Define P¥(A) = P* (A) N C°(J), PE(A) = P*(A) N HY, U, = PE(A)R, W), = PETH(A)3.
Define Ly projection I,y = Iz 1 (A), My : PF¥(A) — P*T'(A) we also have lollZn =

i=M .
22:1 (vk) Uk)Ji )

D= Zizg |[v]? - We consider the finite element approximation of problem

H.
(Hp): Find (up,wy) € Up x Wy, such that
a(un,v) + b(v,wy) = (f,v) Yv €U, (48)
b(up,7) — E(M(I - S)1,(I — S)wy) =0 V1 e W, (49)

In order to establish the existence, uniqueness and the error estimate of (Hyp), we must verify
all the assumptions of theorem 2.3. As U}, is a conforming approximation of U, we can establish
the Up-ellipticity as continous case does. For the condition (3), a special case is established
In [25], if we carefully compare the forms of b(v,w) in [25] and b(v,w), we can find b(v,w) =
(Cv, Mw) = a(Cv,w) = ab(v,w) in the sence of some parameter. So from [25] we find that for
allw € Wy, Wy, = (I—S)Wh, there exists v € Uy, and ¢(A) > 0 such that ¢(\)b(v, @) > |Jv||v]|D]|.
So

c(N)ab(v, w)

v

ac||v||ulw]]

\Y

1
> Sllollel

namely 2¢(A\)b(v,w) > ||v||z||w||. Now if we replace wy, Wy, by wy, Wy, in (48), (49), set C =
2¢(X), we have verified the conditon (3) of theorem 2.3. Now by virture of theorem 2.3 and the
routine of error estimates of mixed methods [3], we get the following theorem.

Theorem 3.1. Assume kM > 3, then problem H}, has a unique solution (up,wy) € Up % W
such that

lu—unlly +[[@ =@l < inf  ([lu—vlfv+ [ —7])
(v, 7)EUR X W},
lu—unlly +[|[(I = S)(w —wp)|| <c  inf  ([lu—ollv+[|(I-5)(w-7)]) (50)

(v, 7)EURL X W},
Theorem 3.2. Let u,u;, be solutions of (H), (Hy,) respectively, then there exists a constant
¢ independent of € € (0,1] such that
llu = upll + llu = upllo < k™| flle—1 (51)
Proof. From the approximation results of Uy, Wj,

inf Jlu— vlly < ch¥lfulless < Bl f ks
veUy

inf ||(I = 8)(w —7)|| < ch*[Jwllk < ch*||fllk—1]
TEWHL
and by theorem 3.1, we have
hilu = unllo < ch* Y flle—s (51)
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we use a dual argument for Ly-estimate. (48) and (49) yield
(w1, ws) = € 2(u) + Mug, —Aug + uly — u3)
(Why s Why) = € (U, + ATh—1Uhy, —ATh—1Upy + U, — Th—1Uny)
we define
wi = (67 (uh, + Auny), €2 (= Aun, + Ul — Ung ), Why)
Define an auxiliary problem: Find z in V' such that
ac(z,v) = (u —up,v) YveU

E=€e2Cx

where C' is the matrix defined as before.

from theorem 2.1, we have
12ll2 + [1€lls < ellu — ]
set v = u — up, in (55) then
l[u = unl® = ac(z,u — un) = aa(z,u —un) + b(u — up, €)
b(u —up, &) = b(z,w — wy,)
substitute (59) into (58)
lu — upl)® = aa(z,u — up) + b(z,w — w})
= an(z,u — up) + b(z,w — wp) + b(z, ws — w})
for any n € W,
b(z,wp, —wy) = € (&, M(I = §)(wp — w}))
= €& —n, M(I = S)(wp, — w}))
= €(E—n, M(I = S)(wp, —w)) + (€ =1, M(I = §)(w — w}))
in (61) we have used the projection property of m;_1
(n, (I = S)(wp —w})) =0, VneW,
and
(n, M(I = S)(wn —wy)) =0, VneW,
substract (48) from (43) we have
Ao (U —up,v) + bv,w —wy) =0
Substitute (61),(62) into (60) we then have

lu — up||* = aa(u —up, 2z —v) + b(z — v,w — wp,)

