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Abstract

In this paper, an algorithm for computing some of the largest (smallest) gener-
alized eigenvalues with corresponding eigenvectors of a sparse symmetric positive
definite matrix pencil is presented. The algorithm uses an iteration function and
inverse power iteration process to get the largest one first, then executes m — 1
Lanczos-like steps to get initial approximations of the next m — 1 ones, without
computing any Ritz pair, for which a procedure combining Rayleigh quotient itera-
tion with shifted inverse power iteration is used to obtain more accurate eigenvalues
and eigenvectors. This algorithm keeps the advantages of preserving sparsity of the
original matrices as in Lanczos method and RQI and converges with a higher rate
than the method described in [12] and provides a simple technique to compute ini-
tial approximate pairs which are guaranteed to converge to the wanted m largest
eigenpairs using RQI. In addition, it avoids some of the disadvantages of Lanczos
and RQ]I, for solving extreme eigenproblems. When symmetric positive definite lin-
ear systems must be solved in the process, an algebraic multilevel iteration method
(AMLI) is applied. The algorithm is fully parallelizable.
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1. Introduction

We are concerned in this work with finding a few extreme eigenvalues and their
corresponding eigenvectors of a generalized large scale eigenvalue problem in which the
matrices are sparse and symmetric positive definite.

Although finding a few extreme eigenpairs is of interest both in theory and practice,
there are only few usable and efficient methods up to now. Reinsch and Bauer ([12]),
suggested a QR algorithm with Newton shift for the standard eigenproblem which in-
cluded an ingenious method to evaluate the shift. Their algorithm has a lower asymp-
totic convergence rate than a normal QL process with Wilkinson’s shift or Rayleigh
quotient iteration with inverse power iteration (RQI) and their strategy to calculate
the shift can not be extended to the situation where any other shift which is different
from the Newton shift and with a higher convergence rate is used. There are some
works for selecting different shifts and acceleration techniques, see [11], [16], [17], [18].

* Received April 28, 1997.
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There is lack of efficient methods of computing extreme eigenvalues, in particular
for the generalized problem. Although in theory it can be transformed into a stan-
dard problem as long as one of the two matrices A and B is positive definite, such a
transformation will destroy the sparse structure of the initial matrices and is therefore
inapplicable in practice.

Lanczos-like method and shifted inverse power iteration combined with Rayleigh
quotient shift (or other evaluable shift) are expected to have a good efficiency for
sparse eigenvalue problem either a standard one or a generalized one because it will
not destroy the sparsity of matrices and the RQI method has a higher convergence
rate, see [7], [3], [9]. But there exist several difficulties when using such a method to
an extreme eigenvalue problem. First, it seems to be impossible to decide how many
steps must be executed in the Lanczos process for getting the m largest eigenvalues.
This means one must perform many more Lanczos steps than m and it still does not
guarantee obtaining enough extreme eigenpairs as required. Another problem is that
it is not certain whether it will converge to those expected m largest eigenpairs during
the RQI process in which such Ritz pairs are taken as initial values.

We suggest an algorithm in Section 2 which avoids the above two weak points, i.e.,
it produces just m original pairs, without solving the Ritz pairs of the matrix pencil,
and which will be guaranteed to tend to the m largest needed eigenpairs and even with
a higher rate. Furthermore it also preserves the sparse structure of the original matrices
and is fully parallelizable.

A sequence of shifts {0}, which converges to the largest generalized eigenvalue of
matrix pencil is computed first, by using an iteration function and then the largest
eigenpair is computed by an inverse power iteration process. Subsequently, m — 1 steps
of a Lanczos-like procedure from this pair are performed to compute m — 1 values and
vectors which are good approximate extreme generalized eigenpairs, as will be proved in
Section 3. More precisely, instead of solving the Ritz pairs of the original matrices, we
could take them as initial pairs immediately and get the required m largest eigenpairs
by Rayleigh quotient iteration and inverse power iteration which, furthermore, will
converge with a cubic rate asymptotically since each original pair is very close to the
corresponding final pair.

We present some further theoretical analysis in Section 3. In Section 4, we discuss
some practical computational aspects, such as how to construct the iteration function,
how to calculate function values and derivative values of the eigenpolynomial, how to
solve the corresponding linear system and parallelization aspects, etc. Some numerical
examples and concluding remarks are found in the two final sections.

