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Abstract

In this paper, the Crank—Nicholson 4+ component—consistent pressure correction
method for the numerical solution of the unsteady incompressible Navier—Stokes
equation of [1] on the rectangular half-staggered mesh has been extended to the
curvilinear half-staggered mesh. The discrete projection, both for the projection
step in the solution procedure and for the related differential-algebraic equations,
has been carefully studied and verified. It is proved that the proposed method is
also unconditionally (in At) nonlinearly stable on the curvilinear mesh, provided
the mesh is not too skewed. It is seen that for problems with an outflow bound-
ary, the half-staggered mesh is especially advantageous. Results of preliminary
numerical experiments support these claims.

Key words: Unsteady incompressible Navier-Stokes equations, Curvilinear half—
staggered mesh, Discrete projection.

1. Introduction

Let us consider the unsteady incompressible Navier—Stokes equations (INSE)

ow L
¥ + (w - grad)w + grad p = Edw grad w (1.1)

divw =0 (1.2)

on a two—dimensional region 2 with boundary 092. Here w is the velocity vector; in
terms of its Cartesian components w = (u,v)’; p is the pressure. The initial condition
is given as

Wli—o =w’ on Q (1.3)

satisfying (1.2). We are concerned mainly with the solid wall boundary condition

w=wpg onJdQ satisfying ?{ wpds =0 (1.4)
o0
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but we will also briefly discuss the outflow boundary condition. Note the convection
term can also be written in conservative form (w - grad)w = div(ww), using (1.2).

The difficulty in the numerical solution of the above problem lies in that (1.1) and
(1.2) are partial differential equations with constraint; i.e. the system of equations is
not entirely evolutionary. The projection methods of [2], [3], and [4] have been widely
used and have proven to be most efficient for this type of problems. However, it is
not always very well understood and has caused a great deal of confusion, e.g. see [5],
[6], and [7] for discussions of the numerical boundary layers in pressure. For spatial
discretization, there are many finite element methods — the so—called mixed methods.
But for high Re unsteady complex flow simulation, the finite difference methods are
usually used. It may be surprising to those not in the immediate field that the finite
difference discretization is almost exclusively done on the staggered mesh of [8] for
practical computation. The reason is that on the half-staggered mesh or the general
mesh, the centered difference scheme (for grad p and div w) is not “regular” and the
numerical solution is not “smooth”, see [9] and [10], mostly the pressure solution can
be intractable.

Because many of the advantages of the staggered mesh are lost on its curvilinear
counterpart, see [11], we have directed our efforts toward the half-staggered mesh of
[12], see Fig. 1. This mesh retains some of the advantages of the staggered mesh and
does not need half-interval differencing on points adjacent to the boundary. Its main
advantage lies in that with both components of the velocity at the same point, their
coordinate transformation, the discretization of (1.2), and the formation of boundary
conditions become more intelligible. But the solution of the discrete Poisson equation
for pressure (or pressure correction) in the projection step becomes troublesome, in that
there is an added constraint for solution and in that the solution can have oscillations,
see [13] and [14]. We have shown in [15] that the added constraint is of no serious
consequences for many problems, and that the oscillations do not affect the discrete
gradient of p, which is of our only concern. Furthermore, for simulation of high Re
unsteady complex flow in rectangular regions, a fast solver for the discrete Poisson
equation with the most straightforward finite difference approximation of grad and div
on the half-staggered mesh has been developed in [16]. It has proven to be very efficient
in the numerical tests of [17] and [1]. We point out here that the half-staggered mesh
has been used quite successfully in [18], but with a different procedure for projection,
in which the divergence—free velocity is computed directly with a Galerkin approach.

We have chosen the pressure correction (PC) projection method of [4] because its
equation for the auxiliary velocity is consisitent with (1.1), and hence the boundary
condition (1.4) can be used. Also it retains the second order time accuracy of the
underlying difference scheme, say the Crank-Nicolson (CN) scheme. However with
the regular PC projection method, the “deviation” problem is sometimes encountered
in practical computation. In [1], it is explained that with spatial discretization on
a fized mesh, the INSE becomes a system of differential-algebraic equations (DAE).
For its solution to evolve along the correct branch, a consistency condition between
the components (here w and p) of the solution must be satisfied. The PC projection
method does not preserve this consisitency condition, and hence may lead to “deviation”
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and produce erroneous results. An additional pressure solution from the consistency
condition itself per time step will produce the correct numerical results. However, in [1]
the component—consistent pressure correction (CCPC) projection method is proposed,
which preserves a discrete form of the consistency condition involving pressure at one
time level, and which requires just one solution of the discrete Poisson equation per
time step. Numerical experiments show that for both the CN and the Runge-Kutta
time stepping, the CCPC projection method leads to the correct numerical solution.
It is also shown in [1] that for both the CN and the Runge-Kutta time stepping, the
CCPC projection method is of second order time accuracy for w and of first order
time accuracy for p, with the correct interpretation of the assumption that the right
hand side functions of the DAE have bounded derivatives in some closed region of our
interest.