+e(§ =, M(I = S)(wn = w)) + (& =0, M(I = S)(w —wy))  Y(v,n) € Up x Wy,

lu —upl® = (vn)eianfo [aa(u = up, 2 = v) +b(z — v, w — wy)
) h X Wh

+e2(€ =1, M(I = S)(wn — w)) + € (€ —n, M(I = S)(w — w}))]

< alu—wup,z—v)+ ||z —v||v]||lw — wl|
+e2[€ = nlllM (I = S)(w — wp)|| + €[|€ = nl|M(I = S)(w — wy)|]
< c(llu—unllo + [[MT = S)(w —wa)[)([|z = vllv + 11§ —nll)
< ch(llu = unllu + [[M(T = S)(w —wh)[[)([|zll2 + [I€]]1)
< o inf (=l + 10 - S)w =zl + lelh)
< chh¥|| fllk-1llu — ual|
< DM Flleallu = wal|

(61)

(62)

(63)
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lu = unl < A | fllx—s (64)
combining (51’) and (64) we have (51).

4. Superconvergence

In this section, we will point out our methods have point-superconvergence properties, in
addition, we will establish a global superconvergence result. The point-superconvergence is
of two kinds. One is the displacement at the nodal points, the other is the gradient of the
displacement at the Gauss points. '

We introduce some notations and lemmas. (u,v)* = EE;M(U, v)%;

((u,v)ji)* = ll E;z{( ’U,(Gi]')-U(Gij)wj Here Gij = gbi,l-l-liGj,j = ]., e ,K,i = ]., Tty M, G]'
is the j-th Gauss point in [-1,1] interval, and w; is the associated weighs j =1,---, K.

lull® = V(u,u)* |ulf = V/(u/,u')*
a*(u,v) = (u] + Aua,v] + Av2)* + (=Aur + uh — ug, —Avy + vy —v3)* + (uh,vs) (65)
To prove the superconvergence results, we need the following lemma [8].

Lemma 4.1. For any u,v € V¥ (A), (7_1u,v) = (u,v)*
We can write problem (P) in a more compact form

a(u,v) = ac(u,0) = (@ £,0) (65)
(Don’t mix the a(u,v) here with that in the mixed problem.)
(Hu',v") + (Au,v") + (Bu,v) = (2 f,v)

100 0 20 0
H=| 01 0 A= =22 0 -1
0 0 ¢ 0 1 0
A0 A
B=|0 X 0
A0 1

Clearly H is a symmetric positive definite matrix, A is a skew symmetric matrix and B is a
symmetric semi-pisitive definite matrix.

Lemma 4.2. If we denote s the minimum eigenvalue of H, then s = €2, If we denote
I|Al|r, || B||F the Frobenius norm [26] of matrix A and B, then we have || A||r < v8A\2 +2,||B||r <
V2(1+ X2, [ Hllp < Vet +2.

From lemma 4.2, We have
1H |, | AlLe, 1Bl < ()

In section 3, we observed that (Hj) is equivalent to solve the problem:
Find u;, € Uy, such that
(I = M)E ' Luy, Lv) + (M Duyp,, Dv) + ae *(uj, + Al 1un,, v} + Av)
+ae (=M1 up, + up, — Mg 1up,, —Avy + 05 —v3) = (f,v)
Use lemma 4.1, we can obtain the equivalent theorem.

Theorem 4.1. Problem (Hy) is equivalent to the problem P,
Problem Pj:Find u; € Uy, such that

(1 — a)a(up,v) + aa* (up,v) = (€2f,v) Yo €U, (66)
Now we have the following two superconvergence theorems.

Theorem 4.2. Let u and uy, be solutions of problem (P) and Py, respectively, then for any
nodal points ¢;,j =1,---, M there is a constant c(k) independent of e such that

