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Abstract

This paper presents a new method for solving the basic problem in the “model-
trust region” approach to large scale minimization: Compute a vector & such that
ta"Hz + ¢’z = min, subject to the constraint [|z]]; < a. The method is a
combination of the CG method and a projection and contraction (PC) method.
The first (CG) method with zyp = 0 as the start point either directly offers a
solution of the problem, or—as soon as the norm of the iterate greater than a, —it
gives a suitable starting point and a favourable choice of a crucial scaling parameter
in the second (PC) method. Some numerical examples are given, which indicate
that the method is applicable.

Key words: Trust region problem, Conjugate gradient method, Projection and
contraction method.

1. Introduction

Let H be a given n X n symmetric positive semidefinite matrix and ¢ € R". In
this paper we consider the following quadratic programming with a simple quadratical

constraint )
ExTHx + 'z = min (1)

st |z|2 < a,

where the parameter ¢ is prescribed. This problem occurs frequently in trust region
method for unconstrained optimization [1]. A number of approaches for solving (1)
have been proposed in the literature [2,3,6,12-16]. One technique is to approximate
a Lagrange multiplier A by Newton’s method. The approximation of this parameter
may be quite delicate, however, and involves the computation of a sequence of singular
value decompositions [5]. Since the SVD is too costly for large matrices, the method
is applicable only for small problems. The advanced interior point methods could also
be used to solve problem (1) and seem attractive, because one can show that these
methods converge at a polynomial rate, see e.g. [11]; however, each iteration of an
interior point method has to solve a system of linear equations and therefore is rather
expensive.

For large and sparse problems, Golub and von Matt [6] presented a method, which
uses a series incomplete decompositions and yields a sequence of upper and lower bounds
on the Lagrange multiplier and enables them to compute an approximate solution x
from these bounds via solving a system of linear equations.
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Recently, we proposed some projection and contraction (PC) methods [7,8,9] for
solving a class of linear variational inequalities, which can be applied to solve problem
(1). One of the PC method is rather inexpensive and very simple to realize, because each
iteration of the method consists essentially of a matrix vector product and the method
does not need to solve any systems of linear equations. However, the performance of
the PC method strongly depends on the scaling of H and c.

In this paper, we show—in theory as well as for some numerical examples—that
the Lagrange multiplier must be small if the PC method converges slowly. We will
pay particular attention to the problem of ill-conditioning and propose an alternative
simple (CG-PC) method for solving problem (1). The method start with z° = 0, if
a > ||[H*¢||, the CG method solves the problems, otherwise, as soon as a ||z| > a,
we get the information about a proper scaling parameter for H and ¢, and switch to
use some simple projection and contraction (PC) methods [9]. For large trust region
problems, the presented method is as simple as the Goldstein’s fundamental projection
method [4], in addition, as the numerical results will show, it is almost as powerful as
the method proposed by Golub and von Matt [6].

1.1. Outline and notation

The equivalent linear projection equation is given in Section 2. In Section 3 we
briefly quote some convergence facts of the CG method [10] and the PC method [7,8,9].
In Section 4 we study the convergence behaviour of the PC method and analyze how
to treat ill-conditioned problems. Further details of our method are given in Section 5.
In Section 6 we present some numerical results.

We use the following notations. A superscript such as in ¥ refers to specific vectors
and k usually denotes the iteration index. By ||v|| we denote the Euclidean norm of
some vector v, by ||v]|¢ and the norm (vT'Gv)'/? induced by a positive definite matrix
G, and by ||H|| we denote the spectral norm Apax(H) of some symmetric matrix H.
HT denotes the pseudoinverse of a matrix H. Finally, by z* we denote the solution of
the problems.

1.2. Basic observations

An immediate observation regarding problem (1) tells us, if the dimensions of the
matrix H are small and a singular value decomposition of H can be computed in
moderate time, then for a > ||H " c|| the solution x = H "¢ can be computed from the
singular value decomposition of H, and for a < ||H"¢| problem (1) is equivalent to
finding a value A > 0 such that

'(H+ M) 2c—da2=0. (2)

(Given such ), the solution z is given by z = —(H + AI)~!c.) The derivative with
respect to A of the right hand side is —2x” (H +AI) ™3z, and is thus computable directly
from the singular value decomposition of H = VISV by observing that (H + AI)~! =
V(% + pI)~'V. Thus some modifications of Newton’s method seem appropriate for
solving (1), see e.g. [13]. In the following we will assume that H is large and sparse,
and does not allow a singular value decomposition in moderate time.