In this paper, the CNMT2 4+ CCPC method (MT for the Temam scheme modified to
the staggered or the half-staggered mesh, which uses an average of the non—conservative
and the conservative forms of the convection term for stability), or simply the CN +
CCPC method, of [1] is extended to the curvilinear half-staggered mesh. Our pur-
pose is numerical simulation of high Re unsteady complex flow using sufficiently fine
mesh and sufficiently small At¢. For such problems, the efficiency of the solution of the
discrete Poisson equation is of utmost importance. With careful derivation, the ma-
trix of the system of linear algebraic equations corresponding to the discrete Poisson
equation is symmetric, and hence facilitates the development of fast solvers. Also in
this paper, the discrete projection is clearly stated, with the boundary condition left
open, and the discrete gradient of “pressure” defined only on the interior points as for
computation. The validity of the projection is proved with its uniqueness depending
only on the uniqueness of the discrete gradient of “pressure” from the discrete Poisson
equation, which is also a part of computation. The particular case of the curvilin-
ear half-staggered mesh is verified as [14] via transformation matrices. This paper
also contains a brief discussion on the outflow boundary. It is seen that for problems
with an outflow boundary, the half-staggered mesh is most advantageous, without any
constraint or oscillation problems from the discrete Poisson equation.

In Section 2 we state the DAE and study the discrete projection. In Section 3 we
describe the CN scheme in the £, computational region and prove its unconditional
(in At) stablity under certain mesh conditions. The CCPC projection method is stated
and its validity indicated in Section 4. The treatment of outflow boundary conditions
is included. Then in Section 5, preliminary numerical results are presented, which
support the above claims. In Section 6, the concluding remarks are given.

2. DAE and Discrete Projection

Let the computational region be covered by a mesh with interior velocity points
I, boundary points B, and interior pressure points Iy. Let the INSE with spatial
discretization be denoted as
dw

%—l—f(w)—i—Gp:O, on [ (2.1)
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dw
E — W,B = 07 on B (22)

Dw =0, onl (2.3)

where f is a nonlinear operator with f(w) approximating the convection and viscosity
terms; G and D are linear operators corresponding respectively to grad and div. Let
W be the vector with all the v and v on I and B as components, and P the vector
with all the p on Iy as components. Then (2.1)-(2.3) can be written as

dW
dt +F(W,t)+GP =0 (2.4)

DW =0 (2.5)

On a fixed mesh, F is just a nonlinear function, while G and D are linear functions.
Note that the nonhomogeneous boundary condition is incorporated in F(W,t) as a
known function of ¢. Equations (2.4), (2.5) form a system of DAE of index 2. Taking
the time derivative of the constraint condition (2.5) and substituting (2.4) gives

DGP = —-DF (2.6)
which is the consistency condition for components W and P of the solution of the DAE.
For example on the half-staggered mesh, see Fig. 1, W and F are 2(N + Np)
dimensional vectors, G is a 2(N + Np) x M matrix, and D is a M x 2(N + Np) matrix.
Now partition W as (W, Wg)T; in Fig.1
W = (ug2,us3z, ug3, uss, V22, V32, Va3, U33)T
For points of Iy adjacent to the boundary Dw involves w on I and on B, write
Dw =D;w;+ Dgwpg
In particular, Dw = Dyw where wp is not involved. From the above we form
w
DW = (Dy, Dp) < ! ) =D/W;+DpWg
where Dy is a M x 2N matrix. We also form

QP:(%>P:(...,Gp,...;...,O,...)T

where G is a 2N x M matrix; the 0 entries are due to the fact that in (2.2) no explicit
pressure term appears. This is the class of GP that is under consideration, thus G'p on
the boundary is not explicitly involved in any way. Note that

DG = DGy

Partition F as W, from (2.2) we have F = (F;, ~W';)T and DF = D;F; — DgW/.
Thus (2.6) can be written as

D;G;P =—-D;F;+ DgW' (2.7)

It is the solution of this kind of systems of linear algebraic equations, or often called the
discrete Poisson equations, which will define the discrete projection. (Note that neither
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Gp nor p on the boundary is involved.) For the half-staggered mesh, the properties
of the M x M matrix L = DG and the existence and “uniqueness” of the solution of
(2.7), or (2.6), are discussed in [10]. Here we assume its solution and give the discrete
projection theorem, which is almost trivial. However, its corollary is of direct use for
our problems.

