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INFINITE ELEMENT METHOD FOR THE EXTERIOR
PROBLEMS OF THE HELMHOLTZ EQUATIONS*Y

Lung-an Ying
(School of Mathematical Sciences, Peking University, Beijing 100871, China)

Abstract

There are two cases of the exterior problems of the Helmholtz equation. If
A > 0 the bilinear form is coercive, and if A < 0 it is the scattering problem.
We give a new approach of the infinite element method, which enables us to solve
these exterior problems as well as corner problems. A numerical example of the
scattering problem is given.

Key words: Helmholtz equation, Exterior problem, Infinite element method.

1. Introduction

The infinite element method has been successfully applied to some boundary value
problems of partial differential equations, where the solutions possess corner singular
points or the domains are exterior ones. If the equations are invariant under similarity
transformation the approaches have been given in [11][13] for singular solutions, and in
[12][15][18][19] for the exterior problems. If the equations do not admit the above in-
variant property, one approach has been given in [14] to deal with the singular solutions
to the Helmholtz equation, and another approach has been given in [16] to deal with
the singular solutions to more general problems where the coefficients of the equations
are allowed to be variable and discontinuous. For details see [17] and the references
therein.

For the exterior problems of the equations which are not invariant under similarity
transformation the above approaches are not valid. Because in [14] the solutions are
expanded into Taylor series about the parameter A, and in [16] the exact solution can
be divided into two parts, one of which is a solution to an associated equation which
is invariant under similarity transformation, and the other one of which is a regular
function. Now the solutions are neither analytic nor the sum of these two parts.

We will give a new approach of the infinite element method in this paper, which
enables us to deal with these problems, and it is also an efficient approach to solve the
singular solutions. Firstly we study the Helmholtz equation, and the infinite element
method for the exterior problems of some other equations will be given in separate
papers.

The terminology of “infinite element” has been employed by many authors for dif-
ferent methods. For example it is employed in infinitely large elements are used on
the neighborhood of the infinity and some special interpolation functions are applied
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in the element to simulate the behavior of the solutions near the infinity. Our ap-
proach is different. In our approach the size of elements are finite and the number of
elements is infinite. Without any truncation we solve the infinite-by-infinite algebraic
systems associated with those elements. In fact for each equation we only solve one
equivalent algebraic problem which is of extremely small scale. The formulation and
the elements of our method are the same as the finite element method, therefore the
rate of convergence is the same even if there are singularities or the domain is infinitely
large. In our method no analytic expression of the true solution is needed, so there is
no special requirement to the domain or to the equations. For example, this method
can be applied to the equations with variable coefficients.

This paper is organized as follows: For completeness we recall the infinite element
method for the Laplace equation in §2. To meet the needs of our new approach we study
the critical case , where the constant of proportionality tends to one in §3. We derive
the equations for the combined stiffness matrix of the infinite element method for the
exterior problems of the Helmholtz equation in §4. We give some detail computation
for the critical stiffness matrices and mass matrices in §5. Some further discussion on
the infinite element algorithm to the Helmholtz equation is carried out in §6. We prove
the convergence of the approximate solutions for the case of A > 0 in §7. Finally we
show one numerical example of the scattering problem in §8.

2. The Laplace Equation

Let Q C R? be an exterior domain, the boundary of which is a closed curve Ig.
For the sake of simplicity we assume that the origin o ¢ Q and I’y is star-shape with
respect to the point o, that is, all line segments connecting the points of 'y with o
lie outside €2 entirely. For those domains with complicated shape we can decompose
them as Q = QyJ €, where Qp is a bounded domain, 2’ is an unbounded domain.
Usual finite element partition is made on 2y and infinite element partition is made
on €. Then we solve an equation which is obtained by assembly of these two. The
domain decomposition technique can be applied to this decomposition if one wants.
For simplicity we will assume Q = ' in the sequel.

