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Abstract

Composite Legendre-Laguerre approximation in unbounded domains is developed. Some
approximation results are obtained. As an example, a composite spectral scheme is pro-
vided for the Burgers equation on the half line. The stability and convergence of proposed
scheme are proved strictly. Two-dimensional exterior problems are discussed.
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1. Introduction

Many problems in science and engineering are set in unbounded domains. There are several
ways for their numerical simulations. We may restrict calculations to some bounded domains
with certain artificial boundary conditions. But they induce errors. In particular, they affect
the wave propagations in revolutionary problems. In opposite, if we use spectral methods asso-
ciated with orthogonal systems of polynomials in unbounded domains, then we could avoid this
trouble, e.g., see Maday, Pernaud-Thomas and Vandeven [1], Funaro [2], Funaro and Kavian [3],
Boyd [4], Guo [5], and Guo and Shen [6]. Funaro and Kavian [3] proved the convergence for
some linear problems, by using the Hermite functions. Recently Guo [5] proved the stabil-
ity and the convergence of spectral approximations to nonlinear problems, using the Hermite
polynomials. While Guo and Shen [6] analyzed the errors of the Laguerre spectral schemes for
several nonlinear problems. But there are still some remaining problems. Firstly, in order to
get the same accuracy, the Hermite and Laguerre methods need more regularities of solutions
of differential equations, than the Legendre and Chebyshev methods for the same problems in
the corresponding bounded subdomains. However, the solutions may change rapidly in certain
bounded subdomains. For instance, the solutions might be less smooth near some corners. On
the other hand, most of multiple-dimensional problems are set in non-rectangular domains, and
so the standard Hermite and Laguerre approximations are not available for them. In partic-
ular, for exterior problems, the domains are never rectangular, and the solutions change very
rapidly near the obstacles usually. One of reasonable ways for resolving such problems is to
use spectral domain decomposition method, e.g., see Quarteroni[7], and Coulaud, Funaro and
Kavian [8]. For instance, we may divide the domain into several subdomains, and then use the
Legendre approximations in the bounded subdomains, and use the Laguerre approximations
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in the remaining parts. But so far, there is no theoretical results in this field. The aim of
this paper is to investigate a new spectral domain decomposition method, called as composite
spectral method. For simplicity of analysis, we first consider a one-dimensional model in detail,
and then discuss two-dimensional problems in non-rectangular domains, and exterior problems.
In the next section, we divide the half line to a finite subinterval and a infinite subinterval,
and then construct a composite Legendre—Laguerre spectral scheme for the Burgers equation
on the half line. We prove some composite imbedding inequalities and approximation results
in Section 3, which play important roles in analysis of the composite spectral method. In sec-
tion 4, we use the results in the previous section to prove the stability and the convergence
of proposed scheme strictly. The final section is for two-dimensional problems. We consider a
non-rectangular unbounded domain and an exterior problem.

2. The Composite Spectral Scheme
Let I = (a,b),—00 < a < b < 00, and x(z) be certain weight function in the usual sense.
For any 1 < p < oo, define
L2(1) = {o | [ollze , < o}

where
(/wwwwummi if 1< p< oo,
I

esssup |v(z)|, if p = 0.
zel

lollzs | =

In particular, we denote by (u,v),,r and ||v||y,r the inner product and the norm of the space
L2 (I). Further let d,v(x) = %v(m), etc.. For any non-negative integer m,

H'(I) = {v | 950 € LI(I), 0 <k <m}

equipped with the following semi-norm and norm

2

m
Olmx.r = 107 vllx.1, 0l yr = (Z Ivli,w)
k=0

For any r > 0, we define the space H} (I) with the norm [[v]|,,; by the space interpolation as
in Adams [9]. Moreover let
HE (1) ={v|veHL(I) andv(a) = lim x*(z)v(z) = lim x*(2)d,v(z) =0 }.
s X X xr—b z—b
For X(:L’) =1, we denote H;(I)) HS,X (I)) |v|r,x,lv ||’U||7“7X,I) (uv U)XJ and ||U||X,I by HT(I)) HS(I)a |U|T,Ia
|v]|r.1, (w,v)r and ||v||r, respectively. In addition, ||v||e,r stands for [|v]|pe (1)
Let A = (—1,00), and consider the Burgers equation on the half line as follows