2. The Equivalent Projection Equation
The Lagrange function of problem (1) is
L(z,\) = a" He 4 2"z + A(a'z — a?), (3)

which is defined on R™ x R4. The Kuhn-Tucker Theorem of convex programming tells
us that z* is a solution of (1) if and only if there exists a A* > 0, such that (z*, \*)
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satisfies
Hz+c+ Xz =0 (4)
and . ,
> <
)\_0% T az:_a (5)
A (ztz—a®)=0.
Let

Q={zeR"||z]: < a}
and Pq(+) denote the projection on €, i.e.,

x if |z|| < a
Pg(x) = ax

——  otherwise.

]l
Note that the numerical computation of Py is extremely simple. Moreover, the feasi-
bility and complementarity condition (5) (in the case z # 0) can be written as

z = Po(z + \). (6)

Substituting (4) in (6), we get the following linear projection equation (abbreviated to
LPE)
(LPE) z = Polz — (Hz + ¢)]. (7)

It is easy to verify that (7) is equivalent to (4) and (5). Thus, solving problem (1) is
equivalent to finding a zero point of the residue function

e(z) ==z — Polr — (Hz + ¢))]. (8)

Therefore, we can view x as an approximation to the solution of (1), if ||e(x)| < € for
a given € > 0. Note however, that e(x) is not invariant under multiplication of H and
¢ by some positive scalar, but clearly problem (1) is so. For example, if H and ¢ are
multiplied by some small positive scalar such that [|c[| < €, the point 2 = 0 satisfies
lle(z)|| < e. Similarly, the quantity ||e(x)]||/||c|| is not a reliable stopping criterion either,
as it tends to zero (for fixed z and Q) as H and ¢ are multiplied by large positive scalars.
In Section 5 we therefore propose a modified stopping criterion. In the following we
denote the solution set by X*. Since €2 is compact, X* is nonempty.

3. Review of the CG Method and the PC Method

In this section, we summarize some facts from the CG method and the PC method.
3.1. The CG method
The CG method [10] for minimizing a convex quadratic function is an exact line
search method
gF L = gk sk
in which 0 0
s =g, /30 = 07

k4l _ k4l k
s"Th = g" 4 Brs,

T
/Bk B gk—l—l gk—l—l
_ A
gk gk
T
g4k
o
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and
g=Hz +c

It is well known [10], that if H is symmetric and positive semidefinite, the CG method
for solving Hx + ¢ = 0 terminates after m < n steps, and the following hold for all 4,
1<e<m,

st Hsl = 0,
g g =0, j=0,1,...,i—1
giTsj =0.

Let  denote H "¢, it was proved [10] that for k < m
lz** = &|| < Jla* - Z]].
In following we prove another property of the CG method, which is useful for the
construction of the presented method.
Theorem 1. If the CG method start with 2° = 0, then for all k < m

Iz > 12"

Proof. Using

ab = — (s + -+ ag_1 s
we have
12" 112 = fla® — as®|?
= ||=|1® + ZakskT[aoso + o F g1 5P 4 adsF )12
Note that for j < k,
sk = 51" (g + B8N = ooy T s

Since for all 7, 0 <4 <m, a; > 0 and §; > 0, the assertion is proved.

3.2. The PC method

In [9] we suggested some basic projection and contraction methods (abbreviated
PC methods) for solving linear projection equation (7). The search directions of the
PC methods in [9] are constructed based on the residue e(z) of the projection equation.
The iterative scheme of these methods is

et = aF — p(a¥)Qe(a"), (10)

with different matrices () and steplength p. For trust region problem in large scale
optimization, only the method without matrix factorization is in consideration, hence,
we report a method of the steepest descent type that have been defined in [9].

In the PC methods of S-D type

le(x)[?
T(I'+ H)e(z)"

Q=1 o) = (1)

As was shown in [9], the method has the following contractive property.
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Theorem 2. (Theorem 2 in [9]) The sequence {z*} generated by PC method for
(LPE) satisfies

k k k
12t = 2% < lla* = 2" [IE = p(a®) - lle(a")|?