We assume that [y is a polygonal curve. Omne parameter ¢ > 1 is taken. We
construct similar figures of I'g with the center o and the constant of proportionality
£,62,--. ¢k ... denoted by T'y. Let £¥Q = {(z,y); (x,y) is on the exterior of I';}, and
Q, = &1Q )\ €8Q. We make conventional finite element partition on each €. It is
required that the meshes of all subdomains €2 are geometrically similar to each other
and the partitions on € and €2;_; are compatible on I'y. For example we can construct
some rays starting from the point o which divide each €2 into some quadrilaterals, then
each quadrilateral is further divided into two triangular elements.

We define space HY*(Q) = {u € L2 .(9);||ull1,» < oo}, where the norm is defined
as

u(z,) 2
e = (/ (|w<w,y>|2+2—’2) dwdy> ,
Q r?log”r

where 7 = \/z2 + y2. Then we define infinite element space
S(Q) = {u € H(Q)sule, € Pi(e;),i=1,2,-},

where ¢;,7 = 1,2, - are elements, and P; is the set of all polynomials with degree < 1.
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We define, moreover,
Hy" () = {u € H"(Q);ulr, =0},

So(€) = S(Q) () Hy* ().

Let u € S(2). The values of u at the notes on I'y are composed to a vector, which is
denoted by ;. For the Laplace equation

Au =0 (1)
we denote the total stiffness matrix on € by
(5 %)
-A K| ’
that is,
/QIVu-Vvdxdy: (yd o) ( f(:?l _Ié’)T ) ( z[l) ), Yu,v € S(Q),

where g consists of the nodal values of w on I'y, y; on 'y, and 2y, 21 correspond to v.
We will always write yo = u|r, and don’t distinguish the difference between yy and the
trace of u on I'y.

From the special feature of the equation (1) we know that all stiffness matrices on
Qp are the same. It is easy to prove that the following boundary value problem: find
u € S(Q)a U|F0 = Yo,

a(u,v) = /QVU - Vodzdy = 0, Yo € So(9), (2)

admits a unique solution. To define the combined stiffness matrix, we prove the follow-
ing lemmas:

Lemma 2.1. Let u be the solution to the problem (2), and v € S(2), then a(u,v)
is independent of the function v provided v|r, = zo is fized.

Proof. If vi,ve € S(2), vi|r, = v2|r, = 20, then by (2) one has

a(u,v; —v2) =0.
that is
G:(U,Ul) = a’(“a”?)'

By Lemma 2.1, there exists a real matrix K, such that a(u,v) = yd K,2p. K, is
defined as the combined stiffness matrix.

Lemma 2.2. K, is a symmetric matriz.

Proof. For given yp, zg € R", where n is the number of nodes on I'g, let u,v be the
solutions to (2) with boundary values g, 29 respectively. By the definition of K, one
has

y(j;KZZ[] = a(u,v) = a(v,u) = ngzyo,

which yields the result since yg, zp are arbitray.
Let us derive the equation for the matrix K,. If u is the solution to the problem
(2), we take an arbitrary v € S(€2) and let v|p, = 2¢, then we have

yOTKZzo = / Vu - Vudzdy = / Vu - Vudzdy + Vu - Vudzdy
Q 2 £Q

Ky AT Z
= G ) (B ) (2 ) s K, ®)
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where z; = v|p,. Since (3) holds for all z;, one gets
—yo AT +y{ Ko +y{ K. = 0. (4)
Thus
y1 = (Kp+ K2) ™" Ayo. (5)

X = (K)+ K,)"'A is named as a “transfer matrix”. We substitute (5) into (3) and
obtain
ye K,z = yd Kozo — ya AT (K} + K,) 7' Az.
Since vy, zg are arbitrary, it holds that
K, =K, - AT(K} + K,) A (6)

Besides
K,=K,— A"'X,

therefore if one of K, and X is known, so is the other one. From (5) we obtain y;. By
the same way we can obtain yo,- -, yg, -+, which are the complete set of the solution
to the the problem (2). The readers are referred to [17] for the approach to solve K,
and X.

3. Critical Case

Let us fix the structure of the infinite element mesh and set £ — 1. We consider
the limit case.