1
U(=1,) = d(t), 0<t<T, 1)
ILm Ul(z,t) = le 0, U(x,t) =0, 0<t<T,

U(z,0) = Up(z), z €A
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where p is a positive constant, f(z,t),d(t) and Up(x) are given functions, and Up(z) —
0,0.Uo(z) — 0, as z — oco. For simplicity, assume d(¢) = 0. Let

a(u,v) = (Ogu, Ozv)A-

A weak formulation of (2.1) is to find U € L*(0,T; Hy(A)) () L>(0,T; L?*(A)) such that

U, 0)x +5(0:(0(1),0)a + paU (D), v)
= (f(t),v)r, Vo€ H{A), 0<t<T, (2.2)
U(0) = Up.

We can approximate (2.2) by the Laguerre spectral method. Whereas for the same accuracy,
the Laguerre spectral scheme requires more regularities of U(z,t) than the corresponding Leg-
endre spectral scheme in bounded domains, see Remark 4.1 of this paper. On the other hand, it
is difficult to generalize it to multiple-dimensional problems in non-rectangular unbounded do-
mains. A reasonable way for solving (2.2) is to use the spectral domain decomposition method.
To do this, let Ay = (—1,1),A> =[1,00), and A = A; |J As. Furthermore let U(x,t) = Uj(z,t) in
Aj,j =1,2. Then we approximate Ui (z,t) by the Legendre spectral method in A;, and approxi-
mate Us(z,t) by the Laguerre spectral method in A». In addition, Uy (1,t) = U2(1,t),0 <t < T.
The main advantages of this method are as follows. Firstly, since the approximations to U (x, t)
and Us(z,t) are almost separate, we can decrease the degrees of the polynomials used in the ex-
pansions of the numerical solution. Also it benefits from the rapid convergence of the Legendre
expansion in Ay, and keeps the spectral accuracy.

We now begin to construct the composite spectral scheme for (2.2). Let wy(z) = 1, and
L;(z) be the Legendre polynomial of degree [, i.e.,

Li(z) = (;Z)l dd—;(l -2, 1=0,1,2,--.
They satisfy the equation
0, (1 = 220, Ly(x)) + 1l + 1) Ly(z) =0 (2.3)
and the recurrence relations
(2l + 1) Li(z) = 0p Li41(x) — O Ly—1(x), 1>1. (2.4)

The set of Legendre polynomials is the L?(A;)-orthogonal system,

2

L;, L = —
( 2 m)A1 2l+15l,m

where §;,,,, is the Kronecker function.
Let Ag = (0,00),wp(x) = e~ and L;(x) be the Laguerre polynomial of degree [, defined by

1

Li(z) = ﬁe’”(?i (zle7™) .
They satisfy the equation
Op(xe™ %0, L1(z)) + le " Ly(xz) =0 (2.6)

and the recurrence relations

Li(x) = 0. Li(x) — 0xL141(x), 1>0.
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The set of Laguerre polynomials is the Lio (Ap)-orthogonal system ,

(ﬁlaﬁm)u)o,l\z = 61 m- (27)

)

Let wo(2) = €' =%, and define
w(x): wl(a:), ?fl’EAl,
wa(x), if v € As.

Next, let N = (N1, N2), N; being any positive integers, j = 1,2. Denote by Py, ; the sets of
restrictions to A; of all algebraic polynomials of degree at most N;, j = 1, 2. Furthermore,

Sx={v]v=wi, ¢l € P},
Vv =Sn[H'(A), Vy=5Sn[)Hs(A).
We shall follow the idea in Guo and Shen [6] to approximate the function w™2 (z)Us(z,t) by
the Laguerre approximation. Let un € VJQ, and ux be the approximation to U. Let
1
b(ua v, ’U}) = §(am (’U"U)a w)A-
For any v € H{(A),
b(v,v,v) =0.

The composite Legendre-Laguerre spectral scheme for (2.2) is to find uny € V§ forall 0 < ¢ < T,
such that

(8tUN(t)7 ¢)A + b(U,N(t),UN(t), ¢) + :U’G'(U’N(t)v ¢) = (f(t)v ¢)A7 V¢ € VI(\)h 0<t<T,
un(0) = unp.
(2.8)

3. Some Results on Composite Approximation

In order to analyze the errors, we need some imbedding inequalities and approximation
results related to the composite approximation. In the sequel, we denote by c a generic positive
constant independent of any function and V.