Theorem 1. Any vector V of a vector space V can be uniquely decomposed into

V=U+G? (2.8)
where DU = 0, under the assumption that
DGO =DV (2.9)

has solution ® with G® unique.

Indeed, left multiplying (2.8) by D yields (2.9), which has solution ® and thus
G®. From (2.8), we obtain U = V — G®. Now suppose also V = U + G® with
DU = 0. Applying D, we get DG® = DV, which is the same equation as (2.9). By
the uniqueness of G®, we have the uniqueness of decomposition (2.8).

Now let D denote the subspace of V of U with DU = 0, and G the subspace of V of
form G®. Thus, V = D@ G. The above unique decomposition also defines a projection
P:V =V, P is linear and P? = P, with

V=R(P)®N(P)

where R(P) denotes the range of P and N (P) the nullspace of P, (see for example [19]
or [20]). We define P by PV = U, then

PU=U, P(GP)=0 (2.10)
also for 9 =7 - P,
QU =0, Q(GP)=GP (2.11)
P is the projection of V on D along G, and Q is the projection of V on G along D.
When D is orthogonal to G, i.e.
(U,I)=0 foralUinD andforalll'in g (2.12)

then the projection is orthogonal and ||P|| = 1, see Fig. 2.

From the above discrete projection theorem we get the following:

Corollary 2. Any vector field v on I + B, with (1) vg = up or (2) vp =
up + (Go)p, can be uniquely decomposed into

v=u+G¢ onl (2.13)
where Du = 0, under the assumption that
DGQSZ D[G[QZS: D;vy+ Dpgvp (214)

has a solution ¢ with G¢ unique.
Indeed, form V as (...,vy,...;...,ag,...). where for (1) ag = ug, for (2) ag =
vp—(G¢)p. Since (2.14) is just (2.9) in component form, we have unique decomposition

(5)-(8)+(%)
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with (U7, Ug)T in D and (&@,O)T in G.

Note that in the case of (1) vp = up, the interior and the boundary expressions
are not the same. This is the cause of the numerical boundary layers in pressure in
the projection methods. For case (2) vg = up + (G¢)p, the interior and the boundary
expressions are the same and no numerical boundary layer results. Such is the situation
for (2.1) and (2.2), the boundary equation (2.2) must be compatible with the interior
equation (2.1), vg — (G¢)p corresponds to fp + (Gp)p = —w'y, and F is formed as
(cooyf (W), —wlg, . )T

We will indicate in Section 4 that for the half-staggered mesh, the solution of the
discrete Poisson equation (2.14) with unique G¢ will depend on certain conditions on
Vp (wp or wi of our problem). When these conditions are satisfied, the discrete
projection is valid.

Then applying Q and P respectively to (2.4), we obtain

GP = —QF(W,t) (2.15)
and W
— TEF(W.1) =0 (2.16)

We remark that (2.15) can be used in place of (2.6) as the consistency condition for
the components W and P of the solution. We note also that equation (2.16) involves
only W.
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Figure Half-Staggered Mesh Figure 2. Orthogonal Projec-
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/ B points (Np)
o Iy points (M)

3. The Finite Difference Scheme on the Curvilinear Half-Staggered
Mesh

The INSE in the Curvilinear Coordinate System
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Let the curvilinear mesh on the physical region be generated by the smooth trans-
formation functions

z=xz(&n) y=yn) (3.1)

In the &, plane the computational region is rectangular with uniform square mesh
A¢ = An = 1. The covariant base vectors of the curvilinear coordinate system are

denoted as
_ [ ¢ _ [ Tn
g1 = ) g2 =
( Ye > ( Yn )