u(;) — un(¢y)l < c(k)h* (| fllsr 0< s <k (67)
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Proof. Define Green’s function G(¢,-) € U as
(HG'(¢,-),2") + (AG(8,),2") + (BG(¢,-),z) = (§,z) Vz €U (68)
where § € H1(J)? is the delta function in schwartz sense. Set z = u — uy, in (68) then
u(65) = un(6y) = (HG' (95, ),u' — u}) + (AG(dy, ), ' — uf) + (BG(b5,)yu—un)  (69)
a(u,v) = (€f,v) = (1 — a)a(u,v) + aa(u,v) = (f,v) (70)
(70)-(66)
(1 - a)a(u —up,v) + ala(u,v) —a*(up,v)) =0 (71)
a(u —up,v) = (H(u' —up),v") + (A(u — up),v") + (B(u — up),v)
for constant matrix H and A, we have
(Hujp,v")* = (Huj,v")  (Aup,v")* = (Aup,v")
a(u,v)—a*(up,v) = (H(u'—u),v")+(A(u—up),v")+(B(u—up),v)+[(Bup, v)—(Bup,v)*] (72)
Substitute (71),(72) into (70) we have
(H(u' —up),v") + (A(u — up),v") + (B(u — up),v) = a[(Bup,v)* — (Bup,v)] (73)
Applying partial integration formula and note matrix H, A are onstant matrix.
((u" = up, HV'") + (u' — ul, Av) + (u — up, Bv) = a[(Bup,v)* — (Bup,v)] (74)
Combining (74) and (68) we have
u(B5) = un(83) = (H(G'(85,7) ~v' )’ ~uh) + (A(G(65,7) ~v), ! ~u) + (B(G(85, ) ~v), ' s
+a[(Bup,v)* — (Bup,v)] (75)
From the regularity property of Green’s function, we have
G (@5, M m+10,65) + [1G(D55 s (g,,8) < C (76)
then
inf 1166, — oll < et
|(Bun,v)* = (Bun, v)| < (k)R |ups[vlkn < c(k)h*F2|lulls|v]k,n (77)
Considering estimates (51),(77) and lemma 4.2.
|

lu(d;) —un(p;)| < c(k)(llu —unlly + [Ju— uanll) inf IG(#5,-) — |1
-i—coz|u|s,h|v|k,hhlHS
< M |ullsga
< (BRI f s

We turn to the analysis of the superconvergence at the Gauss points. The following lemma
is needed.
Lemma 4.3. For any u € U, defined mu € Uy, by

(Vu = V(ru), Vo) =0 Yo € Uy (78)
where V is the gradient operator. Then we have [12,15]
' (@) = (7u) (Gig)| < (WD " F Jullgsa, 1<i<M1<j<K (78)

Theorem 4.3. Let u, uy, be the solutions of (P) and P, respectively, then
lu—upli < e (N BB fllkoo + 1 f1l5-1)
Proof. Let v =mu — up,
(H(mu) —up)',v") = (H(u' —up),v") = —(Au —up),v") — (B(u — un),v)
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+a[(Bup,v)* — (Bup,v)] (79)
considering the positive definite of H and lemma 4.2 we have

Elmu —unlf < W (llu —unlllo]y + eVl — unllllv]]
+c(k,)\)|u|k|v|1hk"'1

< eW)lJu = unl| + el = unll + e(k, X |lullh*F)v], (80)
thus
[ — sl < € 2RO B)[ulliss < el \)e 2Rl (81)
using lemma 4.3
lu — up|; lu — mul|] + |Tu — upl

()R Fllkoo + ek, VRFH 72| flli—s
c(k, e 2B (|| fll koo + [1F11k-1)

Remark 1. If A =0, then we have a better estimate

ININIA

W' (Gij) — un(Gij)| < clk, e 2R flle— (82)
To see this we start from (79)
eoft < eW)llu —unlllloll + e\, H)RFullg |0 (83)
Using imbedding theorem [28] and inverse estimate [7] we have
I ool < k™ [[of|[B% "] < el (84)
combining (83) and (84)
10" oo [0"] L1 c(Ne2hH HJul |4 [lo]]

<
< eNe R flle- 1ol
< ek, e R |- o' o
11l < ek, e 2R | flli—s (85)
Use lemma 4.3 and (85), (82) can be obtained.
Remark 2. If u has lower regularity, theorem 4.3 can be rewrited in the following form:
Ju—unlf < e2REE]| £
In this case, (78’) become
Ju/(Gij) = (7u)'(Gig)| < e\ R)RET2 | £y

Use (78) and triangle inequlity, we have

fu—unly < = Tul} + ru— ul;
|lu — mu|] + |piv — upl
e RFIER T E + e B)e I flls—hH
¢ K)e2 | fllemah+2