—2p(z%) - (zF — ¥V H (= — %) Vz* e X* (12)

where
G=1+H. (13)

Using Theorem 2, it is easy to prove the following convergence result.

Corollary 1. (Theorem 6 in [9]) The sequence {z*} generated by PC method
converges to a solution point *. Moreover, if H is positive definite, then the method
1s globally linearly convergent.

4. The Convergence Behaviour of the PC Method

Let (z*, \*) be the solution of the Lagrange equation (4) which satisfies the feasi-
bility and complementarity condition (5). In the case that ||H"c|| > a, it is clear that
|z*|| = @ and A* > 0. First, we give the following lemma.

Lemma 1. Let Q@ = {z € R" | ||z|| < a}, u,v € R, a < ||v|| < ||u||, (v —v) L v
and ||u — v|| < ||u|| — a. Then we have

[Pa(u+2) = Pa(u)|| < ||Pa(v) — Pa(u)ll,  Vz e R" with ||z]| < [lu—wvl  (14)
and
[Po(v) — Po(u)]| o a
[0 — ul = ol
Proof. The arguments follow immediately from the elementary geometry, and the

details are omitted.
From (14) and (15) follows that

(15)

allz]]

[1Pa(u+ 2) = Po(u)|| € ===
[lull* — [|=[*

Vz € R" with |z]| < |lu|| — a. (16)

The following theorem shows that, if A* > 0 is sufficiently large, then e(z) is large

relative to ||z — z*|| and thus by Theorem 2, the PC method converges fast.
Theorem 3. Let H be positive semidefinite, (*, \*) be the solution of the Lagrange

function with ||z*|| = a and X* > 0. If |[I — H|| < 1+ 0X*, for some 6 < 0.8 then

(4 — 5O)A*

>
le(@)ll 2 s

le — ]| (17)

forallz €e X :={z € R" | (I — H)(z — z*)|| <0.6\"a}.
Proof. First,

le(@)|| = llz — 2" = {Palz — (Hz + )] — z7}|

>z — | - | Palz — (Hz + ¢)] — 2. (18)

Using z* — (Hz* 4+ ¢) = (1 + X\*)z* and z* = Po[(1 + A*)z*] we have

[Pole — (Hz + ¢)] — ™| = | Pa[(1 + A")z™ + (I — H)(z — z7)] = Pa[(1 + A")z"]||.
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Under the assumptions ||(I — H)(z — z*)|| < 0.6A*a and by using (16) follows that

[1Pa[(1+A)z" + (I = H)(z — z%)] = Po[(1 + A")"]|
1

(= H)(z = 27|

<
~ V(1 +2*)2 — (0.6)1%)2
Finally, using ||[I — H|| < 1+ d\* we get

| Po[z — (Hz + c)

5+ 50N
54 4)F

* 1 * *
|- ||Sm'(1+5>\ Mz — =]

o — 2.

(19)

Substituting (19) in (18) we get the assertion of this theorem.

On the application of the PC method of S-D type

In the method of steepest descent, each iteration essentially consists of one pro-
jection on © (when computing e(z)), and the computation of Hz and He(x). These
operations are extremely cheap. Nevertheless, Theorem 3 implies that, when A* > 0
is sufficiently large, even if H is ill-conditioned and the method of steepest descent is
used, then locally the sequence {z*} converges to the solution z* rapidly.

This result can even be globalized in the following sense. Notice that problem
(1) and hence also (7) is invariant under multiplication of H and ¢ by some positive
constant. Hence we may assume that the norm ||H|| of H is adjustable according to
our needs, and the assumption of Theorem 3 can trivially be satisfied by scaling H such
that ||H|| <1 which implies that || — H|| <1, i.e. 6 =0 in Theorem 3. (This follows
since H is positive semidefinite). In this case, in the method of the steepest descent
p(z) > 5. Using G = I + H, (12) and (17), it follows that

1
|28 = 2l <l = 21l = Slle@™)” - (@ — 2T H(z" - 27)

1 (42%)?
2 - AT Lk 2
1 (4x%)?

