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Abstract

In solving integral equations with logarithmic kernel which arises from the
boundary integral equation reformulation of some boundary value problems for
the two dimensional Helmholtz equation, we combine the Galerkin method with
Beylkin’s (][2]) approach, series of dense and nonsymmetric matrices may appear
if we use traditional method. By appealing the so-called periodic quasi-wavelet
(PQW in abbr.) ([5]), some of these matrices become diagonal, therefore we can
find a algorithm with only O(K (m)?) arithmetic operations where m is the highest

level. The Galerkin approximation has a polynomial rate of convergence.

Key words: Periodic Quasi-Wavelet, Integral equation, Multiscale.

1. Introduction

We try to solve the following integral equation

T —

1+ b, y)dy = g(),z € [0.20]  (L1)

u(z) = /027r u(y)(ap log |2 sin

where ag is a constant, and b(z,y) is a continuous function of (z,y) and is 27 pe-
riodic in each variable, which appears in exterior boundary value problems for the
two-dimensional Helmholtz equation (see [9], [13], [14], [12], [24]). We want to solve
the equation by using wavelets. The most important method on solving integral equa-

tions was introduced in [3], but the method introduced in [3] can not be applied directly
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to this equation. Recently, Beylkin and Brewster introduced a new method called Mul-
tiscale Strategy in [2]. But when we apply Beylkin’s ([2]) method, there appears dense
and nonsymmetric matrices, which leads to large complexity. We therefore appeal to

the so-called PQW, some of the matrices become diagonal.

Our idea of construction of PQW traces back to the sources of multiresolution
analysis and the orthogonal periodic spline functions (see [15]). In [15] the author
constructed periodic orthonormal splines (the scaling function), but they did not give
the wavelets. Koh, Lee and Tan ([11]) and Tasche [22] constructed periodic wavelets by
using Fourier coefficients of some functions and by using some special techniques. For
instance, in [22], the author, constructed the periodic wavelets by appealing the Euler
Frobenius function. Our construction is manipulating the periodic B-spline directly,
and the construction of mother wavelets is very simple such that the decomposition
and reconstruction formulas for the coefficient involve only two non-zero terms, that
behave as the Haar basis. By using this wavelet, the complexity in solving the integral
equation is much smaller. Since our wavelet has no localization, we call it quasi-wavelet
[5].

In recent years, this equation and it’s numerical solution have received much atten-
tion in the literature. A considerable part of the research on the numerical solution of
this integral equation is concerned with the application of Galerkin methods, colloca-
tion methods and qualocation methods and their error analysis. For details, we refer

the reader to [13], [23], [10] and the references therein.

Wavelets, which are originally developed for signal and image processing ([7]), has
been applied in solving partial differential equations([1], [8]) and integral equations ([3],
[18], [19], [21]). The latest paper that we received was written by Chen, Micchelli and
Xu (see [6]) which deal with second kind of integral equations with singular kernel
by using multiwavelet. In this paper, we introduce periodic quasi-wavelets and its
application to solving equation (1.1). Here, FF'T and Multiscale Strategy introduced in
[2] are the key techniques. Multiresolution analysis (MRA) was introduced by Meyer
[17] and Mallat [16] as a general framework for construction of the wavelet bases. Using

MRA, the notion of the non—standard representation of operators was introduced in
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[3]. For a wide class of operators, the non-standard form is sparse and permits fast
algorithms for evaluation of functions (see also [19]). But the method can’t applied
to (1.1) since the deduced matrix is not sparse. The PQW joins the DFT and spline
together to make the singular part of the operator diagonal. To get a fast numerical
method, the idea of Multiscale Strategy is also used. Because PQW is based on B-
Spline functions, the Galerkin approximation has polynomial rate of convergence. We
need O(K(m)?) arithmetic operations to solve the equation where m is the highest
level.

The paper is organized as follows:

In section 2, PQW are introduced and some properties are given.

In sections 3 , Quasi-Wavelet procedure is introduced. The convergence of Galerkin
method based on PQW is introduced in section 4 and the error is estimated in section

o.

2. Periodic Quasi-Wavelets

Let n > 1 be an odd integer. K is an positive integer, and 7" is a positive real
number. Let h := T /K, and for a positive integer m, h,, := h/2™, then the point set
{y"'} are defined as y}' = (v — n—_{—l)hm We will also denote K (m) :=2"K.

The so called B — spline is defined by

Bi(z,hm) = (=)™ Myt — v vl (@ - 9)t
ntl n+1 (2.1)
= a2 (D ( . ) (z —yj" — khm)"}
k=0

The family of all such splines with knots {vh,, },cz will be denoted by Sy, (hy,), where
hp, is the length of step.

Now we define the class of periodic spline functions in Sy (h,,). Let gn(hm) =
Sp(hm,[0,T)) = {f | f is a polynomial of degree n on each interval [jh,, (j + 1)hm),
j=0,1,---,K(m) —1; feC"10,T]; and S (0) = SO(T), i=0,1,---,n —1}.