Remark 3. From (79), (85), we find the constant C is e-dependent, but if we assume u has
a higher regularity, through a post-process, we can get a e-independent estimate.
In the computation, we can regulate the patition diameter i so that h < e holds. We have

IN NN

lu—upli < |u—7ul] + |7Tu — up|
()R ullk 2,00 + €N, B)E2RET? |l 1p3

<
< e B)RFE(IF ko + I1F k1)
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5. Posteriori and Pistprocess

The popularity of the finite element method has led to an increasing attention being paied
to the problem of assessing the quatity of the computing cost. The priori error estimates are
not appropriate in this case, then using the approximating result itself to estimate the error is
needed. After the series paper of Babuska. I.LE[4,5], the posterior estimates have been clear and
becoming an interesting subject not only for engineers but also for mathematicians [13,21,6].
But we have found that many works have been done for the Poission problem, the Advection-
Diffusion problem and Navier-Stokes equations. Legions of posteriori error eatimators have been
introduced for these problems, unfortunate almost no one had been reasearched the circular-
arch model, in this section we will investigate the posteriori estimate of this kind of problem.

First of all we use the variational problem presented in the introduction. Find v € U such
that a(u,v) = (f,v),Yv € U, if Uy, is a approximation space of U, we have the approximation
problem, find w, € U, such that a(up,v) = (f,v),Yv € Up. In common sense, a posteriori
estemate is to use wy, f(or other computable datas) to estimate ||u — uy||. But as we all
know in most problem arising from physics and engineering fields, the norm ||u — up||y is not
a good metric of the error. An estimate of intrinsical physics meaning is more attractive,
in some case this kind of norm is even superior to L. But the most of this kind norm is
huristical or intuitional (there have no strict mathmatical proof). So we consider an energy
norm. We set e = u — uy, |le]|z = ale,e)? In the following part we will estimate ||e||z using
the computable datas, if we have been obtained a computable data E(up, f) and we have the
estimate |le||g < CE(up, f) like that in [21], in most situation we can not precise the the
constant C, so this kind of estimator is not satisfied. But the so called asymptotic exactness
posteriori estimator introduced by Babuska and Rheinboldt [5] is interesting and attractive, for
it had given a computable data in asymptotic exactness sense.

Definition 5.1. Asymptotic exactness posteriori error estimator. Let € be an error estima-
tor then if under reasonable assumptition on u Lu, f, and the patition A, we have that

llelle =e(1+O(R”) as h—0 (86)

where v > 0 is independent of h and the constant in O(h") term dependent upon u, Lu and f
only, then we say € is an aymptotic exactness posteriori error estimator.

To derive the asymptotic exactness posteriori estimator, we have to derive some global
superconvergence results and introduce some post-process first.

5.1. Global Superconvergence and Post-Process We introduce some foundmental
superconvergence results.

Lemma 5.1. If the patition is regular [7,12] and k > 1, I}, be a Lagrange interpolation then
we have

la(u — Thu,v)| < CR*H|ullppallvli Yo € HF?2 N HE v e P(A)E k> 1 (87)

la(u — Inu, Iv)| < Ch* 2 ||ullpzllvll: Yu € H¥ 2N HE v e H*NP(A)E k> 2 (88)
Based on this lemma, we will have the global superconvergence results.

Theorem 5.1. Let u and up, be solution of (P) and Py, respectively, Assume Iu be a

k-th lagrangue interpolation of u, if the partition is regular then we have the following basical
superconvergence estimates:

[Thw — unlly < e\ k)e > R5 Y Iflle k>1
I Thu — unll < ¢\, B)e>RE2 I Fll k> 2
T — unlli 0o < ¢\ E)e 2R Inh| || fllr k> 1

1Tnu = unllo,eo < e(A, k) REF2[inhl || £l & > 2
Furthermore, if k¥ > 2 in (91), then the logrithem factor can be dedeleted [18].

