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Abstract

The Newton method for variational inequality problem is locally and quadrat-
ically convergent. By using a differentiable merit function, Taji, Fukushima and
Ibarakil!l have given a globally convergent modified Newton method for the strongly
monotone variational inequality problem and proved their method to be quadrati-
cally convergent under some additional assumptions. In this paper we propose to
present a trust region-type modification of Newton method for the strictly mono-
tone variational inequality problem using the same merit function as that in [1]. It
is then shown that our method is well defined and globally convergent and that,
under the same assumptions as those in [1], our algorithm reduces to the basic
Newton method and hence the rate of convergence is quadratic. Computational
experimence indicates the efficiency of the proposed method.

Key words: Variational inequality problem, Trust region method, Global conver-
gence, Quadratic convergence.

1. Introduction

Let S be a nonempty closed convex subset of R™ and let F : R — R" be a
continuous mapping. The variational inequality problem

Find z* € S such that (F(z*),z —2") >0 forallz € S (VIP)

is widely used to study various equilibrium models arising in economic, operations

research, transportation and regional sciences!23l

, where (-, -) denotes the inner product
in R™. Many iterative methods for (VIP) have been developed, for example, projection

methods!™8], the nonlinear Jacobi method®), the successive overrelaxation method!?!
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[10,11]

and generalized gradient method These methods usually converge to a solution

of (VIP) under certain conditions on the mapping F' and rates of convergence are

generally linear2512],

It is well known that Newton method for nonlinear equations and unconstrained
minimization problems converges locally and quadratically. For (VIP), Newton method

k+1

generates a sequence of iterates {z*}, where 2**! is a solution of the linearized varia-

tional inequality problem
Find z € S such that (F(z*) + VF (2" (z —2¥),y —2z) >0 forally € S.  (0)

It has been shown that[®/, under assumptions that z* is a regular solution of (VIP) and
V F(z) is Lipschitz continuous around z*, the sequence converges quadratically to x*
if the starting point ¥ is sufficiently close to z*.

Recently, Marcotte and Dussault (1989), Taji, Fukushima and Ibaraki (1993) pre-
sented a globally convergent Newton method for (VIP) by incorporating line search
strategies. Marcotte and Dussault’s method uses the gap function g(z) = max{(F(z),z—
y)|y € S} as a merit function. The function g is generally nondifferentiable and achieves
its minimum at a solution of (VIP) on S. The set S is assumed to be compact in or-
der that the function g is well-defined. It is shown that when F' is monotone, the
method is globally convergent when line searches are exact and that under the joint as-
sumptions of strong monotonicity and strict complementarity, the rate of convergence
is quadratic. Taji, Fukushima and Ibaraki’s method employes a differentiable merit
function proposed by Fukushimal®/, whose minimizer on S coincides with the solution
of (VIP). The method allows inexact line searches and does not rely on the compact
assumption of the set S. When F' is strongly monotone, the method is globally conver-
gent and, under additional assumptions that the set S is polyhedral convex, VF(z) is
locally Lipschitz continuous and strictly complementarity condition holds at the unique
solution z* of (VIP), the rate of convergence is quadratic.

In this paper, we propose a trust region modification of Newton method for (VIP).
Fukushima’s differentiable mertit function is used. When F' is strictly monotone rather
than strongly monotone, the proposed algorithm is well-defined and converges globally
to the unique solution of (VIP). Under the same assumptions as made in [1], it is
shown that for k sufficiently large, no trust region subproblem involves, therefore, the
algorithm reduces to the basic Newton method and hence the rate of convergence is
also quadratic.

The paper is organized as follows. In section 2, we review some preliminary results
of the monotone mapping F and the merit function that are useful in the subsequent
sections. In section 3, we present our trust region-type modification of Newton method
for solving monotone variational inequality and prove that it is well defined. In section
4, we establish a global convergence theorem without the assumptions that F' is strongly
monotone and S is compact. The rate of convergence of our algorithm is given in section
5. In section 6, we present some computational results.
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2. Preliminaries

In this section, we summarize some basic concepts of monotone mapping F' and
Fukushima’s differentiable merit function and their properties used in subsequent sec-
tions.