Of course, each function in gn(hm) can be extended periodically to the whole real

axis. The collection of the extended periodic functions in S,, (k) is denoted by g'n (hm).
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Evidently, Sy, (hy,) is the restriction of g'n (hm) on the interval [0, T].
Sn (hm) = {f | f(z) € Su(hm), = € [0,T; f(z) = f(z +T),z € R}.

Since the dimension of Sy, (k) is K (m) (see [20]), we have to find K (m) functions
which form a basis of Sy, (hy,)-

Ew@mmﬁnxemjmmemmmn@%umy:Bﬂ%mg+3gmm@mm
belongs to Sy, (hy), j = —ng, -+, K(m) —ng — 1, where ng = 1 + [5]-

It is easy to prove the following proposition :

Proposition 2.1. The system of functions {éf(x,hm)}l_(,;)nofl constitutes a basis
of S (hm).

We define the inner product of two functions f and g by < f,g >= % fOT f(z)g(x)dz.

on
The Fourier expansion of B has the following form

) I n+1
By (o) = ()" - | — | e (B2 (2.2)

leZz

Define the function space V,, by V,, :=S, (h;,). From the basic properties of spline
functions, we have the following
Proposition 2.2. For m >0, —ng < j < K(m) — 1 — ny, the function E}z(.ﬂc,hm)

satisfies the two scale equation

no+1
B]n(xv him) = Z fn,VBIT/l+2j (z, hnt1), (2.3)
—ng—1
where
1 n+1
on aV:nO_na"'7n0+la
fn,u = no+1—-v (2.4)
0 , otherwise.
From Proposition 2.2, we conclude that
Vin C Vg1 C ooy (2.5)
and {V;,} is dense in L9 [0,T], (refers to [20]), that is,
U Vi =Lz [0, 7). (2.6)

meEZ
m>0
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Define A7 (z) as follows:

. .K(j)_l on
Al (x) = CY Z exp(2mila/K(j)) By (x — lhj, hyj), (2.7)
=0

where

CMi = [ty + 2 Z ta COS()\ahj)]iéu
P (2.8)

= Bgn+1(>‘a 1)7 Bgn+1('7 1) € SQn—I—l(l)-

From (2.7), we can prove that A}»™(z) has the following Fourier expansion

LT ntl
nm(g) = O™ (K(m))rH SmKi
Ap™(z) = Cp™(K(m)) Ag:z (v + AK(m))T (2.9)

exp <2m'(1/ —I—%K(m))x) .

From the Fourier expansion of A} (x) , we have

(e}

Lemma 2.3. {AZ’j(x)}kK:(%)fl is an orthonormal basis of V; =S, (hj),
(AR (2), AR (2)) = Ok ks (2.10)

where 0 < k1, ko < K(j) — 1.
Since éo (z — lhj, h;) is refinable, A}"™(z) are also refinable, moreover, their two-

scale equation has a very elegant form, it reflects the intrinsic property of this functions.

Theorem 2.4. A} (x) satisfies the following two-scale equation:

Ap™ () = ap™ AR () 4 0 AT (), (2.11)

where a»™ ! and B! are constants.

VT
ag,erl — C,Zl’m(COS m)n+1/0}7,m+17 (2'12)
) +1 J— 5 M +1 nzm+1
bgm = Cgm(SIH m)n /CV+K(m)’ (213)

0 <v < K(m)—1 where C}»'™ is defined as in (2.8).
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Proof. From (2.7) and (2.9), we have

K(m)—1 on
Al () = O™ Z exp(2milv/K(m)) By (z — lhy, hp)
1=0
K(m)-1 no+1
= Conm exp(2milv/K(m)) > fak B0 (z — (k+ 2D Rt 1)
=0 k=—np—1
K(m)-1 no+1 _
=Crm N exp2milv/K(m)) - Y fureBi (@ = (k4 20 hyg1, hinst)
=0 k=—np—1
K(m)-1 no+1
=Ccpm exp(2milv/K(m)) Z Ik
=0 k=—np—1
K(m+1)—1
mt1 (k + 2l)h
n=0
K(m)-1 no+1 K(m+1)—1
= Conm exp(2milv/K(m)) > far Y, duCpmt!
=0 k=—np—1 pn=0
. U n+1
sin 7K(m 1)

(K (m+ 1) Y7

o\ (p+ AK(m 4+ 1))

. <2m'(u + AIJ{(m + 1))30) exp (—27rz'(u + AK(m + 1)) (k + 2l)>

K(m+1)
no+1 K(m+1)
=Cp™- > fuk y WO (K (m o+ 1))
k=—ng— 1 =
. n—|—1
Z S m+1 27ri(u+)\K(m+1))x>
e |+ AK(m +1))7 T
K(m)—1
exp ( _—2mipk k a2 exp 27rzl ))
K(m + 1) P K(m)
= AR (o) + AR (),
Define

D™ () = b AR () — AT (), (2.14)
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v=0,---,K(m) — 1. These functions have the following properties :
(D™, D™y = 0y for 0 < vy < K(m) —1 (2.15)
D} eV for0<v<K(m)-—1 (2.16)
(D™, A"y =0 for 0 < wvp,vp < K(m) —1 (2.17)
Let Wy, = Span {D})™ | v =0,---,K(m) — 1} (2.18)

Then we have the following

Theorem 2.5. The class of functions {Dg’m}f:%n)fl is an orthonormal basis of
the function space Wy, and Vi1 = Vi, @ Wy,

We call A2™ father quasi-wavelet; D)™ the mother quasi-wavelet. We put the
prefix 'quasi’ before the word wavelet, because it differs from wavelet in the sense of
Meyer’s.

