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Abstract

The nonconforming finite element (two Crouzeix-Raviart linear elements and
Wilson element) approximations to the unilateral problem are considered. The
error bounds for these elements are obtained in the appropriate assumptions of
regularity of solution of the problem.
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1. Introduction

There have been numerous work in the analysis of finite element methods for the
unilateral problem (c.f.[4] and the references therein). It should be mentioned that in
F. Scarpini et. al.[6], L.Hlavacek et. al.’) and F. Brezzi et. al.m, the conforming linear
element approximation to the unilateral problem have been considered, and the various
error bounds have been obtained in the different assumption of regularity of solution
of the problem.

In this paper, we consider three nonconforming finite element (i.e. two Crouzrix-
Raviart linear elements and Wilson element) approximations to the unilateral problem,
and the error bounds for these elements are obtained in the appropriate assumptions
of regularity of solution of the problem.

The unilateral problem is the following

u=20 on Iy, (1.1)
u>0, du/dv >0, udu/dv =0, onl,

where (2 is a convex domain in R? with piecewise smooth boundary 92, 9Q = 'y U 'y,
I'yNTy =0 and Ju/0v is the outer normal derivative of u on I'y. It is well known that
the problem (1.1) is equivalent to the following variational inequality:

(1.2)

to find u € K, such that
a(u,v —u) > (f,o—u) YveK,
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16 L.H. WANG
where
K={veH'(Q)|v=0o0nTg,v>00n I'}, (1.3)
a(u,v) = /QVU -Vodz, (f,v) = /Qf vdz. (1.4)

the solution of the problem (1.2) will be approximated by the finite element method
with a regular subdivision. For each h > 0, let 7, be a regular subdivision of 2. For
the sake of simplisity, let 2 be a convex polygon, then Q = {J o7, 7. Let V} be a finite
element space of approximating the space H%O(Q) = {v e HY(Q)|v = 0 on I'y}, with

norm || - ||: X

lolln = (> f,)” Vo€V, (1.5)

TETH

and K} be a convex closed subset of V}, as an approximation of K. Then the approxi-
mate problem of the unilateral problem (1.2) is the following:

{ to find wuy € Ky, such that (1.6)
an(un, vn — un) > (fyvn —un)  vn € Kp, '
where

ap(up,vp) = Z VupVuydx. (1.7)

Te€T, T

We now show abstract error estimate
Theorem 1.1. Assume that u and uy are the solutions of the problems (1.2) and
(1.6) respectively, then

lu —uplli < C inf {|lu—wnllz +an(u,vn —un) = (f,on = un)}- (1.8)
v €Ky,
Proof. Using the triangle inequality
lu—unlln < [lu—=vnlln + llon = unlln, ¥V on € K.
And noting that uy is the solution of the problem (1.6),

th - uh”}% = ah(vh — Up, Vp — Uh)
= ap(vyp — u,vp —up) + ap(u — up, vy — up)

< |lvp, — ullp - lon — unlln + an(w, vy —up) — (f,on — up).

Summarizing the previous two inequalities, the theorem is proved.

2. Crouzeix-Raviart Linear Element Approximation(I)

For the Crouzeix-Raviart linear element approximation to the unilateral problem
(1.2), the subdivision 7y, is a triangulation, 7 € T}, triangle element,

Vi ={vn € L*(Q) : vp|, € Py(7), vy is continuous at the midpoints of edges of element
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7 € Th,vp(a;j) = 0V midpoints a;; of edges on I'y}. (2.1)
K}% :{’Uh eV vh(a12) > |vh(a23) — vh(a13)| V edge ajaz; C 'y,

a;j,i =1,2,3, the vertices of element 7} (2.2)
(c.f.Fig.2.1)

Then the following lemmas can be proved easily:

Lemma 2.1. K& 15 a convex subset of Vj,.