Let the nodes on I'y be (x(()l),y(()l)),---,(xgn),yén)). We take k € [0,00). Being
analogous to I'y, we construct 'y, with the constant of proportionality £*. The associated
nodes on 'y is denoted by (x,g),y,g)),---,(x,(.@n),y,gn)). We define a space S = {u €
HY*(Q);u is linear on the segments connecting (fo),yS)) and (x,(.fﬂ),y,glﬂ)), and is
continuous on I'y,k € [0,00),s = 1,---,n}. Denote Sy = SﬂH&’*(Q). Here for

. . (n+1) (n+1)y _ . (1) (1)
convenience we write (z Yk )= (zr’,yx’)-
Lemma 3.1. Given piecewise linear boundary data yy on 'y, the infinite element

solutions tend to a limit u weakly as & — 1, which satisfies
a(u,v) =0, Yo € Sp. (7)

Proof. We take a sequence {{} — 1. For a fixed yo the infinite element solu-
tions ug are uniformly bounded in H*(Q) [17], then there exists a weakly convergent
subsequence, still denoted by {u¢}. Let u be the limit.

Denote by I'® the ray starting from the point o and passing through (x(()z),y(()l)). By
the structure of the infinite element solution, ||Vuglly @) is also uniformly bounded,
therefore we can extract a subsequence which converges uniformly on any compact
subset of 'Y, which yields u € S easily.

We take v € Sy and require that v is smooth on every closed subdomains bounded
by I'®, TG+ and I'y. Then we take ¢ > 1 and consider th infinite element subspace
S¢. Let vy € S¢ be the interpolation function of v, then by the smoothness of v,
lv —vrll1,s = 0(§ = 1). Because a(ug,v;) = 0, we set £ — 1 and obtain the limit

a(u,v) = 0. (8)
Since the set of v’s is dense in Sy, we know that (8) holds for all v € Sy, which means

that u is the solution to (7). The solution to (7) is unique, consequently ue — u as
&E— 1.
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Lemma 3.2. The combined stiffness matriz K, tends to a limit as &€ — 1.
Proof. 1f ug is the infinite element solution with wue|ry = yo,& > 1, then

a(ug,v) = yg K20, Vv € S¢,vlr, = 2. (9)

Let £ — 1, then Lemma 3.1 implies that the left hand side of (9) tends to a limit, hence
the right hand side does. Because yq, 2o are arbitrary, K, tends to a limit.
Let us derive the equation for the critical K,. To this end, we set y1 = yo+ (£ —1)n1,

then
K, -—-AT
ok (5 ) (W)

_ Ko—A—- AT+ Ki —(6-1)(AT -~ K}) \ [y
= (4 an)< —0(5—1)(A—K6)0 (€ —1)2K]} " ><W(1)>

Ly -BT
— (7 T o —I Yo
= (w 771)(-3 Lg><m>'

By the equation (6) for K, we get
I, , B, B
(€-12 ¢-1 ¢-1

Ly BT L ‘1< i B)
((5—1)2+§—1><KZ+(§—1)2> - te1)

Taking into account that
L B
2 T -
€—-1)3? ¢-1
we obtain by some deduction that

- BT
0:L0—< K,

K, = .Z/[]-I—

i (B
P () (k) w

Ly (B 7 B
A N

Letting ¢ — 1 and defining

that is

. Ly . B , .. Lh
Lo =lim—— B=Ilim——7, Li=1
=i i My
we get the equation
Ly — (BT - K,)(L))""(B - K,) =0, (11)

where K, is the stiffness matrix for the case of £ = 1. The equation (11) is not uniquely
solvable, so it seems difficult to get K, directly. However the above procedure is crucial
for the problems which we will discuss later on. A number of numerical examples have
shown that the approximation solutions are more precise if £ is closer to 1, so we expect
the results would be better if £ = 1, but the main reason to set £ = 1 is that it is an
efficient way to solve the equations for non-similar cases, which will be shown in the
next section.
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4. The Helmholtz Equation

We are concerned with

—Au+du=0. (12)
where —oo < A < +00. If A > 0 we define a bilinear form
a(u,v) = / (Vu - Vo + Auv) dzdy, Yu,v € H'(Q), (13)
Q

where 2 is an exterior domain as the above, and we always use the usual notations
of the Sobolev spaces. We fix the boundary data yy on I'y and consider the following
problam: find u € H'({2), such that u|p, = yo and
a(u,v) =0, Yo € Hy (), (14)

which admits a unique solution. We define the infinite element space S(Q2) C H(Q),
then the infinite element solution exists uniquely. Let K,(A) be the combined stiffness
matrix.