89
90
91

(
(
(
(92

)
)
)
)
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Proof. From (65’) and (66), we have
a(up,v) = (€2f,v) + a[(Bup,v) — (Bup,v)*] (93)
Considering theorem 2.1 we have
Ca(Inu — up, Inu — up) > || Inu — up||?
But
Ca(Ipu — up, Inu —up) = Callpu —u, Inu — up) + Calu — up, Inu — up)
= Ca(Ipu —u,Inu — up) + Caf(Bup, Inu — up)*
—(Bup, Inu — up)]
= hL+1D
From the k-th truncation error estimate of Gauss quadrature, we can estimate Is.
I < (A k)R |kl Znu — unlly
Now we turn to the trem I;.
I = Ca(Ipu — u, Inu — up) < e, )DLl g2l [ Tnw — un |1
In the last step of the estimate of I;, we have used (88). So
1hu —uplli < e\ k)e 2R lullere k> 1
We use the standard Aubin-Nitsche trick to obtain (87). Define an auxiliary problem. Find
w € H?(J) N H}(J) such that
a(w,v) = (Inu — up,v) Vv € Hy(J)
with the elliptic regularity theory, we have
lwllz < Cl[Inu = unllo
Set v = Ipu — uy in the auxiliary problem,
hu —un|* = a(w, Iyu — up)
a(w — Tyw, Inu — up) + a(lyw, Inu — up)
L+ 1

Using (88),

I c(\E)||Jw — Inwl||1 || Inu — unl|1
c(X, k)e 2 hM 2 [ul |2 [w]2
Like the privious estimate of I, we have

Iy < (X k)W 2 ful| o] w2 (94)

IN A

So
e = unll? < e k)R fullesllolls < eOh k)22 fullg | vt — unll3
e = unllo < e\ )R Juleys k> 2 (95)
To obtain (89), (90), we use a different method compare with the way in section 4. We
define the discrete Green’s function [12][8].
Find G" € U}, such that
a(G"v) =v(z) YweU, (96)
where z € A, so we have
|OIn(uw — up)(2)/0z| la(Inu — up, 0G"/8z)]
la(Tyu — u, 0G" /92| + |a(u — uy, OGE [02)|
Ce W lullr2,001GE 1 + T2
Ce 2 inhl||ullg12,00 + I

ININ N
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L = a|(B(u—up),0G"/82)* — (B(u — uy),0G" 92))

< e R k0o |G 11
< e\ WA il full oo
So
[Tt — upl1 0o < ¢(N B)e 2R Inh|||ul|kr2.00 (97)
In light of (95) and lemma 5.1, we can get (92)
|[Ihu —un(z)] = a(lpu — up, G’Z’)|
< la(Thw —u, G" — I,G™M)| + |a(Thu — up, [,G™))
+a|(B(u — up), G%)* — (B(u —up),GL)|
< oM R)e PR Jullkg2,00 [IGE = TnGE 11 + BJIGEl2,1]
< e\ k)e 2REPEinh)lul| k200 k> 2 (97"

Now we are in a situation to do some postprocess to up by using theorem 5.1 to get higher
accuracy. More important is we want to use this processed u; to define an asymptotic exactness
posteriori error estimator. First of all, we introduce the two-level interpolation functions as in
[12]. AH is a partition of diameter H, H = 2h.A" is a patition sub-divided by mid-point
patition. S"(J) = {v € C(J) : v|. € Py,e € AP}, VE(J) = {v € C(J) : v|g € Pa,e €
Af}. Now we have the Lagrange interpolation I¥, IZ* of S"(.J), V" (J) respectively. where the
upper index and the lower index denote the order of interpolation polynomial and the patition
diameter.

Lemma 5.2. [12] there exists constant ¢ > 0 such that

15 ullmp < cllullmp 1< p<oo,m=0,1vue S"(J) (98)
(I53)* = I3 Ly, =I5 I35 =1, (99)
lu = Ly ullm.p.e < ch® 7" |ull2ps1,p,6 (100)

Vue WHHLr(B) Ee AT m=0,1,1<p<
Now we can start our post-process to u, If we denote
up = Iopup (101)
where I, = IZ,(I;, = I}). For simplicity, we only investigate the linear element (but the
results are the same to the high-oder element). From the following theorem we will find @, has
one-order higher accuracy than wuy,.

Theorem 5.2. If u and uy, are solutions of (P), (P,) respectively, iy is defined as (101),
then there exists a constant C' such that

lu = an|l < Ce?h72| fllx (102)
llu — anll1,00 < Ceh?|inh]||fll1,00 (103)
Proof. From theorem 5.1 and lemma 5.2 we have
Honu — Dpuplls = [[lan(Inu — up)llx
< Clhu — upl|1
< Ce?h?||uls

by means of triangle inequality

llu — 1l lu — Lapun|ly
llu — Lpullr + [|[l2pu — Iapup||i
Ce 2 h?||uls

Ce?h?||f 1

ININ N
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Using the same technical we can prove (103).