Let IIj, : H?(Q) — V}, the interpolation operator defined as follows: for any given
v € H%(Q),

Hpv|; =lrv = v(agz)pi(z) + v(arz)pz(z) + v(arz)ps(z), (2.3)
pr(z) =Xo(z) + A3(x) — A (), po(z) = Az(z) + M (z) — Ao (z),
ps(x) = A (z) + Aa(z) — A3(x), (2.4)

where \;(z),7 = 1,2,3, are the barycentric coordinates. (c.f.Fig.2.2)

ai
az 24 r
. a2 7. a3
ao3 ais
as as 0‘23 as
Fig.2.1 Fig.2.2

Lemma. 2.2.
yv(a) = —v(ags) + v(aiz) + v(aiz2),

II-v(az) = v(azs) — v(aiz) + v(ai2), (2.5)
I-v(as) = v(ags) + v(az) — v(ai2).
We now introduce another interpolation operator I, : H?(Q) — V}, defined as
follows: let
T ={r:01NT1 =0}, T ={r:0rnNTy #0}, T =T UT,, (2.6)
then for any given v € H%(Q),

HNTv:HNhU\T:HTU Vr1eTy;

IL,v = o], = v for v(az) > |v(ags) — v(as)|, V7 € T

_ - (2.7)
;v = pv|; = v(ags)pr + vlarg)ps + [v(ags) — v(ais)|us,
for v(ai2) < |v(ags) — vea3)|, V7 € Tk
Lemma 2.3. Vv e K -
My € K. (2.8)

Lemma 2.4. Y, € K,%,
vplr, > 0. (2.9)
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The proof of Lemma 2.4 can be completed by the Lemma 2.2 and the definition of
K} (2.2).
Lemma 2.5. (c.f.[7])

/8 lwl2ds < C{h~ |2, + hlwZ.} Vwe H'(r). (2.10)

We now establish the error estimate of the Crouzeix-Raviart linear element approx-
imation to the unilateral problem.

Theorem 2.1. Assume that u and uy are the solutions of the problems (1.2) and
(1.6) with K} (2.2) respectively, and that u € H?*(Q) and u € W"*°(Qr,), where Qr,
s any given neighbourhood of I'y. Then the following error estimate holds

lu = uplln < C(hlulog + h2 ). (2.11)

Proof. (i) We first estimate

Ep(u,vp — up) =ap(u,vp —up) — (f,op — up)

—Z/VU Vvhfuhdrf/fvhfuh

TET
SO RCTUETAEED S SRy B R
TETH aT TET yCOTN[y

+> > /a vop — up)ds. (2.12)

TETh v€OT LT
It is well known that (c.f.[7], [3])
D / (vn — un)ds < Chlula.ollun — vnlln- (2.13)
T€Th 7€0TYLT

Noting that % -y =0o0nT7and up, > 0onI'y (Lemma 2.4), it can be seen that Vy C I'y

/7 E(vh —up)ds = /y E(”h —u)ds + /y _8,/(“ — up)ds
ou
au( h—U ds—/ 8Uuhd5</ EW (vp — u)ds.

Summarizing (2.12) (2.14) and Theorem 1.1, we have

ou
lw — up2 <01 1nf {Hu—vhHh-i- Z Z /5(vh—u)ds}+02h2|u\§79. (2.15)
v

TET yCOTNIy

(2.14)

(i) Let v, = pu in (2.15), we first estimate

I, = Z Z / Hhu — u)ds. (2.16)

TE’Th_ ’yCﬁTﬂFl
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For u(ay2) > |u(agg) — u(ays)|, ,u= I,u, y C 91, 7 € T;, by the lemma 2.5, we have

\L?&ﬁmud4<u 2|, Imnes = ullo
< CH H {h 1||Hhu u||07'+h|HhU_U|1T}2
<Ch2Ha |y, b (2.17)

For u(ai2) < |u(ags) — u(ay3)|, without lost of generality, assume that u(ags) > u(ais),
then

puly = [Myu + (Mu — Tpu)]ly = yuly + [(u(azs) — u(a1s)) — ulaiz)lusly
= Hpuly + (ulazs) — ulaiz) — ulai2)) (A + A2)ly = Hpuly — Iru(ar).

So

‘/%(ﬁvhuu)ds < ‘/g (IIpu — u dS""‘/ HhU*HhU)dS‘
o o

ulo,r + h2 lo.4/Hru(ar)l. (2.18)

n2 9%, ot

Since 0 < u(a12) < u(ag3) — u(ai3), by Lemma 2.2,

I u(ar) = u(arz) — (u(ags) — u(arz)) <0,
I u(az) = u(arz) + (u(ags) — u(arz)) > 0,

then there exists a point a € ajaz = -y, such that
II;u(a) = 0.