A mapping F : R" — R" is said to be monotone on § if

(F(z) — F(2'),z — 2’y > 0 for all z,2’ € S

and strictly monotone on S if strict inequality holds whenever z # z'. If F is contin-
uously differentiable and its Jacobian matrix VF(z) is positive definite for all z € S,
ie., (d,VF(z)d) >0 for all z € S and d € R" (d # 0), then F' is strictly monotone on
S. Note that VF(z) may not be symmetric. A mapping F' is said to be strongly (or
uniformly) monotone with modulus > 0 on S if

(F(z) — F(z'),z —2') > pl|lz — &'||> for all z,2" € S (1)
When F is continuously differentiable, a necessary and sufficient condition for (1) is
(d,VF(z)d) > p||d||* for all z € S and d € R™.

It is clear that strongly monotone implies strictly monotone.

Let G be any given n xn symmetric positive definite matrix. The G-norm projection
of a point z € R" onto a set S, denoted by Projs c(z), is defined as the unique solution
to the following constrained optimization problem

minimize ||y — z||g subject to y € S,

where |z||¢ = (z,Gz)'/? denotes the G-norm of a vector z in R™. The projection
operator Projg g(-) is nonexpansive [14, Proposition 3.2], i.e.,

IProjs,a(z) — Projsa(z')lle < llz — 2'|lg for all z,2" € R" (2)

Suppose that an n X n symmetric positive definite matrix G is given and z € R" is
any given point. Since the problem

1
minimize (F(z),y — =) + §(y —z,G(y — x)) subject to y € S (3)
is essentially equivalent to the problem
minimize ||y — (z — G 1F(x))||% subject to y € S,

H(z) = Projs,(z— G 1F(z)) is the unique optimal solution of problem (3). It follows
from (2) that H : R™ — S is continuous whenever F' is continuous. The mapping H
yields a fixed point characterization of the solution of (VIP).

Proposition 2.156], Let G an n x n symmetric positive definite matriz and let
H(z) be the unique optimal solution of problem (3) for each given © € R". Then z
solves (VIP) if and only if x is a fized point of the mapping H, i.e., x = H(z).
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For any given z € S, the linearized variational inequality problem of (VIP) at z is
Find z € S such that (F(z) + VF(z)T(z —z),y — z) >0 for all y € S.

When F' is continuously differentiable and VF'(x) is positive definite, a unique solution,
denoted by z(x), exists. The mapping z : S — S has the following property:

Proposition 2.20. If F is continuously differentiable and strongly monotone on
S, then the mapping z : S — S is continuous on S. Furthermore, x is the solution of
(VIP) if and only if = satisfies x = z(x).

In fact from the proof of this proposition (see [1]) it can be concluded that when F
is continuously differentiable and its Jacobian matrix VF(z) is positive definite on S,
the second part of the proposition is also true.

For given mapping F' : R* — R™ and given n X n positive definite symmetric matrix
G, define the function f : R — R as

flz) = —(F(z),H(z) — z) — %(H(%') —z,G(H(z) — z)), (4)
where H(x) is the unique solution of problem (3). It has been shown that, for any
nonempty closed convex set S, the function f has the following property:

Proposition 2.3, If the mapping F : R* — R™ is continuous, then the function
f+ R" — R is also continuous. Furthermore, if F' is continuously differentiable, then
f s also continuously differentiable and its gradient is given by

Vf(z) = F(z) = [VF(2) - GI(H(z) - x). ()

Using the function f, an equivalent optimization problem can be formulated for any
variational inequality problem.

Proposition 2.4, f(z) >0 for all x € S and f(z*) = 0 if and only if z* solves
(VIP). Hence x* solves (VIP) if and only if z* solves the following optimization problem
and f(z*) = 0:

minimize f(z) subject to xz € S. (6)

Though the function f generally is not convex, it has the desirable property that, if
V F(z) is positive definite for all x € S, any stationary point of problem (6) is also a
global optimal solution of problem (6).

Proposition 2.5, Assume that the mapping F : R* — R" is continuously dif-
ferentiable and its Jacobian matriz VF(x) is positive definite for all x € S. If x is a
stationary point of problem (6), i.e., (Vf(x),y—x) >0 for ally € S, then x is a global
optimal solution of (6) and hence solves (VIP).

This proposition indicates that the function f can be used as a merit function for
a descent method to solve a kind of strictly monotone variational inequality problems.