We assume ¢ > 1 first. Let u be the solution to the problem (14) and y; = ulp,.
We make a similarity transformation £z — z,{y — y and set u(z,y) = u(éx,y),
0(z,y) = v(éx,€y). Under the transformation the equation (12) becomes

— A G4 N0 =0.
We have
ago(u,v) = / (Vu - Vo + Auv) dedy
139
- / (Vi - Vi + A20) dady
Q
= y{KZ(AéQ)Zla
where z; = v|r,. By the same way we obtain an equation like (6)
K:(\) = Ko — AT(Kp + K-(A\¢")) 7' A. (15)

We notice that the arguments of K, in (15) are different, so it is not a single equation.
Being the same as (10) we have

K.(\) =K, (\%) + Lo

(BT e (L 2_1<i_ 2>
(5_1 KZ(A£)> ((5_1)2+KZ(A5>> Fog K08 ).

Dividing it by £ — 1 and letting £ — 1 we get
dK, (A 1 1
A L BT K ) () (B - (V). (16)
Generally speaking Lo, B, L{, are dependent on A. It follows that

Theorem 4.1. The combined stiffness matriz K,()\) satisfies the ordinary differ-
ential equation (16).

In the equation (16) A = 0 is a singular point, so it is difficult to solve it with the
inital data K,(0). We will make a further discussion in §6 about the method to solve
(16).

We turn now to consider the case of A = —w?, where w > 0 is the wave number. It
is the so called scattering problem. Let us consider the most useful three dimensional
case and let z = (x1,x9,z3) be the points. There is a particular solution

€
u = y
r
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where r = 1/33% + x% + x%, which satisfies the Sommerfeld radiation condition
. ou .
lim | = —iwu|*ds = 0.
p— Jp or

The function u and its gradient are not L? integrable on  which yields serious diffi-
culties. We make a transformation

u=e"ry, (17)
then U satisfies

oU U

r
U
<00y,
7 10,02

1/2
U 2
U =< U} —
1Uly (o) {| |1,Q+HT 079} ;

then it is a Hilbert space. The weak solution is defined as: find U € Y(2),U|r, = vo,
and

We introduce a weighted space

Y(Q) = {U € Hyoo(Q): U0 < oo,

equipped with the norm

/ {VU Vo — (ma—U + 2iwg> v} dzdy =0, Yv € H}H(Q), (19)
Q or r
where ‘—' denotes conjugate. There is another definition of weak solution in [10],

Hy () = {us Jull{,, < oo},

ou .
||u]|1+,w = {/Q <w|u|2 + w|Vul? + ‘E — jwu

u € Hf:w(Q) and satisfies

9 1/2
) dxdy} ,

/Q(Vu Vo — w?ub) dedy =0, Yo € Hifw*(Q),v|p0 =0, (20)

2

where w = r=2, w* = 2.

Lemma 4.1. The definitions (19) and (20) are equivalent.

Proof. 1f U is the solution to (19), we make the transformation (17). It is easy
to see that u € wa(Q) On the contrary if u is the solution to (20), then under
the transformation (17) U € Y (2). Moreover C§°(€2) is dense in both H}(Q) and
{u € Hﬁw*(Q);u|p0 = 0}, so in (19), (20) the set of v can be replaced by C§°(),
therefore (19) and (20) are equivalent.