So that

d1l, u|7‘ I,u(ay) — HTU(GQ)‘

Lu(a)| = [Myu(ar) -~ ou(a)| < b ara)

Ch‘

= Ch‘ (a23) —ulaws)) o Vu(z)]. (2.19)
‘a13023| TE€a13a23
From (2.18) and (2.19), we have, for u(ai2) < |u(agg) — u(ais)],

(lul2,r + max |Vul)

ou
‘[ya Hhu—uds‘<0h2HayH o+ max

Therefore P
b ud| 2], sa s o), i e

(iii) Next we estimate

I = flu = Tyullf < 2(|lu = Thullg + [Ty = Thullf). (2.21)
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It is well known that (c.f. [3])

o~ Tl < CRJud . (222)
For 7 € T and 7 € T;! with u(a12) > |u(ass) — u(a3)],

fiyul, = Hyul,. (2.23)
For 7 € T,! with u(ai2) < |u(ags) — u(ai3)| (assume that u(ags) > u(az)) :
ru — Tru = (u(arz) — u(azs) + ulars))us,
and
M Truf?, = fuar) — u(oz) + u(er)? [ Vsl

< C|M;u(ar)* < Ch? max |Vul?, (2.24)

a13a23

since (2.19). From (2.21)—(2.24), we have

I < Clh,?\ug’ﬂ + > Myu-— ﬁTu\iT < Clh2|u\%’9 + Cah rgax|Vu\2. (2.25)
TEThl f

Summarizing (i), (ii) and (iii), the proof is completed.

3. Crouzeix-Raviart Linear Element Approximation (II)

In the previous section, the solution of the unilateral problem (1.2) has been approx-
imated by the Crouzeix-Raviart linear element solution w;, which is restricted in the
convex set K} and the element v, is nonnegative on I'y (Lemma 2.4). In this section,
we propose another Crouzeix-Raviart linear element solution of the unilateral problem
(1.2), which belongs to a convex set K} (see below) and the restriction vp|r, > 0 is
relaxed. Let (c.f.Fig.2.1)

K} = {vy € Vi :vp(ar2) > 0V edge araz C Ty}, (3.1)

then the approximation problem of the unilateral problem (1.2) is (1.6) with K, = K7.
We have the following result
Theorem 3.1. Assume that u and uy are the solutions of the problems (1.2) and
(1.6) with K, = K} (3.1) respectively, and that v € H*(Q), f € L*(Q). Then the
following error estimate holds

lu — wplln < Ch3 (Ju

2.0+ [ fllo.0)- (3.2)

Proof. (i) In the same way as the first paragraph in the Proof of the Theorem 2.1,
except that up, > 0 on I'y, it can be seen that

. ou
o~ wnll3 <Cv_inf {llu—onl + 3= [ Folon — wds)
’UhEKh ACTy v OV
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+ o2l — 3 /—uhds (3.3)
yCI'

(ii) Let vy, = Ipu in (3.3), with the operator II;, defined in (2.3), then from (2.22)
and (2.18), we have
s = Tyl < CR2fulZq, (3.4

and

‘ Z / (Mpu — u ds‘<Ch2 H H
yCT

,7 SChQHayHorl

2,0 (3.5)

(iii) We now estimate the last term on the right hand side of (3.3)
-y / —uhds (3.6)
Let P] be the L?—projection operator L%(y) — R as follows:

Pl (v) = %|/7”d5= Rl(v) = v—P)(v), |l :/71615, (3.7)

and P be the L?—projection operator L?(7) — R as follows:
P (v) |/vd:1: Rj(v) = v — P{(v), 7| = /m (3.8)

Taking into account that % > 0 on I'y, it can be seen that

/P7 Yupds — —P”(gu) / unds — —PY( 2% ylun(ars) < 0
v’y ov

from which we have

_ : g—zuhds = —AR&(Z—Z)uhds — APJ(%)uhds
< —AR&(%)uhds: — WRg(g—u)Rg(uh)ds—LR&(%)PJ(uh)ds
1
= [ B (G Estas < { [ m3(G0)"as}{ [ mytwas)?