3. Trust Region Method

In this section we present a trust region-type modification of Newton method for
solving monotone variational inequality problem. Throughout this section we assume
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that the set S is nonempty, closed and convex and that the mapping F' : R — R"
is continuously differentiable and its Jacobian matrix VF(z) is positive definite for all
z € S. We denote g(x) = Vf(x).

For given z* € S, consider the following linearized variational inequality problem:

Find z € S such that (F(z¥) + VF(2*)"(z —2%),2 —2) > 0 for all z € S. (LVIP (z¥))

The assumptions on F ensure that the linearized problem (LVIP(z¥)) always has a
unique solution z(z*) in S. If the set S is polyhedral convex, the problem (LVIP(z*))
can be rewritten as a linear complementarity problem and can be solved in a finite
number of steps by Lemke’s complementary pivoting method™3].

Trust region algorithms in [15, 16] for solving

minimize f(z) subject to z € S,

first solve an “easy” subproblem

minimize Q(y) = =M |ly||* + gj y subject to 2" +y € S, |ly|| < A,

DN | =

to get a solution y*, then compute a ¥, satisfying
Yr(y") <VQr(*), o" +5* € S and lg"] < A, v € (0,1),

1
as a trial step, where g¥ = g(z*), M > 0, ¢ (y) = inBky—i-g,{y and By, is a symmetric

matrix such that ||By|| < M. Note that 4* is an admissible choice of #*.

Now we state the trust region-type modification of Newton method for solving
monotone variational inequality problem as follows:

Algorithm VITR.

Choose z° € S, a € (0,1), 3 € (0,1), v € (0,1), M > 0 and let k = 0.

Step 1. If f(2*) = 0, stop.

Step 2. Find the solution z(z*) € S of problem LVIP(z*), let d¥ = z(2*) — z*.

Step 3. If f(z* +d*) = f(2(z¥)) < af(2*), then 2F+! = 2(z¥), k = k+ 1 and go to
Step 1.

Step 4. Let A = ||d¥||.

Step 5. Compute a global solution y* of the following problem:

o M .
minimize  Qk(y) = —-ly[* + gi'y subject to =" +y € 8, |ly|l < A (7)

Step 6. If
F@" + ) < f(2F) + Bai v (8)
then z#*t! = zF + ¥, A, = A, k =k + 1 and go to Step 1,
else let A = vyA and go to Step 5.

Remarks. (i). If f(z*) # 0 then z* does not solve (VIP) by proposition 2.4 and
hence d* # 0 by proposition 2.2.
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(ii). Note that Qx(y*) = 0 if and only if 2* is a stationary point of (6). In fact,
Qr(y*) = 0 if and only if 0 is a minimizer of (7). By the optimality conditions [14,
Proposition 3.1], 0 minimizes (7) if and only if (VQ(0),y — 0) > 0 for every feasible
point y of (7), i.e.,

(gk,y) > 0 for all y such that zF +y € S, ||ly|| < A,
which is equivalent to
(Vf(zh),z — 2%y > 0forall z € S.

When f(z*) # 0, ¥ is not a stationary point of (6) by propositions 2.4 and 2.5, and
hence Qk(y*) # 0, so we have Qi (y*) < 0 and gf'y* < 0 because y = 0 is feasible to
(7).

Lemma 3.1. Algorithm VITR is well defined. That is, if f(z¥) # 0, then z**1 is
obtained either in Step 3 or by repeating Steps b and 6 a finite number of times.

k+1 can be computed by repeating

Proof. 1t is clear that we only need to prove that x
Steps 5 and 6 a finite number of times if z¥*! is not obtained at Step 3.

Since f(z*) # 0, z* is not a solution and hence not a stationary point of (6) by
propositions 2.4 and 2.5. There exists a feasible descent direction d € R"\{0} such

that, for some A > 0, gf'd < 0 and z* + A\d € S for all A € [0,}]. For small enough
A
A > 0 such that —— < X\, it follows from (7) that

I1dll
Ad M A
—A? ra.
Q) < Qu(jgp) = FA+ gk
Thus,
T, k k T
— 9 Y .—Qk(y)<9kd
A=A S B A S g <%

By the definition of supremum, there exists A > 0 such that

T,k Td o
k¥ < IkZ &1 forall A € (0,A].