The formulation (18) is suitable to us to apply the infinite element method. Let
a(u,v) be the left hand side of (19),

Ky -D
A K}

be the total stiffness matrix on €, and let K,(w) be the combined stiffness matrix.
We make a similarity tranformation £z — z, U(z) = U(€x), then the equation (18)
becomes

AU + 2iw§%—g + mgg =0. (21)
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Hence the combined stiffness matrix on £ is (K, (w€). We have

_ Ky -D
o Ke(w)zg = (w5 vl ) < 4K ) < >+y1 EK,(wE) 7. (22)
0
Since z; is arbitrary,

—ya D+ yl K + y{ €K, (w€) =0,

yl = ys DG+ EK (wE)) (23)

Substituting it into (22) we get

K,(w) = Ky — D(K} + ¢K, (w€))™!

(& —1m, Lo = Ko— D — A+ Ky, H = (£ -1)(D - Kp), B =
b = (£ = 1)2K}), we get the following by some computation:

Letting y1 = wyo
(€ —1)(4 - Kyp),

K,(w) = €K, (w€) + Lo

g
L

Let

Lo =i 1 1
ST EE— 1 EvE 1 =lmeTy

Dividing the equation by £ — 1 and letting ¢ — 1 we get

LK ()

2 LK) = —Lo+ (H - K @)IH)  (B- K@), (29

which is the differential equation satisfied by K,.

5. The Element Matrices

We compute the matrices Ly, B, L{; defined in §3 in this section. Some other matrices
defined in §4 can be computed in an analogous way.

To make the program simpler, our computation is carried out on the “element
level”. The matrices Lg etc on one layer is the assembly of the element matrices. The
technique is analogous to differentiation, where all higher order terms are dropped. The
symbol “=" is understood in this way in this section.
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Fig. 1

Let the the triangles I, /I in Fig.1 be linear elements. We study the matrices for I
first. The arguments are yo and 7;. The basis {1, p2, p3} is the following:

pr:fo=1f1=1f1 =0,
p2:f2=0,f1=0,f1=1,
p3:fo=0,f1=0,fa=¢—-1,
where f; is the value of ¢; at the node j. One has
T % 1 % _ costhy

=1-= = =
1 I oz I 8y Isinfy’

_ T %_1 &pg__cos02
I o T T oy  Ilsinfy’
1
oy =0, 223 _( Oes_

or dy  rosinby’
and the area of I is (£ — 1)ralsinfy/2.
The element stiffness matrix is defined as
IVorl? Ver-Ves Vi Vs
( Vs -Vor [V Vs Vs ) dzdy,
"\ Vos-Vor Ve3-Ver  [Vis|?
and the element mass matrix is
1 0 P1pa Pr3
M = lim — pap1 P53 p2ps | dzdy.
P3P1 P3P2 <P§
After a few computation we get

ro T2 cos 6>
1 [sin 6o [sin 02 sin 6
K _ _ 2 79 __cos %2
- 2 [sin 0o [ sin 6: sin 09 ’
cos 0> __cosfs l

sin 92 sin 02 79 sin 02
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1 3lrosinfy lrgsinfy, 0
M=— l’)"gSiIng l’l“g sin02 0 .

12 0 0 0
By the same way we get for the element I1 that

1 n cos 0
1 [ sin 6, [sin 6, sin 0
K=_ _n ry __cosf
- [sin 0 [sin @ sin 01 ’
cos by __cosb l
sin 01 sin 01 71 8in 01
1 l’l“l sin 91 l’)"l sin 91 0
M=— l’l“l sin01 3l’l“1 sin01 0 .
12
0 0 0

6. The Algorithm for the Helmholtz Equation

Let us consider the way to solve the equation (16) first. To this end, we need
some further discussion on the properties of K,. We will always denote by C a generic
constant.

Lemma 6.1. K,(\1) < K,(\2) for Ay < Ag, that is, K,(A\2) — K,(\1) is a nonneg-
ative matriz.

Proof. Given yp, let uy, and uy, be the infinite element solutions associated with
)\1 and )\2, then

[ (Va4 A, ) dudy < [ (Vas,f? + Ao, ) dody.