Remark. It is easy to see we can derive the estimation of ||u — @pllo, ||t — Gpllo,00- Fur-
thermore we can get the estimates under the four norms when k£ > 1,in this case, we have the
estimation

lu—anll < ce 2R (R full2pr + llulli2) (102")

Now we turn to estimate |Vu — Vip|;. This ascribe to the approximating theorem of Scott.
R and Dupont. T.F[29] and our construction of the @y,
Lemma 5.3. Let v and uy, efined as before, then we have

|Vu — Vip|y < Ce ?h|uls (104)
Proof.
|Vu —Vip, = |V(u—¢)—V(a,— o)
|V(U,—¢)) —V(IQhuh—[Qh¢)|1 V¢E P,
[V (u—¢) = V(Ion(I2nun — ¢)) 1
lu — ¢l + Cllzpun — ¢l2
lu — ¢lo + Ch™ Lpun — |
|u - ¢|2 + Ch71|12huh — U|1 + Ch71|u — ¢|1
Ce™2h||ulls
where we haver used the regular assumption of the partition.
5.2. Asymptotic Exactness Posteriori Error Estimate
we have introduced all the prelimiliary results for deriving the posteriori error estimate.
In order to obtain the main result (theorem 5.3) of this section, we also ned to establish the

following lemmas. For simplicity we only deal with the linear finite element in this section.
Lemma 5.4. Let u,u be solutions of (P), (P}), so we have the two estimations

llello < chllelle (105)
llellz > c(u)h? (106)
Remark. the proof of (105) is a standard Aubin-Nitsche trick, as to (106) we refer [20].

Now we shall use a device suggested by Babuska and Rheinboldt [5]. First we define a new
bilinear form a(-,-) : U x U — R.

a(y,w) = ((H + Az)y',w') + B(y, w) (107)

where 3 is a parameter to be determined later. A new variational problem is prsented.
Find y € U such that

IN N IN A

a(y,w) = (€2f,w) — a(up,w) YweU (108)
Lemma 5.5. Let X(p), be a quadratic functional on H(div, .J), given by
N(p) = ((H+Az)""(p— (H + Az)Vuy),p — (H + Az)Vuy)
+8 Y f +V -p— Buy,ef +V -p— Buy)
then the following bound holds
R(p) > R((H + Az)V(up +y)) = aly,y) Vy € H(div, J) (109)
Proof. The strong form of the variational problem (107) is given by
V. (H + Az)V(up +y) + € f — Bup = By

where we have used the following equation:(Azu},y') = —((Azup)’,y) = —(Au},y)—(Azu},y) =
—((Aun)',y) = (Aun, y"), set

p=(H+Az)V(y +up) V-p=Bu,—ef+ByeL*(J)



Absolute Stable Homotopy Finite Element Methods for Circular Arch Problem and ... 669

so X(p) = a(y,y) Now let € € (0,1), and ¢,r € H(div, J), it is easy to show that
R((1—e)r +eq) < (1 —e)X(r) + eX(q)
so N(p) is a convex functional. Moreover if p = (H + Az)V(y + up)
OR((1 —€)p + €q)
Oe
Thus N is stationary at p and results hold.

Lemma 5.6. Suppose 8 = Mh™“, where a € (0,2) and M > 0 are constant. Then the
following bounds holds for any p € H(div, J)

llell3: < (L+O(h)R(p) as h—0 (110)

|e:0 =0

where vy =1—- %
Proof.
a(e, w) = R(y, w) (111)

set w = e in (110) and 8 = Mh™?,

ale,e) = N(y,e)
= aly,e)+ (B -1)(y,e)
= aly,y) + (B -1)(y,e)
< aly,y) +18 = 1llyllollello
< aly,y) +ch|B =181 2 lyll glell

< aly,y) + chlB =187 Iyl zllell s (1117)

when h is small enough
1
18 = 11(y,e) < 2ch|BI=[lyllzllell =
Replacing 8 with Mh~% and using mean inequality
1 -
(8= D)(y,e)| < eM=h' = (|le||E + llyll% (112)
Substitute (112) into (111’) we have
lell% < llyll%(1+ O(hY))
where v = min(1 — §,k + § — p) using lemma 5.5 we have
lellz < R(p)(1 + O(R7))
Now we define an asymptotic exactness posteriori error estimator.
€ = ((H + Az)V (an — up), V(tn — un)) (113)

and @y, is defined in (101). In the following theorem we will prove € is an asymptotical exactness
posteriori error estimator.