2. Algorithm

Consider the generalized eigenvalue problem
Az = \Bz (1)

where both A and B are n X n sparse real symmetric matrices and in addition B is
positive definite. Let the n eigenpairs be (A1,21), (A2,22),...,(An, Z,). We assume
(Bzi,z;) = 0;j

i.e., {z;} is a B-orthogonal basis and ||z;||g = 1, where the norm || - ||p = /(B-,-) and

AL> e > > ), (2)
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(We will discuss the situation, where some equalities are attainable, in another paper.
We point out here that it is not important in a practical computational procedure
although this assumption seems to put a severe restriction in theory. See Example 3 in

Section 5.)
Our task is finding the m largest eigenvalues A1, As, ..., Ay, and corresponding eigen-
vectors zy,%g, ..., Zy, where m < n. (Computing the m smallest ones is similar.)

The proposed algorithm consists of the following steps:
Algorithm 1. First, we select an iterative function f(z) and an initial value
o1 > A1, such that the iteration

op+1 = flog), k=1,2,... (3)
can produce a sequence {0} which satisfies o > \; for all k£ and

lim Ok = )\1 (4)
k—o0
with rate of convergence p. (How to construct f(x) will be discussed in Section 4.)
Step 1: Choose oy and uy, ||jui||p = 1. Let k =1,
Step 2: Inverse power iterations with shift {o}}
(a) Solve (0B — A)lg41 = —Buy
(b) wpr1 = py1/[[Ok41l|B; o1 = f(o%)
(C) IF ||ﬁk+1||gl > e1 AND |Uk+1 — Uk| > 62|0k+1| THEN
k=k+1, goto Step 2 (a)
ELSE
Vi =Ugq1, p1 = (Avy,vy)
END
Step 3: a1 = p1, bp =0, q1 = vy
FORi=1,2,...,m —1
Solve Br = Aq;
r=r—a;q; —b-19;—1
bi = /(Br,r), qiy1 = r/b;, a;y1 = (AQiy1,Qiv1)
END
Step 4: Execute iteration combined Rayleigh quotient and inverse power iteration
with (a;, q;) as initial approximation to get a more accurate approximation
of (>\i7 ZZ'):
FORi=2,3,...,m
op=a;and u; =q;. k=1
(a) Solve (A — oxB)ugy1 = Buy
(b) upt1 = g1/l Ok41 1By oht1 = (AUgyr, ugs1)
(C) IF ||ﬁk+1||gl > e1 AND |Uk+1 — Uk| > 62|0k+1| THEN
kE=k+1, go to Step 4 (a)
ELSE
Vi = Q41 /i = Of41
END
END
Thus we get (11, v1), (42, v2), - ., (lim, Vi) after Step 4, which are taken as (A1, 21),
(>‘27 Zg), T (Ama Zm)'
Remark 2.1. In the next section, we will prove that after inverse power iteration
with shift {0y} as in Step 2 the B-orthogonal vector q; and diagonal coefficient a; are
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good approximates of (\;,2;), the i-th largest eigenpair of (1). So there is no need
to compute its Ritz pairs, i.e., the tridiagonal matrix eigenpairs although Step 3 is
a tridiagonalization like Lanczos method (some further statements could be found in
Section 6).

Remark 2.2. Step 4 is a normal Rayleigh quotient and inverse iteration from
{(a;,q;)}. It is well known (see [11], for instance) that if {(a;,q;)} are sufficiently
accurate approximates of {(\;,2z;)}, then the RQI will converge with cubic speed.

Remark 2.3. It’s clear that this algorithm keeps sparse structure of the original
matrices.

Remark 2.4. £ in (c) of step 2 and 4 is the prescribed precision for the eigenvec-
tor. The eigenvalue is typically “square” as accurate as the eigenvector (see [11], for

example) so we always use g9 = €2 as the stopping criterion for the eigenvalue.

3. Theoretical Analysis

To simplify the discussion, we change first (1) into an equivalent standard eigenvalue
problem.
Let the Cholesky factorization of the symmetric positive definite matrix B be

B=LL"

then
(L AL TY(LT2) = ML 2).