A7 2f|d|
ko ok _ #(k o
Define p(A) = f +yT)k f@) for A € (0,A], then
g Yy
A _f(w’“+y’“)—f( ) =iyt @ yt) — FeF) —giyt
() = 1] =] . <] 1 |
gr y* ctA
‘fx +y*) — f(a*) - gy‘
- cHly* |l
Therefore, by the continuous differentiability of f, we have
lim p(A) =1, (9)

A—0
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which implies that after a finite number of reduction of A, condition (8) must be
satisfied and z**1 is well defined.

4. Global Convergence

Since z* solves (VIP) if algorithm VITR stops at Step 1, it is assumed, without
loss of generality, that algorithm VITR generates an infinite sequence {z*}. The global
convergence of algorithm VITR is proved in the following theorem, where the notation
limg e i denotes the limit when £ — oo for all £ belonging to an infinite subset of indices
K CN.

Theorem 4.1 (global convergence). Suppose that the mapping F is continuously
differentiable and its Jacobian matriz VF(x) is positive definite for all z € S and that
the set S is nonempty, polyhedral, closed and convex. Then, for any starting point
20 € S, the sequence {z¥} converges to the unique solution of (VIP) whenever {z*} is
bounded.

Proof. If f(2* + d*) < af(2*) holds infinitely often, then klggo f(z*) = 0. Since f

is continuous by proposition 2.3, f(z) = 0 for any accumulation point # of {z*} and
hence z is a solution of (VIP). Since (VIP) has at most a solution (see [2, proposition
3.2]), it follows that  is the unique solution of (VIP) and that the entire sequence {z*}
has a unique accumulation point # and necessarily converges to .

Now we consider the case when f(z* + d¥) < af(2*) hold for only finitely many k.
In this case, the sequence {z*} is generated by Step 6 and satisfies (8) for & sufficiently
large. Let {z¥licx be any convergent subsequence of {z¥} and let z € S be its

limit point. If klnlf( |d¥|| = 0, then there exists an infinite subset Ky of K such that
€

lim ||d*|| = 0. Since d¥ = z(z*) — z¥ and lim zF = Z, we can obtain, if necessary,

keKy k€Ko

take the subset of Ky, that klir}r(l 2(z¥) = Z. From the continuity of f by proposition
€Ko

2.3 and the fact that f(z(z*)) > af(z*) by the algorithm, we have f(z) > af(z).
Therefore, as a € (0,1) and f(z) > 0, f(Z) = 0 and Z solves (VIP) by proposition 2.4.
If klglf( |a¥|| = ¢ > 0, then there are two posibilities:

(). jnof Ay =0, (10)
(ii). klg}; Ag > 0. (11)

If (10) holds, then there exists an infinite subset K; of K such that
kléIII(ll Ap=0 (12)

Let k; € K; be such that Ag < cforall k € Ky = {k € K; : k > k1}. Since we obtain
each Ay by reducing the radius ||d*|| > ¢, for all k& € K, before y* is accepted, there

must exist Ay = =k and the solution g* of
8

. M . -
minimize Qy(y) = 7|Iy||2 + giy subject to 2" +y € S, |yl < Ay
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does not satisfy (8), i.e.,
Fa* +7%) > f(a*) + B * (13)

— A
By (12) and ||§*|| < Ay = =% (k € K>), we have
Y

. ko
dim 57|l = 0. (14)

Assume that 7 is not a solution of (VIP). Then there exists a feasible descent
direction d € R™\{0} such that g(Z)Td < 0 and  + A\d € S for all A € [0,1]. The
polyhedral convexity of S and convergence of {z*},cx to Z imply that there exists
ko € K5 such that

Ad
xk+7GSforallkEng{kEngkag}andAG[O,l]. (15)

_k d
Let uf = “ﬁdH , then by (14) and (15), there exists k3 € K3 such that =¥ +u¥ € S for

allk€K4:{k€K3:k2k3}.
Since ||u¥|| = ||7*|| < Ak, from Step 5 we have, for all k € Ky,

_ _ M,
<) < Quta) = Fige + olgta

gkd
1]l

T =k M
s < Sl +

Then by the continuity of g(x) and (14), we obtain

i 967 9@
keKa [|7F| = ||d]| '