VG = Teyy — TpYe (3.2)

the transformation Jacobian > 0. The contravariant vectors are denoted as

1 &z _L Yn 2 _ Nz :L —Ye
f-(8)-wlm) e () -wlr) e

Then the contravariant components of the velocity vector w are

with

w'=w-gl, w=w-.g’ (3.4)
and the continuity equation (1.2) becomes
1 [ 0
with div in conservative form.
We write the momentum equation as

ow 1/ 0w 28W 11 ([0 Wl 0 9 Op op o
] Gl )*57{%“ Wt g Wa w4 e e
11

11 12 OW 21 OW ow 22 OW
= Re s [ag (fg g V99 8—77) <fg +V99 )] (3.6)
Here convection is represented as an average of its non—conservative and its conservative
forms, see [2] and [17]; this form with centered differencing leads to stability of the
numerical scheme also on the curvilinear mesh, as we shall see shortly. The grad p is
given in the non—conservative form for simplicity. With div in conservative form and
grad in non—conservative form, the div grad has the standard simple form, see [21].
The momentum equation is a vector equation, there are many ways to decompose it
into scalar equations, see [22]. Here we choose the most direct way, that is, to use just
the Cartesian components of w and the base vectors.

Finite Difference Approximation of the INSE on the Half-Staggered Mesh
We counsider first the geometric quantities. On each point of I and B, we approxi-

mate x¢, ye, Ty, Yy by centered finite differences over two intervals; they are respectively:

. Sa: _ Tk — Tj-1k N Sy i Sx . Sy
xC_Af_ IAE , yC_Af’ xa—An, ya—A77 (3.7)
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With these we compute

§ = zCya—zayc ~ /9
A = (@0 + @) = s
B = Z(zcxa+ycya) ~ sg'?=sg* (38)
C o= (@) =~ s
We note that analogous to g'!'g** — (¢*?)? > 0 for \/g > 0, we have
AC - B?>0
for s > 0, which we assume to be true.
We come next to the continuity equation, it is approximated by
Dw:ll_)w:l i(u ya—vxa)—l—i(—u yc+wvzc)| =0 on (3.9)
s s | A€ An

in which ¢ itself denotes the centered differencing over one mesh interval, and ¢ denotes
the average in k for differencing in j, and the average in j for differencing in k. We can
also write (3.9) as

_ sVl V2
Dw = A—§ + A—U =0 where (3.10)
V! =uya—v za, V2 =—uyc+wzc

From (3.9), it is seen that the geometric quantities do not satisfy the “closed cell”
condition (see [23]), i.e. for u = constant and v = constant, Dw # 0. Using an
n (1,2,1)/4 average for zc etc. will correct the situation; but this may not be necessary
for fine curvilinear meshes generated by smooth transformation functions.

Now we give the CN finite difference approximation of the momentum equations in
1 u" + un+1
nty —

components u and v. To simplify the notation, we denote u 5 by u, etc.
= éé l& (AZ—Mg + Bg) + Aiﬁ (BZ:QZ—F 02—12)] on [ (3.11a)
_ é% lAif (AZ_Z +BZ:1;7> + Ain (BZ:ZJF O%)] on I (3.11b)

Here 0u denotes the average in k for differencing over two intervals in 5, and the average
in j for differencing over two intervals in k; i.e.

[5_“ L (ke Z Uk Yk — Uk
= -
¢ jk4i

2 2A¢ 2A¢
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[W] _ l (Uj+1,k+1 — Ujt1,k—1 + Ujk+1 — Uj,k—1>
An ]+2,k 2 2An 2An

Stability of the CN Scheme
Now we show that the above CN scheme is unconditionally (in At) nonlinearly

stable, i.e. for zero boundary conditions |[w"*!|| < ||[w"|, if the curvilinear mesh is not
too skewed. We state first the following partial sum relations: for f; = fr+1 = 0, see
Fig. 3,

(1) X fiogi=—30fi g

(2) 220 fi 0pr = =224, 0 f1y P

(3) 20 f1 (Pro+1 + pio) = 24 (f1 + fiz1) pio

Multiply (3.11a) by v ™! + u™ = 2u and form Y"; s A¢ An; the first sum is just

5 M - () 5 A A
1

The convection and pressure sums mimic the respective integrals of the continuous
equation which can be easily shown to be zero by transforming back to the z,y coor-
dinate system. Here we proceed directly. From the £ convection terms,
du 1 9 B B
z[: ( u A—Z%— UA_é’(S w u)> SAfAn—zI: (swluA—Z—I—uA—g(s w u)) AEAn=0
by relation (1). Similarly for the 7 convection terms.
0
From the P term,

Ag

L 1[0pjkosr1 = OPjk
Tye2ugs g | e + T (ya)ya 6 AC A

0 uya
= — Ek E]O ( > X p]o,k0+1 +p]0,k0) Aé- AT]
Jo,

0 uya 0 uya
= = Ljosko l( ) < At ) _ ]pjo,ko Ag An
Jo,k Jok—1

S uya
= -2 ZIO 7y pjo,ko A£ AT/
Ag jO;kO

in which we have used in turn relations (2) and (3). We obtain a similar expression for

0
the P term; and adding we get
An

5
_22 l (u ya) A_ﬁ(_u yc)] p A¢ An
) 5 )
Note the — and — terms in the bracket are exactly the first parts of the — and
3 Ag An Ag
N terms of Dw of (3.9). From (3.11b) we get the corresponding second parts, and

hence the two sums add up to zero.