Let P,,,Q,, be the projection operators which maps 22 [0,T] onto V,,, and W,,
respectively, define

ayt = (f, Ap™), B = (f,Dy™). (2.19)

Theorem 2.6. For the coefficients {a)'} and {B]'} defined in (2.19), we have the

decomposition formulas

ol = ap ot (2.20)
B = B e (2.21)
v=0,---,K(m)—1.
The reconstruction formulas are
o = a4 B (2.22)
oy = O 0 — B (2.23)
v=0,---,K(m)—1.
Let o := (af, - - ,a’l'}(m)_l)T, gm = (6y, - ,ﬁ?(m)_l)T, where the notation (-)

means the transpose of (-). In order to express our problems clear, we use the following

matrices.
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Define
ag m 0 e bg’m 0
0 o™ .. 0
W = , (2.24)
bgvm 0 .. —ag’m 0 ..
0 b?’m e 0 —a?’m

then Wy, is a real matrix of size K(m) x K(m).
Denote the upper half of W,,, by L,,, the other half by H,,, i.e.

Then (2.20) and (2.21) can be written into

m

« L1

_ o, (2.25)
,Gm Hm+1
and (2.22), (2.23) are equivalent to
am+1 a™
o = (L£1+1aH£+1) : (2.26)
Igm Igm

For the contents Cg’j , we have the following estimates which will be helpful in our
error analysis.

Lemma 2.7. C,?’j satisfies the following inequality

1<|Cn,]|<(2)n+17 forazO,---,K(j)—l. (227)
Proof. Set
K(j)— o 2n+1
Z exp(2miva/K(j)) By (vhj, hy), (2.28)
=0
then from (2.8), C™J = |E,|™ 5 a=0,1---,K(j) — 1

Now we estimate |F,|.
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o 2n+1
Since By ((vhj, hj) > 0, therefore from (2.28)

K(G)-1 [ ont1

E,| < |Ey| = B hihj)=1
e B S |Bol = 32 By (whyih)

For the lower bound, we write E, into another form in

aTm 2n+2

— -\ 2n+2 San(])
Bo = K(G) Aé (a+ \K(j))

am \ 2n+2

\on K(g n
> K(])2 +2 mr(]) > (%)2 +2

In the following theorem, we estimate the quantity ||(f — P.f)®)]|,.
on
Theorem 2.8. For every f €C [0,T],

n+1

I = Paf) Voo < Al s) B w(; =

n

hn)a

where A(n, s) is a constant depending on n and s, w is the periodic modulus of smooth-
ness.

Theorem 2.9. Suppose 1 < p,q < oco. Then there exists a constant B(n,s,p,q)
such that for all f € LT[0,

n 757l 1 n
(7 = Puf)l < Bln,s,pyq) W50 05D, (2.29)
q P

The proof of above two theorems is not difficult by using the same method developed
by de Boor and Fix [4] based on quasi-interpolant.

It is well known that B-spline functions can approximate smooth function very
well, but it is unfortunately that the integral kernel of the integral equation concerned
is weakly singular. The following theorem deals with the problem to give a estimate
the approximating rate of log |2sin §| from V;;,. The method used here will be reused
in the error analysis of our algorithm.

Theorem 2.10. let f(z) = —2log|2sin |, then
1
1f = Pnflle, < Cilin, (2.30)

where C is independent of m.
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Proof. From the definition of A;-l’m, we obtain

g n+1
n,m _ m n Sin K(m) .
AP(z) = CI(K (m))" ! Aé (m) exp(i(j + AK(m))z).  (2.31)

It is also known that

= —ime 2.32
17 -
then
‘i j7r n+1
n,m n,m n K(m 1
< fAPT >=CP™ (K (m)) +1 Z m TR (2.33)

ANEZ

From (2.12) and (2.13), using the inequality: |sin(z)| < |z|, it is immediately to see
that for all 0 < j < K(m).

K(m)—j
n,m+1
b < 2.34
|a] |—C3K(m+1)7 ( 3)
e < oy 2.35
5 < s (2:35)
From (2.27) and (2.33), calculating the summation directly, we have
1 n+1 1
| < LAY S <Gy [ F (B m) Y — —
’ g rezazo U+ AK(m))" (2.36)
< 05%-
Similarly we have
1
n,m+1
< fo A3k > 1= Co e =5 (2.37)
Since we have
) p— ) +1 ) +1 ) +1 ) +1
<LDPT S =< AL gt gL
_ n,m+1 n,m+1 n,m+1 n,m+1
such that
1
D™ <Cr——. 2.38
| < ;D" > < Kt D) (2.38)

In fact, for j =0, (2.38) is also true.