Writing M = L7*AL™! and x = L'z, we get
Mx = A\x (5)

whose n eigenpairs are (A1,x1), (A2,X2),...,(An, X,), where x; = LTz; for all i.
Now we consider the following algorithm which corresponds to Algorithm 1.
Algorithm 2. Step 1": Choose oy and wy = LTuy, (so ||wil|=1). k=1
Step 2': (a) Solve (M — o)W1 = Wy

(b) Wit1 = Wey1/[[Weal], oks1 = f(ok)
(C) IF ||Wk+1||_1 > ¢e1 AND |O’k+1 - O'k| > €2|O'k+1| THEN
k=k+1, goto Step 2’ (a)
ELSE
Y1 = Wk, v = (My1,y1),
END
Step 3": p1=v1, mp =0, p1 =y1
FOR:i=1,2,...,m—1
r = Mp; — piPi — Ti-1Pi-1
7 =/ (r,1), Pit1 =r/mi, piv1 = (MPit1, Pit1)
END
We omit step 4 for the reason stated in Remark 2.2.
It follows readily by induction that
In the two algorithms in Section 2 and 3, there exist the relation
wp=LTu,, pi=LTq, ai=p; bi=m
so we need ounly prove the following:
(i) wgr — x1, with some rate p as k — oo,
(i) (pi, ps) is a better approximate of (\;,x;), for i =2,3,...,m.
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Using The Uniqueness of Reduction Theorem (see [11]), we can find a symmetric tridi-
agonal matrix 7' and an orthogonal matrix W, whose first column is wj, such that

MW =WT (6)

Without loss of generality, we assume that T is irreducible, i.e. T’s subdiagonal
elements are non-zero due to (2); otherwise we can perturbe them by a small enough
positive number instead of zero subdiagonal elements.

Let T() = T and execute the QL process with shift {o}} which is the same as in
step 2/

T" — o] = QxLy, )
Th+1) = LiQr +opl, E=1,2,...
where
p A A
B ol g

T® = tridiag[5"), o), 4] =

i
k k
5( _)1 04% )
k i1s an orthogonal and Ly, is a lower triangular matrix with positive diagonal elements.

g g p g

Such an orthogonal-triangular factorization is unique.
Now we build a relationship between Algorithm 2 and the QL process.

Lemma 1. There exist an orthogonal matriz Py such that
MP, = p,T**) (8)

and

Pkei:p’ia pi:agk—'_l)a (i:1727"'7m)7 7Ti:ﬁ(k—i—l)v (i:1727"'7m_1)

)

here p;, pi, ™ are denoted in Algorithm 2 and e; is the i-th column of an identity
matriz.

Proof. Let the matrix sequence { Py} be defined by

{ Py=W
Pk:Pk—le:WQIQZ"'QkJ k:1727

from which it follows that
MP, = P, T

For k =1, by (7) it follows
(T(l) — 01I)Q1e1 = L{el.

1.e.

(M — Ulf)WQlel = WL{el
and by (8),

(M — o1 I)(Prer) = 1) (Wer), (|Prer] = 1,411 > 0)
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which we compare with step 2/,
(M = o1l)wy = [[Wal|“'wi, ([[wall =1).
Since o) is not an eigenvalue of M, we have
Pre; = wo.

By induction, we have
Pre; = wi11 = p1.
Executing the Lanczos process to transform M by orthogonal mappings into a

symmetric tridiagonal form from the original vector p; and using (8), it is readily seen
that

k .
Pre; = pi, pz':az( oG =12,...,m)
and

’/T’L':/gz(k—i—l)v (i:1727"'7m_1) s
Now, we give the main theorem on our algorithm as follows:

Theorem 1. If o, — A1, the largest eigenvalue of M, with rate p (k — o0) in
Algorithm 2, then
(i) pr = x1, 1= M, 1 — 0, (with rate p).
(ii) (pis i) = (Nivxy) , fori=2,3,...,m,

By this theorem, we know that (p;, p;) is a better approximate of (\;,x;) for i =
2,3,...,m, as (v1,y1) converges to (A1, x1), the largest eigenpair, in step 2'.

To prove this theorem, we need the following two lemmas which are provided with-
out proofs. They can be found in [16] and proofs could be found in [17], [19] and

[9].

Lemma 2. Let X be an n X n matriz whose n columns are T’s n different eigen-
vectors arranged by arbitrary order, then the first k X k principal submatrices X,
k=1,2,...,n, have nonzero determinants.

Lemma 3. If o — \; with rate p and QL process with shift {o}} converges by
speed q as well as ,Bék) — 0, then p=q.