530 L.C. HUANG

Now we discuss the sum from the viscosity term; this needs more attention because

of the cross differences. By relation (2) the first — sum

A¢
2 ) (5u 6u (5u
R i (5 )| e a0 - R EE G (a5 ac

]
Similarly the second A, Sum. Altogether we have
n

ou ou ou Su ou
— AE A +C— ] AEA
> a (a5 o5y ac a3 (55 oy ac

" Re
Jsko

If the curvilinear mesh is such that B is sufficiently small, i.e. the £ and the 7 lines are
not too skewed, or if the above sum is sufficiently close to

2 o\ S\ (0w &'u
- Al — 2B C A¢ A
Re 2 l (3¢) 22 (5¢) (ay) * (An)] < A
2
for some suitably defined ¢’, then from AC — B? > 0, the sum is > 0 and e times

e
the sum is < 0.
Similarly for (3.11b).
Summing up, we have shown that Y [(u"™1)? — (u™)?] s AL Ap + Y, [(v"Fh)? —
(v™)?] s A& Ap < 0. That is,
w1 < fjw"|

under the condition that the curvilinear coordinate lines are not too skewed, (or that
the mesh is sufficiently fine).

The Outflow Boundary Condition
In this section we also include a brief account of the outflow boundary condition,
say at the right boundary. It is straightforward to work with the “frozen coefficient”
equations of (1.1) and (1.2),
oW oW ow
8—‘: +u a_w + va—y +grad p = R—dw grad w (3.12)
div w =0 (3.13)

where w = (i, )7 is the small perturbation of w, and where u and v are frozen as
constants. Using the energy method, see [24], (here taking the dot product of (3.12)
with w, integrating over €2, and using (3.13),) we get

2 ow
Y- Y — 2U ow <
729( Wy W - W wnp—i-Rew 8n>d 0

as the sufficient condition for non—increasing ||w(¢)||. The pointwise outflow boundary
condition at the right boundary is

—w, (@2 + %) -2 {(unl-l—img)p—Ri ('@ +@@>] <0 (3.14)
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Since wy > 0, the first term on the left hand side is < 0. Taking

1 01 1 99
pnl——@:0 and png——%:0 or

T gy T
png — e om and pno — e om specified, as 0 say
(3.14) is satisfied.
In the curvilinear coordinate system, the unit normal vector to a line £ = const. is

n = g'/y/g' and the normal derivative to a line ¢ = const. is (¢'*-2 + ¢'2-2)/\/q'1,

& on
thus the outflow boundary condition becomes
Pty — o <9”% +912%> =0
Re \" 0¢ on (3.15)
¢ _L( 11@+ 12@) -0

cancelling 1/y/g'I. The same outflow boundary condition can be derived from the
“frozen coefficient” equations of (3.6), with the geometric quantities also frozen as
constants. The condition (3.15) will be applied by regarding the geometric quantities
as constants and taking p and gll%—vg + 912%—2’ to be zero outside the right boundary in
the ¢ difference approximations of the grad p term and the viscosity term of (3.6). The

convection terms of (3.6) will be approximated with upwind differencing and the g—’n’

and 3%(\/5912%—2’) terms will be approximated by 7 differences at neighboring points
(jo = J + 1) inside the computational region.

p T
o o o
1 10 1 L+1

Figure 3. One—Dimensional Mesh

4. The Component-Consistent Presure Correction Projection Method

The Discrete Projection on the Curvilinear Half-Staggered Mesh
Let the time continuous version of (3.11) and (3.9) be written as DAE

d 5 .
d—v:—l—f(w)—i—Gp:O onl, w=wp onB (4.1)

Dw =0 onl (4.2)

in which we have included the boundary conditon in the original form (1.4). All the
results of Section 2 are valid with the understanding that all the G’s and all the D’s are
changed to G’s and D’s respectively. We keep the notation G and D for uniform mesh
in the &, 7 computational region. Before stating the particular projection method, we
recall from Corollary 2 that for the projection method to be valid, the discrete Poisson
equation (2.14), here