Hence, there exists co < 0, k4 € K4 such that

gky
7T

fla + 9% = f(a)

—{k€K4 k>k4}

For k € K3, let pp, = Tr , then
gLy
) fla® +7%) - f() 9r " fx+y) f(a*) — gf i
lpe — 1| = = k
gr it call gl

The continuity of g(x) and (14) implies klir}r(l pr = 1, which contradicts with (13).
€K

Therefore Z must be a solution of (VIP).
Now, assume that (11) holds. Since ’llr% ¥ = z and f(2*) is monotonically de-
€

creasing, we have that Ilir%[f(xkﬂ) — f(z®)] = 0. Moreover, we have, from Step 6,
€
F@*h) < () + Bgiy® < f(a*) + BQr(y"). Hence
lim, Qi (5") = 0 (16)

keK
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Define A = kmlf( A > 0, let 4 be the solution of problem
€

S

S = M - . -
minimizeQ(y) = —-[lyll* +g(7)"y subject to T +y € S, |ly| <

A
and k5 € K be such that ||z* — z|| < Bl forallk € K¢ ={k € K : k > ks}. If we define

¢ =z — 2% + 7, then we have

Izl = Iz — 2" + 7]l < |z — 2" + |7l <A < Ay for all k € K.
Since 2% + zF = 7 + g € S, from (7) we have
Qk(y") < Qi(*) for all k € K. (18)

Combining (16) and (18), we have

Sy — My e “N\T= 1 M| k2 ENT =ky _ 713 =k
Q) = S 17" + 9(z) y—klglz( 5 17517 +9(2%)"2%) = lim Qy(z)
> i ky =
= lim Qk(y") =0

which shows Q(y) = 0 since 0 is feasible to (17). This proves that z is a solution to
(VIP).

From the uniqueness of the solution to (VIP), we can conclude that the entire
sequence {xk} has a unique accumulation point # and converges to . O

5. Rate of Convergence

In this section, we will show that, under assumptions that the set S is polyhedral
convex and that F' is strongly monotone on S, the algorithm VITR is locally quadrat-
ically convergent.

Proposition 5.1, Let * be a solution to (VIP). If F is strongly monotone with
modulus 1 on S, then f of (4) satisfies the inequality

1 .
1) 2 (1= 3IGN) e = "I for all a € 8. (19)
In paticular, if the matriz G is chosen sufficiently small to satisfy ||G|| < 2u, then

lim  f(z) = +o0.
z€S,||z||—o00
It is obvious that the decreasing of {f(z*)} and proposition 5.1 imply that when
F' is strongly monotone on S and when the matrix G is sufficiently small the sequence
{z*} generated by algorithm VITR is bounded. To obtain the second order conver-
gence result, we need the following strict complementarity condition [1], which is a
generalization of the strict complementarity condition for inequality constraints and
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corresponding Lagrange multiplies that appear in the Karush-Kuhn-Tucker conditions
in nonlinear programming.

Definition 5.111, Suppose that S is polyhedral and that (VIP) has a unique solution
z*. Let T* denote the minimal face of S containing x*. Then strict complementarity
holds at x* if x € S and (F(z*),x — z*) = 0 imply x € T*.

Now we give the following rate of convergence result.

Theorem 5.1 (quadratic convergence). Suppose that the set S is polyhedral
convez, the mapping F is strongly monotone with modulus p on S and V F () is Lipschitz
continuous on a neighborhood N of the unique solution x* of (VIP). If the matriz G is
sufficiently small such that ||G|| < 2p and the strict complementarity condition holds
at =*, then the sequence {x*} generated by algorithm VITR converges quadratically to
x*.

Proof. Under the assumptions on F, it is not difficult to show that VF(-) is also
Lipschitz continuous on the neighborhood N of z*, i.e., there exists a constant L > 0
such that

IVf(z) = Vf({y)ll < Lllz — y|| for all z,y € N.
From the proof of [1, Theorem 5.1], we obtain that there exists ¢ > 0 such that

Fle(t)) € 52t - a* 1)
2 — |G
for all k sufficiently large. So, f(z* + d¥) = f(z(z*)) < af(z*) holds for all k large
enough to satisfy
L¢?