Besides, since wy, is a solution, one has

/Q(|Vu>\2|2 + \iu3,) dedy > /Q(|VU>\1|2 + \iu3,) dzdy.

Thus we get K,(A\1) < K,(A2).
Lemma 6.2. K,(\) < CA\Y2I, where I is the unit matriz.
Proof. Given yq, letting € = A"1/2 4+ 1, we define

(0 (z,y) €8,
Y7\ linear about r, (z,y) € Q\EQ.

By virtue of the computation in §5 we can see that
a(v,0) < C(€ = 1) yol* + C(€ = DAlyol* = ON|yol?,
which gives the upper bound of the infinite element solution.
According to Lemmas 6.1, 6.2, we can make a formal asymptotic expansion,

K. (\) = kA2 kg + kA 24 (25)
The computation in §5 shows that for linear elements the matrices B and L, in the

equation (16) are in fact independent of A\, and L depends linearly on A. Letting
Ly =l + Ay, we substitute (25) into (16) and obtain

1 1
—Zly+ —k(LN) Yk =

1

o = —ki(Lg) B+ k(L) ko,

1 1
—511 + k(L) Yoy — 5(BT — ko) (L) "H(B — ko) = 0,
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then get the solution
ky = (Lo) 2 (Lh) ' 21a(Lo) /)2 (Ly) 2,
1

ko — §L6+B,

1, B
ko1 =g Loky '+ (BY = ko) (Lo) ™ (B — ko)),

Letting Ap be large enough, we use the above expression to get an approximation to
K,(\g), then solve (16) to get K,(\) forA < A.
We turn now to the equation (24). Let

b(u,v) = /Q {évu Vo — 2 (% + %) v} dzdy,

and denote by K (w) the corresponding combined stiffness matrix, then K (w) = K, (w)/w.
Let the equation of I'g be = (6, ), where (r, 8, @) are the spheroidal coordinates.
The infinite element solution coincides with the true solution as w = 400,

0,
uo W : %) ",
then b(u,v) = 0, hence K(400) = 0. From the equation (24) we have the equation for
K(w),
dK () Kw) Lo (H ) L <B )
— 9 (2K L Z _Kw)). 2
7o 2ty KW ) (L) - KWw) (26)

We take a large wy and set K (wp) = 0, then (26) gives K (w) for w < wy.

Once K, is obtained, it is routine to get the solution of the original boundary value
problem. In §2 we have given the formula to get X from K, and to get y1,y2, ", Yg, " - +-
To deal with the case of £ = 1, we introduce the concept of “infinitesimal transfer
matrix”.

For example for the scattering problem, by (23) we write

yo=Xy, X =(Ky +EKI (W) DT
The infinitesimal transfer matrix is defined as
—
Y = lim ——.
() §I—>Hi £—-1

After a few computation we have
Y(w) = (Ly) "(HT - KI (w)).
In view of the equation (21) we obtain
v =l (14 Y(@OAE) - (I +Y (0 + wAYAL +Y (@)A Dy
= oliveod, (27)
where & = r/v(0, ¢) and y¢ = u(r,0,¢), which is the explicit expression of the infinite
element solution.

7. Convergence

We prove the convergence of the infinite element method for the case of A > 0. To
get the optimal error bounds, we assume that the boundary 02 is sufficiently smooth, €2
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is decomposed into a bounded domain gy and an exterior polygon ', and the boundary
value ug on 02 is sufficiently smooth, then the solution v is regular enough.

Finite element partition is made on g, while infinite element partition is made
on ). We assume that the partition on )y is regular, that is, all interior angles of
all elements admit a common lower bound 6y > 0. Let the domaln composed by all
elements by €),. We take Q D (QU Q) and extend the solution u smoothly on €, then
u is well defined on €.

Let II be the interpolation operator, then by [7] one has

[l — Tul|1,0,\0 < Chluly g o (28)
where h is the greatest length of element sides. The following lemma is about the
property of IT on €.