Dé(ﬁ = D[é[(ﬁ = DV =rhs (4.3)
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must have a solution ¢ with G'¢ unique. This problem is discussed thoroughly in [10].
It is shown there that
Dy =DiR;, Gi=5RiG;

where the 2V x 2N matrices Ry and Sy are

[ diag(ya)  diag(—za) [ diag(s) 0O
B = < diag(—yc) diag(zc) ) ) BL= < 0 diag(s) ) ’

and they are nonsingular because s > 0. It is also shown that the M x M matrix

L = D;G; is symmetric and of rank M — 2. Also the base vectors of N'(L) = N(LT)

can be represented as

Uy = (17171...;...;...;...17171)T
Voo = (1,-1,1---5-1,1,—=1---;-- )T

The two constraints for (4.3) to have a solution are:
Ulirhs =0, Wl,rhs=0

Due to simple form of the rhs, see (3.10), the first constraint reduces to a relation
involving the normal components of the velocity (u in Corollary 2) on the boundary,
which approximates (1.4) satisfied by the boundary conditions of the INSE. The second
constraint reduces to a relation involving the tangential components of the velocity on
the boundary when the curvilinear mesh is orthogonal there. In general, it involves some
component of the velocity on the boundary, see [10]. This constraint is entirely due to
discretization, but for many problems (zero or constant boundary condition, symmetric
region of solution, etc.) it does not present essential difficulties. The solution ® of (4.3)
has two degrees of freedom, i.e. ®+c; ¥y +ca V2 is also a solution. The ¥y, term leads
simply to uniqueness up to a constant and does not affect G¢. The ¥y, term leads
to oscillations of equal amplitude in the solution, see [13] and [14]. Since G¥py = 0
(52 = 351 h—Yinttirkr1—tine1) = $(1—(=1)+(=1)=1) = 0,similarly £& = 0),
Gy, = 0, and hence G¢ is unique. Thus the discrete projection method, and similarly
case (2) of Corollary 2, are valid.
We also note here the following skew—adjoint condition:

(v,Gp) = —(Dv,¢) for all ¢ and v with vp =0 (4.4)
Indeed, the left hand side is
1
dove (;RTGqS) SAEAN =Y (Rv) - GPALAn ="V - Gp AéAn
1 1

1

where R = ( ya mea ) and V = (V!,V?)" defined in (3.10). The right hand side

—yc zc
18

1
- gDRV ¢ sAEAn ==Y DV ¢ A¢An
IO IO

Now it is easily seen that G = —&T, thus
(V1,G1®) = —(D1Vr1, )
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Hence for wg = 0, which implies Vé = VP? = 0, we have
Y V-Gp=-> DV ¢
I Io

and (4.4) is proved.

For Du = 0, or Du = 0, we have the orthogonal relation (u, G¢) = 0. The space
of u with Du = 0 and ug = 0 forms a subspace Dy, projection Po on this space is
orthogonal, see Fig. 2, and

[Poll =1 (4.5)

Relation (4.4) and (4.5) are needed in the stability and convergence proofs for numerical
schemes of our DAE, see [1].

The CCPC Projection Method
Now we consider the following CN time discretization of (4.1) and (4.2)

n+l _ n - W+ whtl

F
R —

hd )+ Gp"tT =0 onl, w'tl= wil on B (4.6)

Dw" =0 on Iy (4.7)
The CCPC projection method proposed in [1] is

R N - w4 whtl _ ~
A7 + £ 5 )+ Gp"ié =0, w""=wlit" onB (4.8)
wn+1 _ wn+1 ~ _
A +Gp=0, Dw"l=0 (4.9)
where w"t! is the auxiliary velocity and ¢ = p”"'% — pn_%, the pressure correction.

Equations (4.9) implies
_ . 1 - _
DG¢ = E(D;v”v?“ + Dpw'ith) (4.10)

The solution procedure is: (1) solve for w"t! from (4.8) (at n = 0, Gp° from the
component—consistent condition is used), (2) solve for ¢ from (4.10), and (3) update
w1 with the first equation of (4.9).

The validity of the projection step (4.9) is clear with the correlation of w"*! with v,
w1 with u, and At G'¢ with the G¢ of Corollary 2. This projection method preserves
the second order accuracy of the CN scheme; its intermediate step (4.8) is consistent
with (4.1) and hence the original boundary condition can be used. It involves one
Poisson solution per time step and does not lead to the “deviation” problem, see [1].
Here we just note that by adding (4.8) and (4.9) and applying Q we get component-wise

w’ + wn+1

5 )
which is an approximation involving p at one time level of (2.15), the consistency
condition of w and p of DAE (4.1), (4.2).