Solving Integral Equations with Logarithmic Kernel by Using Periodic Quasi-Wavelet 497

Note that
K()-1 K 1
l
If = PufIP =32 > |<fD5">P <Y Cfg— <O 2o,
I>m j§=0 g I>m Ky K(m)
where C1,---,C7 are all independent of j and m.

Theorem 2.10 follows immediately.
Remark. We were introduced by the refree’s report that the inequality of this

theorem can be rewritten as follows:

If = Pullzz < ch' =\ fllm-c (e > 0).

3. Processing Integral Equation by Quasi—Wavelet Procedure

In order to introduce our algorithm clearly, we expose our idea in following several
subsections.

3.1. Discretization: Projection into V,,

In this part, we begin to discuss the method to solve (1.1). Rewrite (1.1) in the
operator form:

u=Tu+g. (3.1)

The first step is discretize the integral equation to obtain a linear system. Usually,
Galerkin approximation is used to deal with (3.1). Let P, be the projective operator
of 22 [0,27] onto V. Then the following new equation is an approximate version of
(3.1).

U, = Py Tum + Png, (3.2)

where u,, € Vy,.

Because {A;L’m} is an orthonormal basis of V,,,, suppose that

K(m)-1 K(m)—1
um =y, SPAY", Pag= Y glAT™. (3.3)
j=0 Jj=0
Substitute (3.3) into (3.2) to obtain:
K(m)—1
sT'= > Birsi'+g5" (0<j < K(m)-1), (3.4)

k=0
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where

B =< TAP™ A" > . (3.5)

Now we have to solve linear system (3.4).

Denote

a(z —y) = ag log|28in$ ;y| (3.6)
Then

= b (5T 2 al — y) + b, ) AR (y) AT (@) dady
= o JT fZ“a(x—wA"”“( VAT () dady

(3.7)
g Sy ST bl y) AR (y) AT () dady
=€+ ]",z (0<j<K(m)-1).
For simplicity, we drop the indices.
Let
E™ = (efy), F"=(fi), s"=(s), ¢"=(g]"), (3-8)

where 0 < 7,k < K(m)—1, that is to say, £™ and F™ are matrices of size K (m)x K (m),
™ and g™ are column vectors of length K (m).

Then (3.4) is equivalent to
s™=(E™+F"™)s"™ + g™ (3.9)

3.2 Splitting the Linear Equation
Before discussing the algorithm, we will analyze the matrix E™ first.

Theorem 3.1.
Em = diag(e%, s ,e%(m)_LK(m)_l). (310)

Proof. Assume that

AR™(@) = Y qrrar e THEOD
lez

—y)= Z pre’™®

kez
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where the former formula can be proved from the definition of A;"™.

en, = g [T aly — )AL A" (y)didy

v
= 9 D Y. T
keZ A1A2EZ

027r f027r ei(k—u—)\QK(m))y-i-’i(V-i-Al K(m) —k)tdydt

= 2172101@ > T (2m)% - Ok pns K (1m) kw421 K (m)
KeZ MEZ

= (2 Z pu+)\K(m)|q/\|2)5V,u = ezﬂdu,u-
V4

The theorem is proved.
We will use the periodic quasi-wavelet transform to solve (3.9).

Let W, be the matrix given in (2.24), then we have
Wiw,, =H!H, + L. L, =1I,, (3.12)

and

HyHy =TI 1, LnLy, = In 1, (3.13)

where I, denote the unit matrix of size K(m) x K(m).

Apply W, to both sides of (3.9) and split into a pair of equations to obtain

Lpys™ = Ly (E™ 4+ F™)s™ + L,,g™

= Lyp(E™ + F™)LL L,,s™ + Ly, (E™ + F™)HL Hppys™ + Liyg™, 1
and

Hy,8™ = Hy(E™ + F™)LE Lys™ + Hyy(E™ + F™ HY Hypys™ + Hppg™ (3.15)

Denote
Lys™ =sp 1, Hps™=d, 4, (3.16)
Lpg™ =g Hug™ =g ", (3.17)
Ln,E™L, =E"' L,E™H} =E" (3.18)
H,E"Ll =E"' H,E™H) =E"" (3.19)

LpFmLL =F2 ' L, FmHL = Fmt (3.20)



500 H.L. CHEN AND S.L. PENG
H,F"Ll =F ' H,F"H =F' (3.21)

Then the linear systems (3.14) and (3.15) can be rewritten into

spoy = (B P+ F - Dsi + (Es"(;_l + Fﬁz‘_l)d%q +gn! (3.22)
= (B FR s+ (BT + Fp D+ g (3.23)

3.3 Approximate Version of Multiscale Strategy

We are going to solve (3.9) by using Multiscale Strategy([2]). If we can solve s]_,
d"_, from (3.22) and (3.23), then the solution s of (3.9) can be obtained by using
the reconstruction formulas (2.22) and (2.23). According to the idea of Multiscale
Strategy, we want to solve out d]_; from (3.23) then substitute it into (3.22). But
in general, it is difficult to do so, since the matrix Fﬂfl may be dense. Even if we
use Daubechies’ Wavelet, the induced F 5’;*1 may be dense, and Eg;*l is not diagonal.
Since b(zx,y) is smooth, the norm of Fﬂ_l is very small if m is large enough. We can
not solve d;'_, precisely, but we can obtain an approximate version which can be easily

obtained. According to this instruction, move the term E7, 'd™_, to the left side of

(3.23), multiply both side by y™ 1 := (I — EZ~ 1)1,

=B ER s Ay ER oy g (3.24)

m—1 —

m—1

where we assume y exists for all large m.