Lemma 7.1. If there is a constant 8y > 0 such that the angle between each ray
starting from the point o and the interior normal direction of Q' on Ty is not greater
than 5 — 6y, then

ITu — ullo,0r < Chluliw,or, (29)

|Hu — ’U,|LQI S Ch|u|27w,9/, (30)
18 a weight, r is the distance to the point o,
ul o = [ 7210°ul? dady,
) K Q’

and h is the greatest length of element sides on T'y.

Proof. We take two neighboring nodes on Iy and consider the domain * bounded
by 'y and two rays passing through these two nodes (Fig.2). Let (o,z,y) be local
coordinates where the line segment linking these two nodes is perpendicular to the
z-axis. Without loss of generality we assume that u € C*°(Q*).

where w = 12

Fig. 2
We counsider the line segment y € [ax, bz] for any x > zy. We have
Mu = (u(a, br) — (e, 1) L=+ (u(a, a0) — ulw )l (31)

thus
=l < 715 dy (32
axr
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By the Holder inequality

2
bx bx bx
[uu—wray < [0 ¢/<Lw|§gu@>

N

AN
S
8]
|
Q
8
o
—
=
3
| o)
S
o
U
<

hence
oo rbx h2
/ / (ITu — u)? dydz < —2/ r2|0ul? dzdy,
To ar Zy SO

which gives (29) by summing up with respect to all subdomains.

For the derivatives we have
ollu  Ou

a—y = a_y (.’E, y*)J
where y* is a mean value, which yields

oo | 7 |
oy oyl |y 82| 7 Ju 02
Comparing it with (32) we get the desired estimate immediately. Differentiating (31)
gives
ollu  Ou ou ou Yy — ax ou ou br —y
" (b - 22 o _
Ox Oz <8x (z,bz) Ox (x,y)) bz — ax + <8$ (@, az) Ox (x,y)) bz — ax
ou u(z,br) — u(z,ax)\ by — ax)
e br) —
+ <8y(x’ 2 bxr — ax > br — ax
ou u(z,br) — u(z,ax)\ albz —y)
+ <8_y($’a$)_ br — ax ) bz —az ’
which implies
Ollu  Ou be | 92y ba | 524
— - —|< d b — | dy.
o = e < L | v max(al o 5 dy
Comparing it with (32) we get the desired estimate.
Under the above assumtions we have the theorem.
Theorem 7.1. If up is a solution of the infinite element method, then
lu = unllr0, < Ch(l[ull2,0000 + [ul1w0 + [ul2w0)- (33)
Proof. u satisfies the equation
—Au+du=f (34)

on . By the equation (12), f =0 on 2, hence supp f C Q,\2 and

/1 < Chllul2,00,9-
Since uy, and Ilu coincide at the nodes on the boundary, (Ilu — up)|sn, = 0, that is
Mu — up € So(Qp). By (34) we get

/ (Vu - V(Iu — up) + Au(llu — up)) dedy = / f(Tu — up) dzdy.
Qh Qh
Because uy, is the infinite element solution,

/ (Vup, - V(IIu — up) + Aup(Ilu — up)) dedy = 0.
Qp,
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By subtraction we have
/ (V(u —up) - V(ITu — up) + Mo — up) (Ilu — up)) dedy
Qp
= f(HU - uh) dzdy,
Qp
thus

/Q (IV(Hu — up)|? + AT — up)?) dedy
= /Q (V(Mu — w) - V(Hu — up) + A(Hu — u) (HMu — uy)) dedy

+/ f(u — up) dedy

Qp

Hu — ul1,0, - |Hu —upli,0, + A[Hu —ullo, - [|TTu — upllo,

+ f o, elMu = unllo.on0

< (1w —uff g, + AlTu — g 0,)"? - (0w — upl? o, + AlTu — us|§ o, )"/
+Ch|ull2,00,00 Tt = up|1,0,\05

IN

where we have noticed that the area of Q\€y, is boundeed by Ch%. We cancel one factor
and obtain

(1w — unl3 g, + MMu — uplg g,)"*
< (T = uff o, + AllTu — ull§ 5, )*? + Chllull2,c0,00-
By (28) and Lemma 7.1
Mu — uplf g, + MITu —usllg g,

< CR(Jul} , o+ 1ul} | 6+ lull20000),

where we have affirmed that |ul, oo < Cl|ul|2,00,00- Applying the estimate of Tlu — u
and the triangle inequality, we get (33).
The convergence problem for the scattering problems is still open.