<1__'7 k_*Z
<(1-5 gramp)le e

< Jla® — | gt (20)

for all z with ||z — z*|] < 0.6A\*a. Now observe that for |H|| < 1 it follows that
lz*|l¢ < av2, and since ||z¥ — ¥ (—my2 < |lzF — 2*||¢ < V2, the second assumption
of Theorem 3 (namely ¥ € X, ie. ||(I — H)(z" — 2%)|| < 0.6A*a}) is satisfied by
all iterates z* if the steepest descent method is started at z° = 0 and \* satisfies
A* > 54/2/3 ~ 2.4. From (20) we also obtain that in this case the rate of convergence
is at least 0.787 that is after at most 10 iterations the error is reduced by a factor of
10. Such rate of convergence is sufficient for most purposes since each iteration is very
cheap.

Summarizing we observe that if the steepest descent method does not converge
rapidly, then A* < 2.4 must hold true (independent of the condition number of H).
This bound “A\* < 2.4” is certainly weaker than what we expect in practice. Indeed,
in our numerical examples below, much smaller values of A* still allowed a reasonable
rate of convergence of the steepest descent method.

On the PC method of the S-D type with scaling
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As we have just seen, the numerical solution of problem (1) might be difficult, only
when H + \*I is ill-conditioned that is when A* is small. In the following we illustrate
how to treat such ill-conditioned problems.

Note that if ||z — (Hz + ¢)|| < «, then e(z) = Hx + ¢, and problem (1) is related
with the problem of solving a linear equation

Hz +c=0. (21)

When H is ill-conditioned, the iterative scheme of Levenberg-Marquardt for solving
equation (21) is

of = 2k — q(zh), (22)
where

d(z) = (ol + H) Y(Hz + ¢) (23)

1
and o > 0. Let 4 = —, then d(z) in (23) can be written as
o

(I+pH)™ - p(Hz + c). (24)

Based on this idea, instead of taking H and c in (8) and (11), we should use pH and
pe in the practical computation, i.e., we take the following iterative scheme:

M = b (14 pH) Mok — Pole* — p(Ho* + 0]}, (25)

From Theorem 2 follows that, for all z > 0, the sequence {z*} generated by recursion
(25) satisfies

1540 = a2, e < N = 2 s e — llela, ), (26)
where
e(z,n) =x — Polz — p(Hz + ¢))].

Inequality (26) will not guarantee a fast rate of convergence if ||e(z*, 11)|| is small com-
pared to [|zF — z*||(14um)2- In the following we show that (locally) the parameter
p = 1/X* is a “good” choice in that for this choice of ;1 inequality (26) implies a fast
linear convergence if z¥ is already near the optimal solution z*.

For p = 1/A* we obtain

I

lz = 2|1 prrye = I+ pH) (@ = 2)|° = ||z + pHz + pcl|.

We compare the above distance of = and —u(Hz + ¢) with |le(z,p)|| and set v =
z+ p(Hz +c),

le(z, Wl = llz — Palz — p(Hz + o)]l| = |z — Pa[22 — ]|

Now, for z near z* we have ||z|| = a and x = —u(Hz + ¢). Furthermore, in this case z
is nearly orthogonal to v. Up to a relative error that tends to zero as x approaches x*
we may therefore conclude that

1
lz = P2z —v][| 2 5 llv,
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ie. [le(z,p)|| > &z — T*|| (142 But in this case, inequality (26) implies convergence
at the rate of 1/0.75, that is after at most 16 iterations the error ||z* — z*||g is reduced
by a factor of 10.

We note again, that if the ideal parameter p = 1/\* was known, and also a fac-
torization of I + uH was given, then the optimal solution could be computed directly
from this factorization. However, A* is unknown, and the factorization of I + pH is too
costly, therefore, the above analysis is only a motivation of how to aim at an alternative
scheme (25).

In order to avoid the expensive factorization of I + uH, instead of the iterative
scheme (25), we take the recursion

et =ab — p(a®, p){a® — Pole® — p(Ha" + )]}, (27)

where

le(*, p)|I?

() (L pH ) e(F, )

We call the method a PC method of S-D type with scaling. Again from Theorem 2
follows that, the sequence {z*} generated by recursion (27) satisfies

ka-}—l

p(xkv p) =

e iy < e — @ By — ol W), w1 (28)

5. The Implementation of CG-PC Method

In general, we don’t know whether |LH *¢|| < a. Therefore, we begin the solution
process of (1) by taking starting point z° = 0, and solve the linear system Hz 4+ ¢ =0
by using CG method. From Theorem 1 we know that the iterates {z'}; I = 0,...,n,
satisfies |2/ 1| > ||z/||. This means, that [|[H¥¢c| > a (hence ||z*|| = a and A* > 0) if
and only if there is a | < n with ||z!|| > a. We use the iterative step of the CG method
until an iterate ||2'|| > a or the iteration number I equal to n.