Lemma 3.1. For any v € Hi(A),

11
l10]lo0,a < V2 0lIF[0]F - (3.1)
1
Moreover for any v € H(A3), let v =wiu. Then
[[v]l1.45 < 2[ul1 w0z - (3.2)

Proof. For any v € H}(A) and = € A,

v%m=2/’mw@mw@s2mmwnm

-1

1
Thus (3.1) follows. Next, let v € H(A2) and v = w? u. By integration by parts,

2
= [uff 4yns = Ooth Wun s + 110113,

=[ulf 4, 0, — 711,

1 1 1 1
2 _ (.3 1,,3 3 1,,3
|U|1,A2 = (ws Opu — w5 u, w5 Opu — w5 u)p,
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whence )
|U|%,A2 + ZHU”?\Z = |u|%,WQ,A2'
We now turn to some orthogonal projections. The L?(A)-orthogonal projection Py :
L?(A) — Sy, is such a mapping that for any v € L2(A),
(PNU -, QS)A = 07 VQS € SN) (33)
The H'(A)-orthogonal projection Py, : HY(A) — Vy, is such a mapping that for any v € H*(A),

G(PJ{[U—U,(f))-f‘(P]{(’U—U,(f))A:O, V¢€VN (34)

The H{(A)-orthogonal projection Py° : HE(A) — V3, is such a mapping that for any v €
Hg(A),
a(Py’v—v,6) =0, Vo€ Vy. (3.5)
We shall also use the L?(A)-orthogonal projection PR : L?(A) — V3 such that for any v €
L*(A),
(PYv —v,¢)a =0, Vo € Va. (3.6)
For technical reason, we introduce another space as in Bernardi and Maday [10]. Let x = w»
or x = 1. For any a > 0, define the space

H;Z(Az,a) ={v|ve H;Z(A2), (z — 1)%1) € H;2(A2) }
with the norm

||U||T2’ Aza = ”m%v”TLX,Az'
X

We shall drop the subscript xy whenever y = 1. Moreover let
H™ "™ (A,a) ={v | vjp, € H* (A1), v|a, € H™?(A2,a)}

with the norm
1
[0l rana = (10117, 4, + 10117, 40,0) % -

Theorem 3.1. Let r1,ry > 0 and « be the biggest integer for which a < ro + 1. Then for
any v € H™"2 (A, a),

_r2
1Pnvv = olla < Ny [ollryar + 6Ny 2 {[0]lr,As,a- (3.7)

Proof. Let P](Vll) : L2(A1) = Pn, 1 be the L?(A;)-orthogonal projection, and PI(VQZ) (L2, (A2) =
Pns,2 be the L2 (As)-orthogonal projection. Let v; = v|a;, and

ot PJ(Vll)vl, ifx e Ay,
= 1 _1
N wfpj(v?(wQ 2us), if z € As.

1
Next, for any ¢ € Sn, let ¢1 = P|a, € Pny1, 02 = Pla, = wstha, P2 € P, 2. It can be checked
that

—1 —1
2

(VN —v,9)a = (Pj(vll)vl —v1,$1)a, + (Pz(v?(wz PUz) — Wy *U2,Y2)wy A, = 0.
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Therefore Pyv = vy, Now let 7 be the identity operator. By virtue of the approximation
results of PI(\,ll) and Pj(\?)( see Bernardi and Maday [10]), we deduce that

2

1 2 -3
IPvo =l = [IP¢) o1 — vz, + I(PY) — T)(wy Pom)]2

) wa,A2
< CN1_2r1||v1||72“1yA1 + CN2_T2||w2 2’02“72“2,&)27/\27”'

Then (3.7) follows.
Theorem 3.2. Let r1,72 > 1 and a be the biggest integer for which o < ro. Then for any
ve H2 (A ) VH (A),

™

1_T2
1PN = vllia < Ny ol ay + N7 7 [[0llrang a- (3.8)

Proof. We have

1w — vl < nf {16 = llua.
Let
if A
o) =4 Ok ifwehs, (39)
¢2($), le’EAQ

where .
¢1(x) = / P](Vll)flayv(y)dy +ov(=1), = €A,

¢a(x) = w3 (x)( / ’ Py 8,(w™ % (y)u(y))dy + v(1)), = € As.