We now estimate, with use of the projective property and Lemma 2.5,

/Bﬂ d</R78ud—|—/R7 )ds

/RT ds+/RT ) ds < Chlul3.. (3.10)
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As for estimating the second factor on the right hand side of (3.9), we have
/Rg(uh)st < / R (un)ds < Chlup?,. (3.11)
g g

We now take v, = 0 in the discrete problem (1.6) with K = K7, then
[unli = an(un, un) < (foun) < || llogllunlloo; (3.12)
from which it can be seen that

lunlip < Cllfllog; (3.13)

since a Poincare inequality in nonconforming finite element spaces!®9):

||’Uh||[]’Q < C|Uh‘17h Y vy, € V. (3.14)
Combining (3.9) (3.11) and (3.13), we have

I S Ch Z \u|2,7|uh|1,7 S (315)

TET

Summarizing (i)—(iii), the theorem is proved.

4. Wilson Element Approximation

For the Wilson element approximation, let €2 be a rectangle, T, be a rectangular
subdivision, 7 € Tp, rectangular element, and I'y C 02 be parallel to z;-axis,

Vi = {v, € L*(Q) : |, € Py(7), vy, is continuous at the vertices of element 7 V7 € Tp,,
and vp(a) = 0V vertices a € I'g}, (4.1)
Kp ={v, € Vj s vp(a) >0V vertices a € I'y }. (4.2)

Let the interpolation operator IIj, : H(Q) — V}, be defined as follows (c.f.Fig.4.1): for
any given v € H?(2),

4

Myv|, =0 = Zv a;)pi(x —I—Zd)] (x) V 1€Th (4.3)
i=1
where
pl(z)zi( + 2 CI)( + I,
(4.4)
p4($):%( z1 Cl)(l_IQ 62)
1
8

{qj(z)z [(%h%) 1], (4.5)
hZ

¢j(v) hhzfamvdx J=12
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4

i=1

Then it can be seen easily that I[Ipv € Ky Vv € K.

T2

as 2hy a1
2ho
Cs c
as a4
x
0 c 2
Fig.4.1

We have the following error estimate

Theorem 4.1. Assume that u and uy, are the solutions of the problem (1.2) and the
problem (1.6) with K, (4.2) respectively, and that u € H?(QQ), u|lr, € H? ¢(I'y), where
0<e< %, ul|p, means a function on T'y. Then the following error estimate holds

[ — upllp < Ch' 5 (lulon + [ulir, + [ulr, |2—er,)- (4.7)

Proof. (i) Let Q1 be the peicewise bilinear operator on Vj, and Ry(wp) = wp, —
Q1(wp) Ywy, € Vj,, then

Ep(u,0n — up) = ap(u,vp — up) — (fron —up) = Y /a (vh — up)ds

TETH
Z / —Q1 Vp — uh dS + Z / —R1 Vp — uh)ds.
T€Th or 0 T€Th (4.8)

By the standard error estimate of Wilson element!”,

‘Z/& 1(vp — up)ds| <

(4.9)

Since vy, up € Vi, then Qq(vy, — up) € C%(Q) and Q1 (vy — up)|r, = 0, thus

auQ (vh —up)ds = ) /8 Q1(vn — up)ds

TETL " or yCT'y

= Z/ (Q1(vp) — u)ds — Z/ —Q1(up)ds < Z/ (Q1(vn) — u)ds,

YTy YTy YTy (4.10)
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here we have used the following relations: w - g“ =0, 8“ >0 and Q1(up) >0 on I'y.
Summing (4.8)—(4.10), and by Theorem 1.1, we have

lu—unlf < Crinf HU—WMA-E:/a (Qu(vn) — u)ds} + Cullully (4.11)
yCI'

(ii) Let v, = ITju in (4.11), then, with use of the interpolation error estimatel?,
lu = Myull} < CRJul3 g, (4.12)

and
The estimate of the second term on the right hand side of (4.11) is as follows: Vy C I'y,

O (01 (TTyu) — w)ds = Q%an—ww

8
_H HJ@1>7um7<0#f-—H b2
’ (4.14)
here we have used the bilinear interpolation error estimate?. Thus
\ZI/ (@u(Th) —~w)ds| < RN 00 uleyfoocry (415)

From (4.11), (4.12) and (4.15), the proof is completed.

Remark. Theorem 4.1 means that the error bound of Wilson element, as the same
as the conforming bilinear element, approximation to the unilateral problem. And it is
well known that the error bounds are the same for Wilson element and the conforming
bilinear element approximations to the second order elliptic problem.
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