Substitute (3.24) into (3.22), we obtain

shov= (B + BTy BT+
HERT B T R Fl iy B s+ (3.25)
A L L Y |
By g+ (B Ery )y ey g
It is clear that all E’s are diagonal and all F’s are dense. If we want to avoid the
multiplication of dense matrix, we should treat them skillfully. Note that the operator
norm of Fs’g_l, Fé’s‘_l and Fﬂ_l are very small because of the smoothness of b(z,y).
We will show in section 4 that the norm of F% ' F/""! and Fj’~! have the order A3,

when m tends to infinity, where s is the smooth order of b(x,y), but the norm of ng[l,
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Eg;fl and E%il have the order h,,. Hence we can throw away the terms which have
the order A2 to ensure that our new algorithm can approximate the true solution as

well as possible. The terms F~lym—Lpm=lgm  and FM=lym-1Fm=1qm | can be

m
m—1>

then h25. Act E" 1ym~LF""! on both sides of (3.24) to obtain

thrown away. But we must deal with Egzlflfymleﬂ*l because it has order larger

E:;Lifl,ym—len(’ibfldm_l
— E‘:Z_I’Ymingg_l’YmilEg;_lsmfl + E‘:Z—I,melFﬁ—l,ymflggL—l (326)

m

m—1_m—1pm—1_m—1rpm—1_m m—1_m—1rpm—1_m—1rpm—1_jym
TE YT Eyy YTy s+ By Y T Eyy T gy T d

Note that the last two terms contain two small factors, i.e., Fﬂfl, Fg’;*l, SO we can
throw them away. Substitute (3.26) into (3.25).

~m—1 ~m—1 om—1

sP  =(E +F )" +p" g, (3.27)
where
~m—1
E =gty pnlymipnet (3.28)
~m—1
F — Fsr;z—l _l_E‘?;Llfl,Ym—lFé;bfl 4 F:C’lnfl,ym—lEg;fl _'_E‘?;Llfl,ym—lFﬂfl,Ym—lEﬂfl
(3.29)
pm—l — Fsrgfl,ym—lFﬂflsm_l + Eﬁflvm—lFﬂflvm—lFQZ*lsﬂ_l (3 30)
_i_Esrré—l,ymleCZlL—lfymlede—ldﬁil + Fsrg—l,ymle(Zdl—l %71’
and
~m—1
gm _ g;nfl + (E;r(ti—l + Fsrg—l),ymflggt—l _*_E‘:ré—l,ymlechL—l,ymflggL—l‘ (3‘31)

m—1

We shall prove that p really has very small norm, so we only need to solve out

~m—1
5™ from the following equation:

~m—1 ~m—1 ~m—1 ~m—1

s =(E +F )s +g . (3.32)

3.4 Algorithm
~m—1
In section 5 we will prove 5" and st is slightly different, but the unknowns
~m—1
in (3.32) is only half of that in (3.9). If we have already solved 5", then we simply

substitute it into (3.24) instead of s]'_; to solve out d]'_,. It is also easy to obtain d]"_,
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because the norm of F(Z}*l is very small, iterative method can work. We also note that
(3.32) is similar to (3.9), such that the above method can be repeated, reducing the
unknowns by half at each step. But we can not reach a scalar equation finally, for we
can’t ensure that the solution approximates the true solution well enough. In fact, we
will stop at level my. At m!? level, we can solve equations like (3.32) by any solver such
as Guassian Elimination. Because this direct method needs O(Kf’nl) operations which
is nearly O(K (m)*™/™). At k™ level, we need O(K (k)?) operations. Hence the whole
operations that we need is O(K (m)?) + O(K (m)>™/™). To ensure the complexity is
as small as possible, it is sufficient that m; = [%m], where [-] denotes the integer part
of the number in it. Before giving our algorithm, some notations must be introduced.