Since ¢1(1) = ¢2(1) = v(1), we assert that ¢ € Vy and (¢ —v)|s; € Hg(Aj),j = 1,2. On the
other hand,

o) =) "0, @ y)dy + (1)), @ € Ag.

Thus we have from (3.2) and the approximation results of PI(\,ll) and P](Vi )( see Bernardi and
Maday [10]) that

IPyv —vl2 s <Ill¢—vl2s, +ll6—vl2 4,
<dcp—vff A + clw 3 (¢ — )17 s Ao
= [|PY)_ 1850 — 3, + cll(PY) L — T)3u(w™30)II2, 0,
< eNF2 9,02,y 5, + Ny T |00 (w B0)J2

- " ro—1,ws,As,a
S CNli T1|U|%17A1 + CN27T‘2||U||%2,A2704'

Theorem 3.3. Let r1,72 > 1 and a be the biggest integer for which o < ro. Then for any
v e H™ "2 (A, )V Hy(A),

r2
2

1
||P]{T’OU - 'U||1,A < CNll_rl|U|7“1,A1 + CN22 ||’U||7“2,A2,Oé' (310)

Proof. We reach the conclusion by an argument as in the proof of Theorem 3.2.
Theorem 3.4. If the conditions of Theorem 3.3 hold, then

7

1 2
1PRv = vlla < eNy ™ oleya, + N3 7 ([0l a0 0 (3.11)
Proof. Let ¢ be the same as in (3.9). Then

1PRv = vl[§ <o —olR < ¢ —vll}, + 16 —vll3,- (3.12)
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Set,

Gla) = [ gw)ds, g(o) = 6lo) — v(a).
By integration by parts, we derive that

(60,000 = (06— 0,0,G),
= (P{}) 10.0 = 0.0,G = P) G,
<¢cN™ ™ |8m1)|r1—1,A1 |axG|1,A1
<¢cN™™T |U|r1,1\1 ||g| |A1 :

Therefore by a duality argument,
||¢_’U||A1 < CNl_r1|’U|T‘17A1' (313)

Finally we obtain from (3.12), (3.13) and the estimate for ||¢ — v||1,a, in the proof of Theorem
3.2 that

s

1_7r2
1PRv = vlla < e(lé = vlla, + 16 = vll1a) < eNT ™ ol ay + NG 7 [[0]lra s 0

4. Error Estimations

In this section, we analyze the errors.
Lemma 4.1. Let U and uy be the solutions of (2.2) and (2.8). If f € L*(0,T; L*(A)) and
Uy € L2(A), then for all 0 <t<T,

t
U@ + M/O U(s)i ads < c(llf172(0,7:02(a)) + [1U0l[R), (4.1)

t
lun ()[R + M/O lun ()[F ads < el fll720,622(a)) + 1Tol[R)- (4.2)
Proof. By taking v = 2U in (2.2), we find that
BNU@IR +2u|U @) <2(f(1),UE)a < IFOIR + TR

Then (4.1) follows from the Gronwell lemma. We can prove (4.2) similarly.

We now analyze the stability of scheme (2.8). Assume that f and uy o have the errors f
and @y, respectively, which induce the error of the numerical solution ux, denoted by @n.
Then

+pa(an(t),9) = (F(t),0)r, VoOEVR, 0<t<T, (4.3)
un(0) = dnp.

By taking ¢ = 24y in (4.3), it follows that
Bellan ()R + 2ulan ()T o + 4b(@n (8), un (t), an (1) < [IFOIR + llan @] (4.4)

Let ¢* be a positive constant depending only on ||f||%2(0 7.12(n)) and [|Uo]|4- By (3.1) and (4.2),
we have that

[b(an(t), un(t),an(t))| (O)lloo,allun @)][a|@n(E)]1,4

3

<c*llan
1 - - £
< clan @R lan )17 4 < plan®)] 4 + 5 llav @3-
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For description of errors, set

t
.mmwznmmﬁ+uA|M@ﬁum

t
MwmﬂzWﬂﬁ+AHMﬁM%-

By integrating (4.4) for ¢, we get that

t
Eiin. 1) §cp(ﬂN70,f,t)+c*/ B, 5)ds.
0

Therefore we obtain the following result.
Theorem 4.1. Let un be the solution of (2.8), and an be its error induced by f and Uno.
Then for all 0 <t < T,