Now we give a proof of Theorem 1.
Proof. At first, we prove that

TE+H) 5 A = diag[A, A2, ..., \], (kK — 00) (9)
Let the Jordan decomposition of matrix 7' = T be
T=XAX""! (10)

By Lemma 2, every principal minor determinant of X is nonzero, so X can be
decomposed in a Crout form as
X =LR,
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where L is a lower triangular matrix and R is an upper triangular matrix with diagonal
elements 1. Denote

k k k
Ak = diag[H ()\1 — O'l), H ()\2 — O'l), ey H (>\n — UZ)]
=1 =1 =1
then .
[[ (T -od) = X(AeRTT AL (ARLTY)
=1

for o, — A1, the largest eigenvalue of T, so the strict upper triangular elements of
AkR_lAgl satisty

k k
rij(JT Ni =)/ [T (A = 01)) = 0, (i < j, k — ),
=1 =1
1.e.
AR - T (11)

Now doing a QL decomposition to AkalA,zl,
AR = Qr Ly, (12)
we see that Lj’s diagonal elements are all positive, and, according to (11)
Qr— I L — I
Denote the diagonal matrix
Dy, = diag[sign((LrAr L™ 11), sign((LpApL ™ )92), . . ., sign((LeArL ™ )nn)]-
Then i

[[(@—oil) = (XQ)(LeApL7") = (X Qi D) (Dr LigAr L") (13)
=1

where X Qka is an orthogonal and DyLiAyL ! is a lower triangular with positive
diagonal elements.
On the other hand, from QL iteration formula (7), it is easily seen that

k

[T o) = (QQ2- - Qi) (L -+~ LoLy) (14)

=1

By (13) and (14), it is further seen that such a QL decomposition is unique

Q1Q2 - Qx = XQy Dy (15)
Also from (7) and using (10), (12) and (15)
Tk+1)  — (Qle"'Qk)TT(Q1Q2“'Qk)

= (XQuDp)"(XAX 1) (XQkDy)



394 C.H. YU AND O. AXELSSON

which is (9).
By Lemma 1
MIpi|ps| - |pn] = [P1]p2]- - - |[pa]T*HD

using Lemma 1 and Lemma 3, the results of this theorem are proved. 0
Thus we can give a similar result to Algorithm 1 without proof as follows:

Theorem 2. If o, — A1, the largest generalized eigenvalue of problem (1), with
rate p (k — 00) during ezecuting Algorithm 1, then
(i)ar = 2z1, p1 = A\, by =0, (with rate p).
(11) (aiuqi) - (Aiazi) ’ fOT‘ = 2737 R

4. Computational Aspects

4.1 Construction of f(z) and selection of o;
As it turns out, any iterative function f(z) and initial value oy is suitable if it can
guarantee that (4) holds during the iteration process (3).
Now we take Newton’s iterative function as f(z). Denoting the eigenpolynomial of
matrix pencil (A, B) as
d(t) = det[tB — A],

then (3) becomes

_ d(o)

(16)

and choose o1 as an upper bound of spectrum of (A, B), i.e. o1 > A1, (there are many
methods for this, see [2]), then we can prove that:

Theorem 3. If {0} is computed by (16) with o1 > A1, then {o}} decreases mono-
tonically and converges to A1 with a square rate of convergence.

Proof. Let p(nfl) be the determinant of the order n — 1 submatrix of o1B — A

J
deleting the j-th row and column, let pz(r-lfz) be the determinant of the (n —2) x (n —2)
submatrix of 01 B — A deleting the i-th and j-th rows and columns. Obviously they are
all greater than zero.
Since A; is the largest eigenvalue of (1) and oy > Aq, there is no eigenvalue in (A1,

o0) and

d(o) = det[oB — A] > 0, Vo € (A, 00).
while

2(01) = ~(-1)"

J

(—)™ "D > 0
1

n

and 0
d(0) = (1" 3 3 ()"0 >0,
j=li=j+1

Because all eigenvalues are strictly different, the roots of d'(t) separate the ones of
d(t) and are separated by the ones of d”(t) by Rolle’s Theorem. Thus, d'(t) and d"(t)
do not change their signs in [A\;, 00).
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Combining the above, we know that d(t) and d'(t) are both greater than zero and
strictly monotonically increasing in (A1, 00).
By induction, it is not hard to prove

A1 < Opt1 < o, (Vk) (17)

Inequality (17) means that {0y} is a monotone and bounded sequence, so its limit
exists. i.e.,
ok = A a

Remark 4.1. By the proof, we know the condition "o} > A1, (Vk)” holds for the
selected iteration function (16). As was pointed out in Remark 2.1 this will make the
coefficient matrices in step 2 positive definite so that some better methods can be used
to solve them.