Theorem 5.3. Let € be a posteriori error estimator defined as above, then if K+ 1 > p, we
have

llelle =e(1+O(hY)) as h—0 (114)

where v is the same as in lemma 5.6, and ¢ in O(h") is a constant independent of h.
proof. Let R(p) be the definition as above, and take p = (H + Az)Vay, in lemma 5.2. This
is valid because (H + Az)Vay, € C(J), so we have

R(p) =€ + hi\é\ (115)

where
= ((H + Az)V(ap — up), V(in — un)) (116)
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and
2

N\ = (€f+ V- (H + Az)Viy, — Bup, e f + V - (H + Az)Viiy, — Buy) (117)

First, we consider the term A

A

le*f +V - (H + Az)Viy — Buygllo
= ||-V-(H+ Az)V(u — @) — Bel|o
1All0,00lIV (u = @n) 1 + [IBl|£lello
(1+A)[Ch*ulks2 + Rlle]| ]

where we use lemma 5.7 and lemma 4.2. In light of lemma 5.4, we have

INIA

ha ° o— (e
A< e R+ e el
< clu el

IN

Applying lemma 5.6, we get
llell (L+O@7))(|lel” + Ch*|lell%)
1+ OA))(|lel” + Che|lell%)

< (1+O0)|lell® (118)

<
<

Considering now the term e
e = ((1+ Az)(Va, — Vug), Vi, — Vup)?
((1+ Az)Ve,Ve)? + (1 + Az)(Viip — Vug), Vu, — Vu)?
lellz + Cl[Vun — Vul|
Applying theorem 5.1, we obtain
lelle + Ce2h ([[ullarrr + [Julli+2)
llellz + Ce2hF+1=PC(u)
lelle + Cu, )" P lel|r
L+ O P))lelle
< A+ O(h7)llelle (119)
together with (118) and (119) we have |le||p = (1 + O(h"))e as h — 0, where v = min(1 —
ta,k+ < —p).
Remark. We can easily see that the C in theorem 5.3 in e-depent. but if we want to get
the e-indepent asymptotic exactness posteriori error estimate, we have to lose some sharpness
as we have done in section 4. To see this clearily, we find the e-dependent constant results from

theorem 5.1 and 5.2. But we can obtain (102) in a more simple way by lose one-order accuracy.
By means of theorem 5.1, we have

<
<

€

IN N IN A

hu —unlli < flu—unll + |lu = Thull
< Chllull2
lu—anlli = |lu—Lnunl
< lu— Lpully + || I2pw — Iapuply
< C(R®|lulls + hllull2)
< Chllulls

for k > 1, we have ||u — up||1 < Ch¥||u||2x+1, substitute this instead of (102’) into the proof of
theorem 5.3, we can also obtain |le]|p = €(1 + O(h?)), where v = min(1 — $a, k — p), but this
is not essential in our discussion.
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6. Conclusion

In this paper, Homotopy Finite Element Method(HFEM) is presented for the arch beam
model lacking of K-ellipticity which is a kind of locking phenomenon. It can be considered
as a generalized mixed method, and it enhance the K-ellipticity by adding some terms having
mechanical meaning. From this point of view, we can easily see the HFEM can include the
remarkable Least-Square-Petrov-Galerkin methods(LSPG)[23,24]. As a result of simulating the
arch more accurately, this method can successfully overcome locking phenomenon preserving
the superconvergence results. This is the same as our previous paper [16], but furthermore
in this paper we find out our method have the global superconvergence phenomenon which
have never been discovered before, based upon it we propose some postprocessing in section 5,
the most important is we have found an asymptotical exactness posteriori estimator and it is
a trivial thing to extend it to more models especially for arch beam model (for example the
model in [16]).
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