8. Numerical Example

We take the scattering problem as an example. Let €2 be the exterior domain of the
sphere I' = {z € R%;r = v/3}. The boundary condition is given as U|r = 1, then the
solution to the equation (18) is U = é We take only 8 nodes (£1,+1,£1) on I and
6 elements {(z1,z2,23);1 < |zg| < &, |@i| < |zgl, |2zj| < |z}, 1 < 4,5,k <3, i # 4,5 #
k,k # i, which are trilinear isoparametric hexahedron elements, then solve it by the
infinite element method. The approximate boundary is no longer a sphere but a box,
{($17$27$3);$k = :l:la_l <z < 17_1 < T4 < 171 < iajak < 372 ?é .77.] 7& kvk 7& Z}a
indeed. Therefore our approximation is very coarse. However the numerical result is
still quite close to the exact one.

We take wy = 100 and set K(wp) = 0. Using the Runge-Kutta method we solve
(26) with time step 0.1. The infinite element solutions for the case of w < wyp are thus
obtained. We show some of them as examples.
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w =90
¢ 1.011 1.022 1.033 1.044 1.056
IEM 0.982 0.972 0.969 0.968 0.962
+0.0077 +0.017¢ +0.023¢ +0.022 +0.012¢
exact 0.989 0.978 0.968 0.958 0.947
¢ 1.067 1.078 1.089 1.1 1.11
IEM 0.949 0.93 0.912 0.901 0.898
+0.002:  —0.0005: +0.004z +0.013: +0.02:
exact 0.937 0.927 0.918 0.909 0.900
w =50
¢ 1.02 1.04 1.06 1.08 1.1
IEM 0.987 0.966 0.94 0.913 0.892
—0.0072 —0.0162 —0.021z —0.019: —0.012
exact 0.98 0.962 0.943 0.926 0.909
¢ 1.12 1.14 1.16 1.18 1.2
IEM 0.88 0.872 0.865 0.851 0.831
—0.002: +0.0006¢ —0.004z —0.012: —0.0182
exact 0.892 0.877 0.862 0.847 0.833
w=10
¢ 1.1 1.2 1.3 1.4 1.5
IEM 0.893 0.813 0.752 0.701 0.654
4+0.007z  +0.015:  +0.019¢ +40.015z  +0.008z
exact 0.909 0.833 0.769 0.714 0.667
¢ 1.6 1.7 1.8 1.9 2.0
IEM 0.608 0.5641 0.526 0.496 0.473
+0.001z —=0.0001 +40.003: +0.008: +0.011z
exact 0.625 0.588 0.556 0.526 0.500
w=2>5
¢ 1.2 1.4 1.6 1.8 2.0
IEM 0.81 0.682 0.585 0.508 0.447
+0.003z  —0.001¢ —0.0077 —0.011¢ —0.01¢
exact 0.833 0.714 0.625 0.556 0.500
¢ 2.2 2.4 2.6 2.8 3.0
IEM 0.399 0.364 0.336 0.314 0.293
—0.005¢ —0.003: 4+0.0008; —0.0001z —0.003¢
exact 0.455 0.417 0.385 0.357 0.333
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We see that the precision is quite high for big wave numbers w, and for smaller w
the infinite element solutions differ more to the exact solution. We think it is because
for smaller w the dissipation term has more influence to the solutions, so the solutions
exterior to a box differ more to that exterior to a sphere. The round-off error after
about one thousand steps is also a remarkable amount. However the trend of all of them

are correct and the results for such a coarse mesh are better than our expectation.

We have also compared the limit of the combined stiffness matrix as w — 0 to that
of the Laplace equation with £ = 1.01. They are in a good agreement.
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