Remark 4.2. By Lemma 3, as higher the rate of iterative function is, as faster the
convergence of (A1, z1) is. Thus some higher convergent rate function can be used to
accelerate the speed of convergence. For example, with

one only needs to calculate two function values and one derivative value of d(t), but its
asymptotic convergence rate is four (see [18]).

4.2 Evaluation of d(t) and d'(¢)

Since there always occur some d(t) and d'(t) in the expression of f(z), we consider
now how to calculate them.

If both A and B are tridiagonal forms then we can calculate d(t) and d'(¢) by a
recursion which is similar to Hyman’s methods (see [18] and [10]).

Let A = tridiag[8;_1, «, Bi], B = tridiag[d;_1, i, d;] and let

{ po=1,p1 =ty —q ' (18)
pi = (tyi — @i)pi1 — (t6i-1— Bi-1)?pi—2, 1=2,3,...,n
Then
po =001 =m
ph = (tyi — qi)pi_y +vipie1 — (t6im1 — Bic1)?ph_y  —2(t6i—1 — Bi—1)di—1pi—2,
i=2.3,....n
(19)
and
on = d(t), = (1) (20)

However, the scheme in (18), (19), (20) may be unstable for underflow or overflow,
so we adjust it by scaling.
Let

!

R P -
gl_piil’ Th__p_:a 1_1727"'7’”
then

&=ty —«a
{ 52 = (t’;i - Oéli) — (t6i 1 —Fi1)?/& 1, i=2,3,...,n (21)
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n; = é{(t% —a)ni—1 — Vi — (t0i—1 — Bi—1)[(tdim1 —Bi1)mi—2 — 20;-1]/&i—1},
1=2,3,...,m
(22)
and we have

i) _

a@m
We take 51 = (t51 — ﬁ1)262 when 51 = 0 and fz = (tdi_l — ﬁi_1)26/fi_1 when & = 0,
(i > 1) to prevent the breaking down in process, where ¢ means the machine precision.
Then we can know that, by using a result in [10],

fl(det[tB — A]) =det[tB — A+ E] (1 + 1)
where the matrix
E = tridiag[(td; 1 — Bi—1)gi—1,0, (td; — Bi)ei]
and
lei] < 2.5e + O(e?),
7| < (3n — 2)e + O(e?).

If o, B — A is not a tridiagonal, we can use a linear combination of d(oy), d(ox—1),
..y d(ok_141) instead of d'(oy). These function values could be computed when the
linear systerms in step 2(a) are solved by LR (or incomplete LR) factorization.
For example, the simplest situation is [ = 2, thus formula (16) becomes

oy M)
Tk+1 = 9k ™ Glop)—d(os_1)
Op—0k—1

(23)

which is the secant line method, whose rate of convergent is 1.618.

It is easy to see that the extra computational complexity in calculating d(t) or d'(t)
is O(n) in both situations.

4.3 Solving linear equations

For an indefinite system as in step 4(a), there exists a way to partition the matrix
into a 2 X 2 block form for which there are optimal methods to solve it for certain
classes of problems, such as occuring in elliptic difference matrix problem (see [6], [13]
and [20])

The systems in step 2(a) and 3 are symmetric positive definite, so the Algebraic
Multi-Level Iteration method (AMLI) could be used. It produces a matrix M by
recursion as a preconditoner of A, the coefficient matrix of a linear equations. Its main
concept is as follows.

Let AW = A and Q(Ny, Si) be the matrix graph for the mathix A®) of order ny,

k =0,1,...,1 defined by a set of nodes Ny and a set of edges Sy where ag-c) # 0 iff
(Za.]) € Sk
Assuming
NoCN; C...C N, CNpy1 C...CN,

and
Nk+1

N

=pr=2p>1
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k-+1)

By permution and partition, the matrix A has form

AL Gl b (6, 5) € Ny,

A<k+1>:lA§’i+” A%’é“’] Vo (i,5) € Npgp1\ Nk
21 22

We take a sparse, symmetric positive definite matrix BYIH)

