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NEW APPROACH TO THE LIMITER FUNCTIONS�Jin Li Ze-min Chen Zi-qiang Zhu(Beijing University of Aeronauti
s and Astronauti
s, Beijing 100083, China)Abstra
tIn this paper we dis
uss three topi
s on the designing of the limiter fun
tions.(1) To guarantee the TVD property (2) To maintain enough arti�
ial vis
osity. (3)A method to form TVB limiter whi
h 
an ensure se
ond order a

ura
y even atthe extrema of the solution.Key words: Finite di�eren
e methods, TVD s
hemes, Limiter Fun
tion1. Introdu
tionSin
e 1980's, di�eren
e s
hemes with TVD or TVB properties have been used formore and more CFD problems, espe
ially the following system of 
onservation laws:Ut + F (U)x = 0: (1.1)The reason is that the TVB property will guarantee the 
onvergen
e of any subsequen
eof the di�eren
e solution sequen
e to a week solution of the di�erential equation. Ob-viously if the week solution is unique, then the whole sequen
e will 
onverge to thatsolution.One of the frequently used TVD s
heme is the se
ond order �ve-point 
onservativeone: Un+1i = Uni � �(Hi+1=2 �Hi�1=2): (1.2)Here Hi+1=2 = H(Uni�1, Uni , Uni+1, Uni+2), is 
onsistent with F , i.e, H(U;U;U; U) =F (U), and 
ould be written asHi+1=2 = F (Uni ) +Qi+1=2 � (F (Uni+1)� F (Uni )); (1.3)here Qi+1=2 is usually a nonlinear fun
tion of Uni�1; � � � ; Uni+2, and is 
alled Limiter.It is this Limiter that has great e�e
t on the s
heme. In this paper we will dis
usssome prin
iples and methods on how to 
onstru
t that fun
tion in order that the s
hemehas desired properties. For simpli
ity, we begin with the following s
alar linear equationas the model problem: Ut + a � Ux = 0: (1.4)� Re
eived April 16, 1996.



42 J. LI, Z.M. CHEN AND Z.Q. ZHUThe 
orresponding s
heme is:Un+1i = Uni � a � �(Uni +Qi+1=2 ��Ui+1=2 � Uni�1 �Qi�1=2 ��Ui�1=2) (1.5)here � = �t�x , �Ui+1=2 = Uni+1 � Uni . Without loss of generality, we assume here a � 0.Although the above simple model is used for the theoreti
al analysis, the ba
kgroundproblem of this paper is a pra
ti
al 3-D vis
ous outer 
ow one, so some of the numeri
alexamples are about 3-D 
ow problems.In se
tion 2, the 
onditions on Limiter for TVD property are dis
ussed. In se
tion3, for solving the problems arising in the pra
ti
al 
ow 
al
ulation, some ideas onmaintaining proper arti�
ial vis
osity are given. In se
tion 4, a method for 
onstru
tinga Limiter whi
h will ensure the se
ond order a

ura
y of the s
heme even at the extremaof the solution while keeping the TVB property is presented. The results of numeri
alexperiments are provided in se
tion 5.2. The Basi
 Conditions for TVD LimitersA

ordiong to the TVD suÆ
ient 
ondition of Harten in [1℄, if a s
heme 
an bewritten as: Un+1i = Uni + C+i+1=2�Ui+1=2 � C�i�1=2�Ui�1=2 (2.1)and if C+i+1=2; C�i+1=2 � 0; C+i+1=2 + C�i+1=2 � 1 (2.2)then the s
heme is a TVD one.The s
heme (1.5) 
an be put into the form (2.1) if we 
hoose:C�i�1=2 = a � �(1 +Qi+1=2�U1+1=2�Ui�1=2 �Qi�1=2); C+i+1=2 = 0: (2.3)Assume that Qi+1=2 is a fun
tion of the di�eren
e ratio ri+1=2 = �Ui�1=2�Ui+1=2 , i.e, Qi+1=2 =Q(ri+1=2), and the fun
tion satis�es:Q(r) = 0 r � 01 � Q(r) > 0 if r > 0Q(r) = 1=2 r = 1 : (2.4)Furthermore we require the Q(r) is Lips
hitz 
ontinuous, i.e, there is a L > 0 indepen-dent of r, su
h that for any r; r0:jQ(r)�Q(r0)j � L � jr � r0j: (2.5)Thus, there must be Q(0) = 0, for any r > 0:jQ(r)j = jQ(r)�Q(0)j � L � r: (2.6)Therefore, when a � � � 11+L , for the 
oeÆ
ient C�i�1=2 in (2.3), we have:if �Ui+1=2�Ui�1=2 � 0: (2.7)
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tions 430 < C�i�1=2 = a � �(1�Qi�1=2) � 11 + L < 1 (2.8)if �Ui+1=2�Ui�1=2 � 0 from (2.6): (2.9)0 < C�i�1=2 � a � �(1 + L � ri+1=2 � 1ri+1=2 ) = a � �(1 + L) � 1: (2.10)In 
onsequen
e, we get the following 
on
lusion:Theorem 2.1. If the Limiter fun
tion Q(r) satis�es 
ondition (2:4) and is Lipt
hitz
ontinuous, then when a � � � 11+L , here L is the Lipt
hitz 
onstant, the s
heme (1:5)is TVD.The next question is about the a