E(ﬂNat) S C*p(ﬂN,Oafa t) (45)
We next turn to the convergence of (2.8). We may take uno = PR,UO. Let Uy = Pﬁ,’OU.
Then it follows from (2.2) and (3.5) that

(0:Un(t), d)a + b(Un(t), Un(t), ¢) + pa(Un(t), )
+G1(t,9) + Ga(t,9) = (f(t),d)a, Yoe VR, 0<t<T, (4.6)
Un(0) = Py°Up

where

Gi(t,9) = (0:U(t) = UN(t),9)a,
Ga(t,¢) =bU(t),U(t),¢) —b(Un(t),Un(t),9)-

Furthermore let Uy = uny — Un. We derive from (2.8) and (4.6) that
(0:Un (1), $)a + b(ON(t), Un(t),$) + 2b(Un (1), Un(2), ¢) + pa(Un(2), ¢)

=Gi(t,¢) + Ga(t,9), VoeVy, 0<t<T. (4.7)

In addition, Uy (0) = P Uy — Px°Up. Comparing (4.7) with (4.3), we can derive an estimation
like (4.5). But uy and @y are now replaced by Uy and Uy, respectively. Thus it suffices to
estimate ||PYUy — Py"Us||a and |G;(t, Un(t))],5 = 1,2. Let Un(t) = U(t) + Wi (t). Then

G1(t,Un(t)) = —(OWnN, Un(t))a,

Ga(t,Un (1) = —b(Wn (t), Wi (1), Un (1)) = 26(Wn (), U (), Un (1))

Clearly
|G1(t, Un ()] < cllUn @)} + clldWnll3-

Next, we have that

bW (), W (1), Un (8)] < u|UN(D)F 4 + EIIU(t)IIEO,AIIWN(t)IIi-

We can estimate |b(Wy (t),U(t), Un(t))| similarly. Finally we use Theorems 3.3 and 3.4 , and
the above estimates to obtain the following result.
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Theorem 4.2. Let r1,r5 > 1 and «a be the biggest integer for which a < ro. If U €
HY(0,T; H™2 (A, ) (H (A)), then for all 0 <t < T,

1
2

U () — un (@)L= (0,7:12(A))nL2(0,7: 1 (A)) < A (N{~™ + N;

3
w3

)

where d* is a positive constant depending only on u,c* and the norms of U in the mentioned
spaces.

Remark 4.1. We can use the Laguerre spectral method with the mode N to solve (2.2),
see Guo and Shen [6]. Let r > 1 and a be the biggest integer for which a < r. If U €
H'(0,T; H" (A, o) ( H(A)), then for all 0 < ¢t < T,

1U(8) = un ()] (0,:22(ap ez 0,13 () < d*NZ 5.

Comparing this fact with Theorem 4.2, we know that the composite Legendre-Laguerre spectral
method improves the accuracy.

Remark 4.2. Theorem 4.2 shows the spectral accuracy of (2.8). But the error estimate is
not optimal, since (3.11) and the estimates for |Gy (¢, Un(t))| and |G2(t, Un(t))| are not very
precise. The main reason is that so fare, we can not use a duality argument to derive a better
estimate for ||P]1,’0v — v||a. This is an open problem in the Laguerre approximation. Indeed,
it is caused by the index « in the definition of the space H"(A2,a). Recently Mostroianni
and Monegato [11] introduced another space without the index a, and got nice approximation
result. It was used for numerical solutions of certain integral equations. But it still seems
difficult to use it in the duality argument for deriving the optimal estimation of ||Px%v — v]|4.

5. Two-Dimensional Problems

As pointed out in the first section, a more important motivation of this work is to use it for
multiple-dimensional problems. In particular, it is also available for exterior problems.

We first consider the domain Q = {(z,y) | —1 <z < 00, 0 < y < oo}. We divide it into
two subdomains ©; and s,

O ={(z,y) | —1<z<1, 0<y<oo}, D ={(z,y) | 1<z <00, 0<y < o0}

In this case, we take the composite weight function as

(z.9) e Y, in Q4,
wir,y) = .
el=2=v, in Q.