(AEI;H))_I, which satisfies

as an approximation of

B%TH)AﬁH)uEkH) _ u§k+1)

where .
b+ — u* ] i € Ni41\ NV
ugk"‘l) } 1 € Ng

is the restriction of a positive vector ul¥), for A®u® > 0, to the nodes in Niy1. Then

we define A*) as

A = AT A Bl A

It has been proved that A%) is still a symmetric positive definite matrix for which holds
that A(k)uékﬂ) > 0 (see [1]).
Now the preconditioning matrix sequence { M)} can be given as

MO = 40
(k+1)\— k+1 k+1

M(k+1) — (Bll(k+1)) 1 0 I B§1+~)7g452+ ) , k= 07 17 .. 7l -1
Asy I[]0 Sk

where

Sk — AMk)[f — Pyk((M(’“))—lA(’“))]—l

and P, (z) is a polynomial with degree v}, as well as P, (0) = 1.

Thus, we get M), which is taken as the preconditioner of A.

The polynomial P,, () can be chosen so that the level matrices (M*))=1A®) have
very small condition numbers for all k. In fact, it holds that

K[(MW)1ADO] = 0(1), (I = o)

and the total ops is O(nlogzn) in one iteration.The further discussions, see [1] and [4].

4.4 Short cycle strategy

In actual computations, we do not use the scheme defined by Algorithm 1 straight-
forwardly for two reasons:

1. The results in Theorem 1 takes place asymptotically when & — oo, but the actual
value of k is not very large, usually when o1 and oy are closed enough. So in fact we
can always get a few mg (a;, q;)s which are good approximates of (\;, z;)s. Obviously,
the best strategy is to make these mg pairs accurate enough first, then from them to
get new rough eigenpairs.

2. Step 3 is a Lanczos-like procedure. It is well known that it would produce surplus
copies when the number of iterations is a bit large. So, we could avoid this situation
by using only few Lanczos steps in every processing.
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We always take mg < 5 in the computation, then check and abandon some copies of
what we have got — which is not difficult to judge when the distance of two eigenvalues
as well as the angle between their corresponding eigenvector are calculated (see example
3 in Section 5). Next we rerun this procedure from the newest eigenvalue and repeat
the process until m eigenpairs are calculated fully.

Executing the scheme from j = 2 is equivalent to the situation that deleting the first
row and column of matrix T*+1) and going on with the shifted QL process continously
when a; converges. So it is not hard to prove the similar results as in Theorem 2.

Now we rewrite the algorithm as follows:

Algorithm NLRI. Choose o1 and uy, ( ||ui|lp =1).
k=1, Ky = a large natural number

WHILE k < K,
Solve (O’kB - A)ﬁk—i—l = —Buk
et = U1 /@il okt = ok — d(og)/d (o)
IF |ig 1]l 5" > €1 AND |ogy1 — o%| > e2|ok41] THEN
E=k+1
ELSE
Vi = Ujt1, p1 = (Avi,vy), Ky =k
END
END
j=1,1=1,
WHILE [ <m

aj = pj, bj—1 =0, qj = vj, mgp
FORz:],,mO
Solve : Br = Aq;
r=r-—a,9 —bi-1q;—1
bi=+/(Br,r), dit1=1/bi;,  ait1 = (AQit1,qit1)
END
FORi=j+1,...,mo+1
01 = a4, U] = q;.
k =1, Ky = a large natural number

WHILE k < K
Solve : (UkB - A)ﬁk—i—l = —Buk
et = U1/l 0k4allB, o1 = (Augir, uey1)
IF |ig 1]l 5" > €1 AND |ogy1 — 0| > e2|ok41] THEN
k=k+1
ELSE
Vi = Uk, Hi = Ok41, Ky=k
END
END
END
Check pjq1, fj+2, - -5 Pmot1

Mark surplus copies
Decide the initial vector p;yj, for next cycle
J=17+Jo
I =1 4+ mo— number of copies
END

4.5 Parallel execution
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When (a2,q2), (a3,93), --., (@4me+1,Ame+1), the approximations of the my largest
eigenpairs, are computed after step (3), each of them can be worked out in parallel in
step (4) for getting accurate eigenpairs (A2, 22), (A3,23), - .., (Amo+1,Zmo+1)- In other
words, it is fully parallelizable with respect to the calculations done for each ()\;, z;).

Step (3) is actually a Lanczos process. Except solving linear equations with matrix
B, the remaining part of the computation consists of matrix-vector multiplications
which are parallelizable as long as only nearest neighbours are needed, which holds for
regular finite element matrices.