(Scheme 1)
2% =0, While |z <a and [ <n compute z!™! by a CG step.

If |#Y] < a, I = 0,...,n, then the iterate 2" generated by CG method solves the
linear system Hz + ¢ = 0 and is a solution of the problem (1). Otherwise, as soon as
|z!|| > a, (I < n), we take 2° = ax'/||z!|| as the new starting point and turn to use
recursion scheme (27) of the PC method. The remaining question is how to choose a
parameter g in (27). From the analysis in Section 4, we know, that for the local fast
convergence, an ideal choice of the parameter p is p = 1/A*. Unfortunately, we do
not know A*—if we did, we could compute z* directly by solving the linear equation
(H+ X1z +c=0.

It seems reasonable to view z° as an approximation of z*. Because \*z* = —(Hz*+
c), we take
_ a
= HZ +
as the parameter in practical computation and use the following iterative scheme:
2 = 70,
k _ .k k_ k
(Scheme 2 %) = = Pl = (o +)
xk—l—l :xk_ ||6($ HU‘)“ e(xlc”u)7 kE=0,1,...

(@) (I + pH)e(aF, 1)
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Because ||z*|| = a, the stopping criterion for iterative Scheme 2 is if both

2] —a

a

<e, and mﬂ{“dﬂﬂdewn}Sg
« allc||

are satisfied for some tolerance ¢ > 0. Clearly as the norm of the optimal solution is
a, we have to divide the vector e(x) by a to obtain some sort of relative error. On the
other hand we have seen following definition (5) that e(z) also varies with the scaling
of H and ¢, so e(z) should be divided by the minimum of 1 and |¢[|. Since in our
examples below al|c|| was always greater than 1 we only took the square root which
resulted in the above stopping criterion.

A summary of CG-PC method is given in following:

The CG-PC Algorithm for quadratic problems
given K and € > 0.
done:= false
[:=0
z:=0
while not ||z|| < ¢ and I < n do
Compute a new iterate z via a CG step

l=1+1
end
if | = n then done:=true
else
k=0
p ar
|l
o a
P H e + ¢
end

while not done and k¥ < K do
e(z,p) =z — Polr — p(Hzx + ¢)]
e, p)|I”
e(z, )" (I + pH)e(z, n)
z =1 — p(z, ple(z, 1)
T el e
if max{ el @

p(z, 1) =

]l —a

} <e done=true
a

end

6. Numerical Results

In this section we present numerical results for the trust region problem in large scale
optimization. We form test problems of type (1) with H = A”A and ¢ = —A”b as in
[6]: The matrix A is constructed synthetically such that it has a prescribed distribution
of its singular values. This is accomplished by setting

A:=UxvT,
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where
T
i
v=1,-2—-:;,
" ull3
T
V=I,-2—,
vll3
are Householder matrices and
Y = diag(og)

is a m x n diagonal matrix. The vectors u, v and b contain pseudorandomnumbers:

uy = 13846
w; = (31416u; | + 13846) mod 46261 i =2,...,m
v = 13846
vj = (42108v;_; + 13846) mod 46273 j =2,...,n
by = 13846

b; = (45278b;_1 + 13846) mod 46219 i =2, ..., m.

As in [6], we take ¢ = 5 - 107% and only test the problems with a < ||H ¢c||.

The code was written in FORTRAN. The calculations have been performed on a
486 personal computer (without Weitek coprecessor). In following tables [ indicates the
step number by using CG method until ||z!|| > a, k denotes the iteration number by
PC method until the convergence criterion was met. Since the termination criterion of
PC method was checked every fifth iteration, the iteration numbers (k) are multiples
of 5.

Example 1. In the first set of test problems we take m = 2000, n = 1000 and

set o, = cos nk—fl + 1,k = 1,...,n. The singular values of matrix H = AT A tend to

cluster at the endpoints of the interval [0,4]. Cond(H) = Cond(ATA) = 1.65 - 10!
and ||[H*c|| = 4.37 - 10°. Table 1 presents the test results for problems with a =

1000, ...,107, respectively.