In [1] it is shown that if the underlying evolutionary scheme is stable in the sense
that |[w"T!|| < ||w"|| with zero driving force, then the scheme with the CCPC projec-
tion method for INSE, with discrete grad and discrete div satisfying the skew—adjoint

épn+% — _ Qf‘(
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condition (4.4), is stable with the norm (||w|? + AthHépHQ)% From the discussion of
stability of the CN scheme of Section 3, it is clear that our underlying scheme ((3.11)
only as equation of w, i.e. without the pressure terms) is stable under certain mesh
conditions. Hence our CN scheme with the CCPC projection is stable under the same
mesh conditions. It is also shown in [1] that the global time error (on fixed meshes as
assumed) of our method is O(At?) for w and O(At) for p.

What remains to be discussed is the solution for w"*! from (4.8) by iteration,
and for rectangular regions the iterative scheme is given in [17]. Here for the curvilin-
ear mesh with cross differences in the viscosity term, the iterative scheme written for

1
w2 = (Wt 4+ w")/2 is

V~V(u+1) —

At)2

1

+ Cé”)w(l/-l-l) + Cé”)‘fv(l"i‘l) + E(V) +Gp"T2 =0 (4.11)

in which w(**+1 stands for the (v + 1)st iterate of v~vn+%, Cg(y)denotes the coefficient of

w3 in the ¢ convection term with w! at (v) and in the ¢ viscosity term; Céy) similarly.
E®) denotes the cross differences in the viscosity term. The delta form approximate
factorization method is used for the solution of the iterative scheme (4.11) so that the
boundary condition in (4.8) is still valid and so that upon convergence the local error
is of O(At3). The resulting formulas are:

<1 + %Cé”) Aw3) = —%(Cg)w” + OWwn 1 B0 4 gpr3)

(4.12)
(1 + %ofr’) ARG = AGEH)

where Aw = w — w”. This iterative scheme is motivated by the fully implicit Temam
scheme on the rectangular mesh (see [2] and [17]) and by the Beam—Warming delta
form approximate factorization method with explicit cross differences terms (see [25]).
Both of these schemes are stable in time n, corresponding here to the iterative solution
being bounded in (v). Preliminary numerical tests show the iterative scheme to be
actually convergent.

Remark on Problems with an Outflow Boundary

Before presenting the results of numerical experiments on our method, we remark
on the projection method for problems with an outflow boundary, see Fig. 4. Now
u and v at the right boundary will be calculated from a difference approximation of
equation (3.6) with outflow boundary condition (3.15). We state without proof that now
L is symmetric and of full rank. (Heuristically, the right outflow boundary condition
includes almost the specification of p). Thus the discrete Poisson equation (2.9) has a
unique solution and the discrete projection is valid. The CCPC solution procedure is
as stated above, with I containing also the right boundary points. We note especially
that for this type of problem, the advantages of the half-staggered mesh is fully realized
without any constraint problems of the discrete Poisson equation.
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Figure 4. Mesh for Problems with Outflow Boundary

5. Preliminary Numerical Experiments

In this section we give the results of the preliminary numerical experiments on our
CN + CCPC method on the curvilinear half-staggered mesh. The first example is the
driven polar cavity flow from [26], which includes both experimental and numerical
results. For this problem the polar coordinate system is obviously the most convenient
physical coordinate system, but to test our method the Cartesian coordinates are chosen
as the physical coordinates. The second example is the smooth expansion channel flow
from [27], for which numerical results of an international workshop are available. This
example is chosen to test our method with the non—orthogonal curvilinear mesh and
with the outflow boundary condition.

Driven Polar Cavity Flow

Counsider the polar cavity flow in a channel with inner radius 1 and outer radius 2,
and —0.5 < 60 < 0.5, see Fig. 5. The left boundary conditions are w, = w, = 0,wy =
w, = —1; as only orthogonal meshes are considered for this problem, w, = w'/\/g'*
and wy = w?/\/¢g?2; u and v are found from (3.3) and (3.4). The other boundary
conditions and the initial condition are v = v = 0. Since w, = 0 on the boundary,
(1.4) or the first constraint condition for the solution of the discrete Poisson equation
is obviously satisfied. If the non—uniform mesh is generated symmetric with respect to
the z axis and with an odd K, then the second constraint condition is also satisfied.