2 — 1G]
Therefore, after a finite number of steps, the Steps 4, 5 and 6 will no longer be involved
and the algorithm VITR is exactly the basic Newton iteration z**! = z(z¥). Hence,
the result of the theorem follows from the fact that the convergence rate of the basic
Newton iteration zF*! = z(z¥) is quadratic!®5).

||$k — :Jc*||2 < a.

6. Computational Results

In this section, we report numerical results for the proposed algorithm. The algo-
rithm is programmed in Turbo C 2.0 with double precision and the numerical experi-
ments are implemented on personal computer. The parameters used in the algorithm
are set as « = 0.5, 8 = 0.01, v = 0.4 and M = 1. The symmetric positive definite
matrix G was chosen to be the identity matrix. The convergence criterion f(z*) =0
in Step 1 is replaced by f(z¥) < e with ¢ = 107 in practice.

For comparison, we also code the Newton method (cf.(0)) and the algorithm GCNM
of Taji, Fukushima and Ibarakil'l. In all test examples, the feasible region S are poly-
hedral convex sets specified by linear inequalities. In solving the linearized subproblem
LVIP (z*) at each iteration of the three algorithms, we first transform them into lin-
ear complementarity problems, and then Lemke’s complementary pivoting method is
applied.
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The experiments are made on several test problems which are modifications of the
test problem used by Taji, Fukushima and Ibarakilll. In each problem, the constraint
set S takes the form S = {z € R%|Az < b, x > 0} and the mapping F is given by
F(z) = Mz + pD(z) + q, where M is a 5 x 5 asymmetric positive definite matrix and

4
I

constants. The parameter p is used to vary the degree of asymmetry and nonlinearity.
The data of the example are given in Table 1. Numerical results are shown in Table 2.

D;(z) is a nonlinear mapping with components D;(z) = d;z;, where d; are positive

Table 1. Data for the example

3 —4 -16 —-15 —4 x1 0.004z$ —15
4 1 =5 =10 =11 | 0.007z4 10
Fiz)=|16 5 2 —11 -7 | |23| +p |0.00525 | + | =50
15 10 11 3 —10]| | x4 0.009z3 -30
4 11 7 10 1 x5 0.008z —25
0 0 —-05 0 -2 —10
-2 -2 0 —05 -2 —10
A= 2 2 -4 2 =3 b= 13
-5 3 =2 0 2 18

Solution for p = 0.01 : {11.44, 0.00, 0.00, 0.00, 5.00}T;
Solution for p = 0.1 : {11.01, 0.97, 0.00, 0.00, 5.00}T;
Solution for p =1 : {9.08, 4.84, 0.00, 0.00, 5.00}T;

Solution for p = 10 : {5.51,4.07,0.15, 0.00, 4.96}";

Solution for p = 100 : {3.82, 2.65, 3.42,0.00, 4.14}" .

Table 2. Results for the test example (Number of iterations)

p=0.01 p=0.1 p=1 p=10 p =100
initial point z° VIGIN|V|G|N|V|G|N|[V|[G|[N|[V|[G|N
{0,0,0,0,0} 2131233 |3 |4 |5|4|6]|7]6|[9]10]9
{100,0,0,0,0} 717 71999 [11]11|11]13]|13[13]14|15]14
{0,0,100,0,0} 919 |9 |10|12|11 |11 13|13 |13 |15| 15| 15|17 |18
{0,0,0,0,100} 718 | 7|10(10]10 |11 12| 11|13 |14 |13 |15 |15 |15
{100, 0,0, 0,100} 8|8 | 810101011 12|11 |14 14| 14161616
{0,100, 0,100, 0} 9 (10|13 5 |12|16| 6 |13 |18 |14 |16 |20 |15 |17 |21
{100, 0, 100, 0, 100} 319|104 |11 |11] 5 |12|14]| 1515|1616 16|18
{100, 100, 100,100,100} | 8 | 8 | 8 |10 |10 |10 |12 (12| 12|14 |15 |14 |16 |16 | 16
V: Algorithm VITR; G: Algorithm in [1]; N: Newton method.

The results show that the three versions of Newton method all converge to the
solution for each test problem. However it is observed that the trust region strategy has
a good effect. We may conclude that, as far as our limited computational experience
is concerned, the proposed algorithm VITR is comparable to the algorithm of Taji,
Fukushima and Ibaraki [1] and is stable and robust for solving monotone variational
inequalities.
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