Table 1.1 Results of CG-PC method with scaling

m n |H || a l 7 k
2000 1000 4.37-10° 107 1 0.01 10
2000 1000 4.37-10° 10° 1 0.14 15
2000 1000 4.37-10° 106 7 11.05 120
2000 1000 4.37-10° 2-10° 20 47.17 375
2000 1000 4.37-10° 3.10° 36 97.13 690
2000 1000 4.37-10° 5-10° 63 215.32 1100
2000 1000 4.37-10° 8.10° 111 573.93 1765
2000 1000 4.37-10° 107 146 867.98 2625

Indeed, a proper choice of parameter y in PC method scheme (27) is necessary for
fast convergence. For the same problems, if the problem is somewhat ill-conditioned
and we take u = 1, the method needs more than 5 times of the iterations that the
method with scaling needs. We report the test results in Table 1.2.
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Table 1.2 Numerical results of CG-PC method without scaling

m n |HFc|| a l U k
2000 1000 4.37-10° 2-10° 20 1 1495
2000 1000 4.37-10° 3-106 36 1 3445
2000 1000 4.37-10° 5-106 63 1 8690
2000 1000 4.37-10° 8106 111 1 > 15000
2000 1000 4.37 - 10° 107 146 1 > 20000

The Goldstein’s fundamental projection method [4]
o* = Po[e? — a(HzF + ¢)]

with a constant step length 0 < « < 2/||H|| is proved to be convergent. Since the
singular values of the matrix A in our test problems tend to cluster at the endpoints of
the interval [0, 2], the constant step length can be taken in (0,0.5] (because ||H| < 4).
The iteration of fundamental projection method is very cheap. However, as Table 1.3
shows, it converges much slowly than CG-PC method.

Table 1.3 Numerical results of Fundamental Projection Method
m n 1H || a I ka=05) k(a=0.25)
2000 1000 4.37-10° 2-10° 20 2160 2900
2000 1000 4.37-10° 3.10° 36 5120 6610
2000 1000 4.37-10° 5-10° 63 11325 16610
2000 1000 4.37-10° 8-10° 111 > 20000 > 20000
2000 1000  4.37-10° 107 146 > 20000 > 20000

Example 2. The second set of test problems is also the same in [6]. We take
m = 20000, n = 10000 and set o = exp ﬁ(’fo, k = 1,...,n. In these problems,
Cond(H) = Cond(AT'A) = 4.85-10% and |H T¢| = 1.29 - 10°.

Because the problems size is too large for a personal computer, and our main interest
is to test the efficiency of the presented method, for this set of test problems, instead
of solving

min{[[USVTE = b | [I¢]] < o}
we let z = V1'¢ and solve the numerical equivalent problem
min{||Zz — U] | ||z]| < o}

In other words, we solve problems of form (1) with H = X% and ¢ = —XTU"b. The
test numerical results are given in Table 2.

Table 2 Results of CG-PC method with scaling

m n |H || a l U k
20000 10000 1.29-10™ 107 1 0.02 10
20000 10000 1.29 - 10%° 10° 1 0.19 15
20000 10000 1.29 -10'° 10° 1 3.37 20
20000 10000 1.29 - 10%° 107 12 86.58 165
20000 10000 1.29-10'° 108 116 2572.47 1575

For the same problems, we see that the CG-PC method is as powerful as the method
in [6]. Although the CG-PC method needs about three times iterations that the method
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in [6] needs, but each iteration of the CG-PC method is very cheap. In addition,
we don’t need solving a linear least squares system, as the method in [6] finally did.
Therefore, it seems that the CG-PC method is an alternative acceptable method for
solving trust region problem in large scale optimization.

7. Conclusions

We presented the CG-PC methods for solving trust region problem in large scale
optimization. The method is simple to implement and more efficient than other cheap
methods (e.g. fundamental projection method) in literature. The numerical results
show, that the CG-PC method produce an acceptable (see the relative residue-error

M and the relative norm-error |@ — 1] of ), approximate solution z in a moderate
number of iterations, even if the problems are somewhat ill-conditioned.

However, we would like to point out, that the recursion (27) without matrix factor-
ization belongs to PC methods of the steepest descent type [9], which is not appropriate
for solving ill-conditioned problems.

Acknowledgment. The author would like to thank Dr. F. Jarre for some valuable
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