With a 64 x 65 mesh (Ar = 0.0078 — 0.0295, A0 = 0.0077 — 0.0290), and At = 0.1,
the steady—state solution for Re = 350 was obtained in 400 time steps (ju"*! —u"| ~
0.7 x 1077, [v" ! — 0| ~ 0.9 x 10~7). The streamlines are given in Fig. 6; the w, and
wy distributions on lines § = —20°, —10°,0°,10°,20° are shown in Fig. 7. These results
agree well with both the numerical and the experimental results shown in [26].

Smooth Expansion Channel Flow
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Consider the flow in a planar channel with lower boundary

1 30
Yiow = 5 tanh (2 - R—Z> - tanh(Z)]
and with upper boundary y,, = 1, the plane of symmetry. For our purposes, we

take Re = 10 because of its rather distorted geometry, see Fig. 8. At the lower
wall boundary, the no—slip condition v = v = 0 is imposed; at the top boundary, the
symmetry condition is used. At the left inlet boundary,

2 _
u=3 z—z— wherez:m, v=20
2 ~ Yiow

Here the fully developed Poiseuille flow condition has been adjusted to hold at =z =z,
much further left of the position x = 0 of the start of large expansion. At the right
outlet boundary, the outflow boundary condition (3.15) is used as described in Section
3. Here z¢ = y, = 0, and the implementation is simplified.

The mesh is generated so that it is dense near the wall and near the starting point
of large expansion of the channel. For zp = 6 (and z ~ —1.4), a 62 x 20 mesh
(Az = 0.085 — 0.225, Ay = 0.033 — 0.085 at z = 0) shown in Fig. 8 was used. With
At = 0.1, the steady-state solution was obtained in 200 time steps (Ju"™! — u"| ~
0.6 x 1077, |v"*! — o™ ~ 0.1 x 10~7). The pressure p adjacent to the wall is given in
Fig. 9 (solid line); it is in accordance with the numerical result of [27] (dots, zr =
Re/3), — our concern being only with g—i. Note the obvious improvement near the
start of expansion, due to the fully developed Poiseuille flow condition at inlet z = z,
(% = —0.247 x 107%). In [27], “the pressure has a singular point at the inlet” because
this condition was “prescribed at the inlet, in spite of the non-zero slope of the wall at
x =0, (% = —0.106). The p distribution for zp = 4 is also shown (dash line), its

g—g is also acceptable; however at the outlet g—g = —0.363 and —0.219 for zp = 6 and 4
respectively, while % = nge = —0.375 for the fully developed Poiseuille flow. We also
tried outflow boundary conditions: p = 0 and % = % = 0, the results were almost the

same as those above. It is seen that our method also works well on skewed curvilinear
half-staggered meshes and for problems with outflow boundaries.

We remark:

(1). Our preliminary numerical experiment is only to test the performance of our
method with the curvilinear half-staggered mesh. We make no recommendation on the
use of the CN scheme for steady—state problems. We propose our method for high Re
unsteady complex flow simulation with sufficiently fine meshes and sufficiently small
At.

(2). For the solution of the discrete Poisson equation on the curvilinear half-staggered
mesh, just the Gauss—Seidel iteration method was used in our numerical experiment.
For unsteady complex flow simulation, the multi-level one—way dissection method has

been proposed and has proven to be most efficient for the low around a circular cylinder
with Re up to 9500 with rich vortex structures, see [28] and [10].
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6. Conclusion

In this paper, the CN + CCPC method of [1] on the rectangular half-staggered
mesh has been extended to the curvilinear half-staggered mesh. The discrete projec-
tion, both for the projection step in the solution procedure and for the related DAE,
has been carefully studied and verified. It is proved that the method is also uncondi-
tionally (in At) nonlinearly stable on the curvilinear mesh, provided the mesh is not too
skewed. It is also shown that for problems with an outflow boundary, the advantages
of the half-staggered mesh are fully realized without any constraint problems or oscil-
lation problems from the discrete Poisson equation. Results of preliminary numerical
experiments support these claims.

A fast solver for the discrete Poisson equation on the curvilinear half-staggered
mesh has been proposed in [28], and has proven to be most efficient in [10] for high Re
unsteady complex flow simulation. Thus for the numerical solution of unsteady INSE
in primitive variables, the half-staggered mesh is a viable alternative to the staggered
mesh and is more advantageous than the latter in many instances.

Acknowledgement. The author would like to thank Prof. Zhang Guan Quan and
Prof. Zhang Lin Bo for helpful discussions and valuable suggestions throughout our
work.
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