Solving symmetric positive definite systems in step 2(a) and 3 with AMLI are also
parallelizable, the details can be found in [5].

5. Numerical Examples

All examples below were computed on SUN SPARCserver 10 Model 514Mp com-
puter in Department of Mathematics, University of Nijmegen. The “exact eigenpairs”
stands for those computed by MATLAB.

Example 1. We take A as the matrix representation of the second difference
operator which is a tridiagonal matrix with entries 1, -2, 1, respectively on the super-
diagonals and subdiagonals, i.e.

A = tridiag[1, —2, 1], B=1.

The order of matrix n is taken as 128, 256, 400 respectively and e, = 10~''. The
results are shown in Tables 1 and 2 - where m* denotes the number of eigenpairs we get
(including copies) when m true extreme eigenvalues converge. The meanings of (\;, z;)
and (a;,q;) are as before and (1(;y, vj(;)) is the calculated eigenpair corresponding to
(Ni»2zi). 0(qi,z;) = cos ((Bqy,2z;)) means “angle” between q; and z;. ” Ite.” is the
number of using RQL.

We set jo = mg = 1 always as long as ;41 is not a copy of some p; (i < j). ”(k)”
in column 2 means that the kth converging eige.

From Table 1, we see that (a;, q;) is really a very good approximation of ()\;, z;)
for almost all situations. So it is reasonable to take it as an initial approximation in
the RQI process.

Table 1. Solving 15 Largest (Smallest) Eigenpairs of Asse

Order of

Exact Eigenvalue Convergence [Xi — 105 la; — A 0(qi,z;) | Ite.
-0.00014942666053 19 - - . -
-0.00059768431381 2 7.44 x 10716 | 8.94 x 107° 0.11 2
-0.00134470597819 3 (11) 712 x107*% | 9.30 x 107° 0.09 2
-0.00239038002871 4 5.46 x 10716 | 8.94 x 10°° 0.08 2
-0.00373455021380 5 (12) 8.20 x 107% | 9.67 x 107° 0.07 2
-0.00537701567859 6 2.79 x 10716 | 1.34 x 1075 0.06 2
-0.00731753099495 7 3.82x10716 | 6.71 x 1077 0.12 2
-0.00955580619817 8 1.24 x 107 | 2.68 x 1072 0.34 3
-0.01209150683024 10 2.42 x 10713 | 6.81 x 10~¢ 0.25 2
-0.01492425398990 15 7.95 x 107 | 5.65 x 107* 0.24 2
-0.01805362438919 14 6.94 x 1077 | 5.67 x 107° 0.30 2
-0.02147915041675 13 2.67x10716 | 9.88 x 10°¢ 1.81 4
-0.02520032020766 16 3.80 x 10716 | 2.30 x 107° 0.03 2
-0.02921657771995 17 1.04 x 1077 | 1.01 x 107! 1.18 4
-0.03352732281766 18 2.82 x 107*° | 4.08 x 10~* 0.19 2
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-3.99985057333947
-3.99940231568619
-3.99865529402181
-3.99760961997129
-3.99626544978620
-3.99462298432141
-3.99268246900505
-3.99044419380183
-3.98790849316976
-3.98507574601010
-3.98194637561081
-3.97852084958325
-3.97479967979234
-3.97078342228005
-3.96647267718234

= W
—
NN

=
=W
—~~

— =
o

19 (20)
21

4.44 x 10715
1.02 x 1073
4.00 x 10715
1.52 x 10~ 12
6.66 x 1015
1.51 x 1073
1.33 x 107 %°
1.24 x 10~
4.00 x 1015
1.20 x 10~
2.66 x 10715
1.58 x 10~ "2
3.55 x 10718
1.33 x 107 %°

8.94 x 10~
9.40 x 10~
8.98 x 10~
2.08 x 10~*
494 x 107°
4.68 x 1073
4.30 x 107°
3.22 x 10°°
1.95 x 107°
8.58 x 107*
6.21 x 1073
2.78 x 10~°
9.68 x 10*
8.42 x 1074

0.11
0.09
0.08
0.31
0.35
0.33
0.13
0.02
0.06
0.33
0.47
0.03
0.26
0.54

WWH CTWNNDNIINNNNDN I

Table 2. Numerical Results about A,

Solving Largest Eigenvalues | Solving Smallest Eigenvalues
" m [m” [ max[hi — ] [m [ mT | max N — p]
128 7 7 1.38 x 10~ 1* 7 8 1.20 x 10~ 1%
256 | 15 | 18 242 x 10718 15 | 21 1.52 x 10~ 12
400 | 10 | 11 3.53 x 10712 5 5 1.47 x 10714