~k
For k < m, let s be the true solution of the equation

koo k o~k
s=F +F)s +g, (3.33)

~k+ ~k+1 ~k+1 .
and define s, = Lg s , then from (3.27) we can see that s,  satisfies

okl vk ~E k1 ok
s, =(E +F)s, +g +p", (3.34)

where we denote
~k o~k o~k gk

E :Ess + Esd7 Edsv (3'35)
ok o~k ek ek Lk ek
F =Fg + Esﬂ Fs + Fscﬂ Ei + Escﬂ FugV Egs, (3.36)

~k gk kb1l o~k gk g~k g
PP =F 7 Fussi.  + Eyyy Fagv Fassy

~k ~k gk ~ktl ~k g~k kL

+ By Fygy Fagdy,  + Fyqy Fyqdy (3.37)
~k o~k vk ~k o kek R kR kk

9 =9s +(Eqq+F0) 7 9a+ Ev Faa¥ 945 (3.38)
k1 ~k k1 ok

Ly g =95, Hri1 9 =94 (3-39)
~kEL ~k ~hEl ~k

Ly B Lk—i—l =By, Ly E Hk—i—l =Ey, (3.40)
~ktL ~k ~kEL ~k

Hiy1 B Lk+1 =b4, Hp E Hk+1 =Eqq, (3-41)
~kL ~k ~hEL ~k

Ly F Lk+1 =Fy, L F Hk+1 =F (3.42)
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~k+1 T ~k ~k+1 T ~k

Hyp o Ly =Fgg, Hept oo Hyp ) =Fyg, (3.43)

~k ~k

v =U-E4) (3.44)

~m

These notations are defined analogous to those in (3.16)—(3.21). We denote £ = E™,
~m —k—
F =Fm pl s™, gm: g™. Let 3* be the reconstructive result of 3#~! and dt ,

that is

s = LT+ grd* . (3.45)

When k£ = my, we define 3" —5™ . Let d" be the solution of the function

d" = (Egs + Fys)s" + (Egq + Fag)d + g4 (3.46)
Thus we obtain the following algorithm.
Algorithm.
Step 1. Compute previously ¢, E™ and F™ (see (3.8)), where m is large enough
for our purpose. Let &k =m
~k . .~k ~k—1 ~k
Step 2. Decompose g by using (3.17) to obtain g, and g; . Decompose E
~k ~k—1 k-1
and F' by using (3.40) — (3.43) to obtain £, , F; when [ represents ss, sd,ds,dd
respectively.
~k—1 ~k-1 gy
Step 3. Compute £ | F ,g  using (3.35),(3.36) and (3.38) respectively, and
~k—1 ~k=1
Y = (I—Edd )71. Letk—l—)k
Step 4. 1 Goto Step 2 until kK = m; := [%m]
Step 5. Solve 5% from the equation
e
=(FE +F )s+g (3.47)
using any solver such as Gaussian Elimination.

Step 6. Using the iterative method to solve d". The iterative procedure from

—k —k .
former value d” to new value d, is as follows :

—k o~k ~k ~k o kR kek
dy =Y (Bgy+ Fg)5"+7 Fggd-+7 gq (3.48)

where the initial value may be chosen arbitrarily.

~k ~k
Step 7. Reconstruct (s ,d ) — 5**! using (3.45). Let k+ 1 — k.
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Step 8. Goto Step 6 until k = m.
Step 9. Compute the approximate solution of (3.2) using (3.3) with 5™ instead of

~m
S

4. Convergence of Galerkin Approximation

In this section, we will discuss the difference between the solution of (3.2) and the
solution of (3.1). For our purpose, we quote a lemma from [20]. The norm used here is

o]
Lo-norm.

o8
Lemma 4.1. For f €C [0,2n] x [0,27],s < n where n is the degree of B-spline

function, f,, be the projection of f onto Vi, ® Vi, then we have the following estimation

If = fmll < Chy, (4.1)

where C' is a constant.
Lemma 4.2. For u Eé’s (0,27, s < m, let (Tyu)(z) = [Z™ log |2 sinx—g—y|u(y)dy,
then
[Thu — PnThu| < Chy, (4.2)
where C' is an absolute constant depending on w.

Proof. Denote t,, (z,y) the projection of u(z — y) onto V;,, ® Vjy, that is,

U (2,y) = Y ui AP (2) AT (y),
4,J
where u;; = 4—71rz f027r 02” u(z — y) A" (z) A"™ (y)dzdy. Then

|1Tvu = PuTiull < || f57 log [2sin &|(u(z — y)— um (2,9))dy]
< Cllu(z = y) = tm (z,y)| (4.3)
< C'hs,,
where the last conclusion in (4.3) can be obtained from Lemma 4.1.
Theorem 4.3. Assume uy, be the solution of (3.2) , u be the solution of (3.1). We
also assume I — T has bounded inverse and b 68‘5 [0,27] ® [0,27], g 68‘5 0, 27], u 68‘5

[0, 27], where s < n. Then
[ = um | < Chy, (4.4)
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where C' is an constant independent of n.

Proof. Because u and u,, satisfies (3.1) and (3.2) respectively, such that

U— Uy =Tu—PpTum,+g— Png
=Tu— P,Tu+ P,Tu — P,Tuy, + g — Pn,g.

From a result in [12] (Th. 10.1 P.142), we know I — P, T is invertible for large m,
and for all large m, their inverse have same bound. By using Th. 2.8, Lemma 4.1 and

Lemma 4.2, we have
lu =l = (I = PuT) " [(Tu — PuTu) + (9 — Pug)lll < Ch;, (4.5)

where we use the smoothness of b(z,y) in applying Lemma 4.1. The theorem follows
immediately.
Remark. The assumption that I — P,,,T is invertible for large m can be found in

12)].