Let M = (My, M) and N = (N1, N»). The approximation space Vs n is defined by

M; Nj
Vi ={veH'(A) [v]g; =vw Y Y o8, GY  (x,9),j =12}

mj:0 TLJ'ZO

where

() ) Li(z)Lx(y), j=1,
Gis(my) = { Ll -DE), =2

This approximation can be used for numerical solutions of differential equations in this domain.
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We next consider a non-rectangular domain €2 which is divided into three subdomains €, (25
and Qg,

O ={(r,y) | —1<z<1, 1<y<oo},
M ={(z,y) | 1<z <00, 1<y < oo},
Q3 ={(z,y) | 1<z <oo, 0<y <1}

In this case, we take the composite weight function as

el_y, in Ql,
el in Q3.

Let M = (My, M2, Ms) and N = (N1, N2, N3). The approximation space Vi n is defined by

M; Nj
Vin ={ve H'(A) [vlg, =vw Y Y o) GW | (z,y),j =1,2,3}

mj=0n;=0

where
' Ly(x)Li(y — 1), =1
Grlay) =< L@-DLy-1), =2
,Cl(l‘ - 1)Lk(2y - ].), ] =3.

This approximation can be used for numerical solutions of differential equations in this non-
rectangular unbounded domain. We also can mix this method with the technique in Section 2
to develop some more precise algorithms. For instance, we divide Q1,2 and {23 into several
subdomains near the corner (z,y) = (1,1), and so simulate the exact solutions more precisely.

We now deal with an exterior problem. Assume that the obstacle is a square Qo = {(z,y) | —
1 < z,y < 1}, and the differential equation is defined in the domain = R? —€y. We decompose
it as Q = U§:1 Q; where

O ={(z,y)] —1<z<1,1<y< 0}, Qo ={(z,y)] —0o<z<-1,1<y< o0},
Qs ={(z,y)] —0o<z<-1,-1<y<1}, QU={(z,y)] —o<z<—-1,—00<y<—1},
Qs ={(z,y)] —1<z<],—co<y< -1}, Q={(z,y)] 1 <z <o0,—00<y<—1},
Q ={(z,y)| 1 <z <o00,-1<y <1}, Qs ={(z,y)| 1 <z <00,l<y<o0}.
The corresponding composite weight function is
( eyt in Q,
e?yt2, in Q,,
e+l in Q3,
e tyt2, in Qg,
w(z,y) = % vt in Q.
e~oty+2, in Qg,
e~otl in Q7,
[ emoTvt2 in Qg.
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The approximation space Vs v is defined by

M;  N;
VM,N = {U € Hl(A) | U|Qj = \/; Z Z ﬁ%z,n]ng,nJ (l',y),]. S .7 S 8}

ijO n]-:0

where
([ Li(2)Li(y — 1), j=1,
Li(—z —1)Li(y — 1), J=2,
®), j=3,
(—y—1), =4
(—y—1), j=5,
)L(=y — 1), j =6,
)Lk(y), J=T,
)Li(y — 1), Jj=28.
If we want to describe the exact solution near the obstacle more precisely, then we can use the
domain decomposition 2 = U;il Qy,

GV)(z,y) =

\El

O ={(z,y)] —1<z<],1<y<2}, D ={(z,y)] —2<z<-1,-2<y<2},

Qs ={(z,y)] —1<z<],-2<y< -1}, Q={(z,y)]1<x<2,-2<y <2},

Qs = {(z,9)] —2<2<22<y<ocl, Q={(ny)| —w<z<-2-2<y<2},
Qr={(z,y)] —2<2<2,—0<y< -2}, Q={(z,y))|2<x<00,-2<y<2}

Qg ={(z,y)] —0o<z<-2,2<y<o0}, Qo={(z,y)] —0<xr<-2-00<y< -2},
O ={(z,y)|2<z<00,—c0<y< -2}, Q={(z,y)|2<z<00,2<y <00}

We can construct the composite weight function and the corresponding approximation space in
the same manner as in the previous paragraphs. Clearly we approximate the solution by the
Legendre approximation near the obstacle (2.

In practice, the obstacle {2 may not be a square. Assume that it is contained in a square. In
this case, we take the Legendre-like interpolation points as the nodes on the external boundary
of this square. Then we use finite element method in this subdomain, and use the Legendre-
Laguerre approximations and the two-dimensional Laguerre approximations in the remaining
unbounded subdomains. We shall report the related results in the future.
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