Example 2. Consider the differential equation eigenvalue problemm

{ u'(z) + Au(z) =0, z€(0,1)
u'(0) =0,u(l) =1

and the corresponding algebraic eigenvalue problem
Ahuh = )\Bhuh

where A;, = F(tridiag[—1,2, —1] — e1el), B, = 4(tridiag[0.5,2,0.5] — e1ef).
We take h = 1—16, é and ﬁ respectively and solve its several largest and smallest

eigenvalues as well as corresponding eigenvectors. The main results are found in Table
3.

Table 3. Numerical Results for (A, Bh)

Solving Largest Eigenvalues | Solving Smallest Eigenvalues
1 _
h | m|m max 7‘>‘i|_;:1“)| m | m* max 7|/\'|_;:J|'“)‘
16 6 7 1.58 x 10~ 2 6 7 5.04 x 10 1%
64 | 10 | 13 5.88 x 1011 10 | 12 1.52 x 10712
256 | 10 | 15 6.10 x 10712 12 | 14 7.81 x 10710

Example 3. We take Wilkinson’s matrix Wz"i as A and identity matrix as B, i.e.
it is a standard eigenvalue problem

Wyix = Ax

We compute its 8 largest eigenvalues and corresponding eigenvectors because Ay;_;
and Ay; (i=1,2,3,4) are so close that we can treat them as a pair of multiple roots in a
numerical computational sense, especially, the distance of A; and Ay is around O(10~1%)
as is well known. We notice that for such a matrix like W,}, sometimes we could only
find one eigenvalue from two very close ones. The situations showed as Table 4.
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Table 4. Convergence Order of 10 Largest Eigenvalues of W

401

2 =10"1 gx =107 12
Exact Eigenvalue |5 ", "~ 9 [ j) = mo = 3 | varied j(*) | varied j* | varied ;¥
10.74619418290339 i i 103) I 1
10.74619418290332 2 2 2 2 2
9.21067864736133 3 (4) 3 4 3 (5) 3
9.21067864730492 | mot found not found 5 (6) 4 4
8.03894112282902 5 (6) 8 10 8 5 (6
8.03894111581427 not found 7 11 9 not found
7.00395220952868 7 not found 7 7 7
7.00395179861637 8 4 (5) 8 6 8

Varied jéa) : jo = 1 always unless p;4q is a copy or there exists a pjy; > pjr1, (1 <i < myg)
which is not a copy of any other ones.

Varied j[()b) : jo = mo always unless jym, is a copy or it looks like that there exists a gap
between pj11 and fij4m,-

In addition, we find that, for example as column 2, when us converges it is very
close to 1 and we must ask : is it a copy of ;1?7 The answer is no because the angle
between zo and z; is nearly vertical (= 0.447). Later, u4 is also close to ug but this
time we can be sure it is a copy of u3 for the angle of their eigenvectors is almost zero
(= 0.037). (Same for other close pairs.)

6. Concluding Remarks

It has been shown that it can be advantageous to use the algorithm presented in this
paper to compute some extreme eigenpairs of a generalized (or standard, of course) large
scale sparse eigenvalue problem because of its simplicity of getting initial vectors which
suffices to make the iterative procedure converge to the expected eigenpairs, preserving
its sparsity structure, its use of algebraic multi-level method and its parallelization.
This method leads to a better result than precious computations even for such a matrix
as Wi

In actual calculation, there is no need to solve the linear systems in step 2(a) and
produce every vector uy in each iterative loop from the beginning. A more efficient
method is that we only use the function f(z) to get new oy first until |og11 — okl
has become very small and then execute the whole step 2 from this oy, (which is
equivalent to executing the algorithm from a more accurate initial o).

Taking too small criterion e in step 2 may lead to a larger error during the Lanczos-
like procedure in step 3 due to dividing by by (by = ﬁfkﬂ) as proved in Lemma 1 and
ﬁ§k+1) is less than €2 when the equivalent QL process (7) is convergent, see [11]). A
reasonable strategy is taking suitable g5 (as 107° ~ 10719, for example) at first to get
computable results and then do RQI for each pair with smaller 5 aga in to obtain a
more accurate solution.
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