5. Error Analysis

In this section, we will analyze the computational error in the algorithm. We will
use all the notations defined in previous sections.

Let s be the true solution of the equation
s"=(E™+F™)s™ 4+ g™, (5.1)

where E™, F™ and ¢ are defined in (3.8).
Let 3™ be the approximate solution of s, which is defined in (3.45).
We only need to consider the error ||s™ — 3|, where the norm is /?~norm. Then

from the orthonormality of discrete periodic spline wavelet transform, we have

m —=m m —m— m —m—1
[s™ —35™|2 = ||LL(sm_; —s™ 1)+ HI( d" |2 (from (3.45))

m—1 m—1 —
—m— —m—1
= [lsp_y =3P+ ldm_y —d 1%, (5.2)

where s satisfies (3.22). Now we want to estimate s — 3™ by using iterative

1 =m

method, that is, we will estimate s™ 1 — 3™, For our purpose, we have to establish

some propositions.
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Lemma 5.1. Under the condition of Theorem 4.3, we have for oll k > 0

IES | < Mehy—, (5.3)

IFE I < Myhi_y, (5.4)

for & = sd,ds,dd, where M, and My are constants independent of k.

Proof. (5.4) is obviously by using lemma 4.1 because we have the following inequality

IEEY < b2, y) — br—i(z,9)]|

for & = sd, ds, dd, where by(x,y) is the projection of b(z,y) onto Vi ® V.

For (5.3), we only prove the lemma for & = sd, others are similar.

Here the norm of a matrix is defined by it’s operator norm while the norm of a
vector is [>-norm. Then from classical linear algebraic theory, the norm of a matrix is

the radius of it’s spectrum, i.e., for a matrix A,
I|A|| = max{A|\ is a eigenvalue of A}

From the (3.7) and (3.8), we have

Efd_l(j,j) = % 027r f027r a(z — y)A;”’k(x)D;”’k(y)dxdy
a’kz' bkz 27 2w n,k+1 n,k+1 (5 5)
- o Jo alz—y) (Aj (x)Aj (y) :

21

—ATREL () ATFEL () dady.

J+K(k—1) J+K(k—1)
Using the same method in Theorem 2.10, we can prove
2r 2w i DTWIRN 1
[ e = 94 @) 47 F ey < o, (5.6

and similarly,

2 2T _— 1
n,k n,k
|/0 /0 a(z — y)Aj+K(k71)(x)Aj+K(k71)(y)dxdy| < COK

K1) =7 (5.7)

for0 <j < K(k—-1).
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From (2.32), (2.33), (5.6) and (5.7), we have for 0 < j < K(k — 1),

EfYG,9) <

For j = 0, it is true as well. Hence we have ||E§d_1|| < 0<j£n1?‘()§g_1){E§d_1(j’j)}' The

result is proved.

In this section, all conclusions are under the condition in Theorem 4.3 if we do not

propose new conditions.

~k ~k
Beside Ef and Ff, we should also estimate the norm of E, and Fy, for & represents

sd, ds, dd respectively.

Lemma 5.2. For M, in Lemma 5.1, suppose mg satisfies that for k > mg
Mhy <0.5. (5.8)
Then when m is large enough, i.e. 3my < m, then for [2Tm] <k <mand& = sd,ds,dd

~k
| By || < 2™ Mhy, (5.9)

~k
| Fo | <2m7% 7 Myhy, (5.10)

~k ~k
Denote v = (I— Eyy) Y, then from (5.8) and (5.9),

~k
Iy <2 (5.11)

Proof. We will use induction method to verify the lemma. For k = m — 1, from the
~m—1 ~m—1

notation in (5.8)—(5.11), we have Ey, = E{"'and Fy, = F{"', hence from Lemma

5.1, the conclusion has been proved. Assume that for &k, the lemma is valid. Now we

prove (5.9) for & = sd, others are similar.
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~k
From the definition of E_; in (5.8), we have
~k—1 ~k
| Esq || =IILx E Hy|l
~k ~ko o~k
= ||Lk E Hk; + Ly Egq 7" Egs Hk “ (by (335)
~k ~k e~k
Sk Egs Hi [l + 11 Ega Il v NIl Egs ll(since || L]l <1, [[Hi|| < 1)
~k
<||Lg By HE|| +2(2™ k1 M.hy)? (by assumption of induction)
~k+1
<NLyLpsr B Li Hy || +2(2" %" Mehy)®  (from (3.40))
~k+1
SN LkLit1 Bog Ly Hy || + 22772 Mehy1)? + 2(27 75 Mehy)?
<|\|Lg---LyE™LE - LI HE || + 4™ 1 M hy,)?
< | Le BRH || + 42 F  Mohy)? < | BE | + 427K Mehy,)?
< Mohg_1 + (2" F'M.hy_1)? (from Lemma, 5.1)
= Mohp_1 (1 + 2" = M hy_12m7F=1) = Mohg_y (1 + Mohog_p2™ k1)

< Mohg_y (14 2m=F=1) <2m=Fk Dy .

(5.9) follows.

The proof of (5.10) is similar. (5.11) is the immediate result of the condition and
(5.9).

Because our algorithm omits p¥ at each level, we should estimate p*. From Lemma
5.1 and (3.37) it is immediately to obtain

Lemma 5.3. For m > 3my, then

lp™ | < 8MF|s™ | by (5.12)

m—1»

where myg is defined in Lemma 5.2 and My is in Lemma 5.1.

In each step of the algorithm, we should ensure that the matrices I — E¥ — FF¥ is
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invertible. This is the following lemma.
Lemma 5.4. Suppose that I =T has bounded inverse, and assume that for k > 2my,
I — EF — F* s invertible. Then for [%m] < k <m, we have

~k ~k
I-B —F)™') <M, (5.13)

where M, is independent of k,m.
Proof. Under the condition of the lemma, We assume that for k& > 2my, there exists

a constant M,

I(1 - BF = F*)~Y| < M.
From Lemma 5.2,
~k B} ~k o~k Sk .
I E —E¥| = Ey + Eyqq " Eqy —E7| (from (3.35)
~k . ~k k. ~k
S Egs —EXI+ (1 Esq Iy I Egs |l
~k
<|| E,, —E*|| +2(2™ %1 M.ht)?  (from Lemma 5.2)
PR k k—1 2
<ot B Ly — BY|+2(20* 1 M,he)?  (from (3.40))
PR k k—2 2 k—1 2
<Mlsr By LT, — B 4+ 202752 M 1) + 202751 M, )
~m

<||Lkg1+ - Lm E LL - LT | — EF|| + 42" *=1 M,hy)?

~m
< |EF — E¥|| +4Q2™ M h)? (E =E™).

~k
For %m < k, we have lim |E*— E | = 0. Similarly, we can prove that
. k—o0
lim |[FF— F || =0, ie.
k—o00

~k ~k
lim |E¥+ FF—E —F || =0.
k—o00
(5.13) follows immediately.
The most feature of our algorithm is throwing away p* at each step so that we can

reduce the complexity. We will prove in Lemima 5.6 that all thrown p* are very small.
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~k ~k
Denote s;,_1= Ly s ,

Lemma 5.5. For all 2mgy < %m < k < m, there exists a constant M, independent

of k, such that

~k
s | < M, (5.14)

when the smoothness degree s > 1.

Proof.

~k ~k okl ~ht 1
st <ls —sp  I+1sk |l

~k+1
< M+ 15 (from (3.27))
< [AMM2h222m=2%=2(1 4 2M,2m k1) 41| 5 || (from (3.37))

~k+1
s |

— 94 ~I1T
7 (1 + 8M MFRZ* 27 %72) | 5 ||

< (14 8M MGhis2?m=2k=2)|

IN

IN

m
exp{)_ 8MCMf222m’2j’2h§5}||sm I
=k

< eXp{M122m—2k—2sk}“SmH
< exp{ M 22" 22 M g™ |

< ]\42 eXp{M1 22m—2k—25k}'

When £ > %m and s > 1, 2m — 2k — 2sk < 0, hence the result is immediate.
From Lemma 5.5 and Lemma 5.2, we have

Lemma 5.6.

o7 < M, 22 "2k his, (5.15)

for mg < k <m.
We now turn to our main goal, we shall estimate the error of the algorithm.

Let s™ be the true solution of linear system
s =(E™+F"™)s"™+ 4", (5.16)

and 3" be defined as (3.45) where k = m.

We obtain our main conclusion.
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Theorem 5.7. For m > 3mg, we have
|s" — 3™ < Mgh;,, (5.17)

where M, is a constant independent of m
~k ~k ~k ~k
Proof. Let 6" = (I— Egy — Fyq) ™", and £ =By, + Fy,, and ¢* = (1 + [|6"]|[1€*])),

then

_ o —m—1
Is™ =3 < sy =3I+ ldm_y —d™ ||

~m—1 ~m—1

< (Lo HHE™ D (s — s |+ s 1))

~m—1

=15 =5 4 M |lp™ ) (from (3.27),(3.32))
m—1 m—1
<M Y I A" < MM Y |1pF| (from Lemma 5.2)

k=m1 k=m

S MZh?rfl 22m72m1 S Mahfﬂ22mf2m1+smf2sm1.

IN

q

If s > 2, we can see (5.30) is true.

Define
K(m)—1

Up = », STAP™
v=0
Because the members of s¥ are the coefficients of uj, on the basis of Vj, we have the
7
following conclusion.

Corollary 5.8. Assume that U, be the approzimate solution using the algorithm.

For large m, and s > 2, there exists a constant M independent of m
= Tl < ME, (5.18)

Thus the estimation of the error of the algorithm is completed.
Remark. From the error analysis above and the description in section 3.4, we can

see that the complexity of our algorithm is O(K (m)?), where m is the highest level.
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