ura
y of s
heme (1.5), if it satis�es the 
onditionsin theorem (2.1). Here the a

ura
y is in the sense of trun
ation error.From Taylor expansion:�Ui+1=2 = Ui+1 � Ui = h � U 0i + h22 U 00i + h36 U (3)i +O(h4)�Ui�1=2 = Ui � Ui�1 = h � U 0i � h22 U 00i + h36 U (3)i +O(h4) (2.11)�Ui�3=2 = Ui�1 � Ui�2 = h � U 0i � 3h22 U 00i + 7h36 U (3)i +O(h4)Substituting (2.11) into (1.5) yields:Un+1i =Uni � a � �(�Ui�1=2 +Qi+1=2 ��Ui+1=2 �Qi�1=2 ��Ui�1=2)=Uni � a � �hh � (1 +Qi+1=2 �Qi�1=2) � U 0i + h22 (�1 +Qi+1=2 +Qi�1=2) � U 00i+ h36 (1 +Qi+1=2 �Qi�1=2) � U (3)i +O(h4)i: (2.12)Eq.(2.12) means that to have se
ond order a

ura
y, we only need:Qi+1=2 �Qi�1=2 = O(h2) (2.13)Qi+1=2 +Qi�1=2 � 1 = O(h): (2.14)From the Lipt
hitz 
ontinuity of Q, we have:jQi+1=2 �Qi�1=2j =���Q��Ui�1=2�Ui+1=2��Q��Ui�3=2�Ui�1=2 ������ � L � ����Ui�1=2�Ui+1=2 � �Ui�3=2�Ui�1=2 ���=L � ����U2i�1=2 ��Ui�3=2 ��Ui+1=2�Ui+1=2 ��Ui�1=2 ��� = O(h2): (2.15)In the derivation of the last equality, the expansion (2.11) and the following results areused: �Ui+1=2; �Ui�1=2 = O(h): (2.16)



44 J. LI, Z.M. CHEN AND Z.Q. ZHUThus the (2.13) is proved. For the proof of (2.14), note that Q(1) = 1=2, so we have:jQi+1=2 � 1=2j =���Q��Ui�1=2�Ui+1=2��Q��Ui+1=2�Ui+1=2�����L � ����Ui�1=2 ��Ui+1=2�Ui+1=2 ��� = O(h): (2.17)Similarly jQi�1=2 � 1=2j = O(h) 
an be proved. Noti
e that all the above expansionsare on the basis of (2.16), i.e. we require here U 0i 6= 0 or xi is not an extramum of U .Otherwise the s
heme will degenerate into �rst order one.Up to now, we have proved the following 
on
lusion:Theorem 2.2. If Q(r) satis�es the 
onditions in theorem (2:1), then ex
ept in thevi
inity of the extrama of the solution U , s
heme (1:5) has se
ond-order a

ura
y.It is not diÆ
ult to know that many widely used Limiters satisfy the above 
ondi-tions. For example, the following:Minimod: Q(r) = 1=2 �minimod(1; r)here minimod(1; r) = ( min (1; r)0 if r > 0r � 0Monotoni
: Q(r) = 1=2 � r+jrj1+r .MUSCL: Q(r) = 1=2 �max[0;min(2; 2r; 1+r2 )℄:Superbee: Q(r) = 1=2 �max[0;min(2r; 1);min(r; 2)℄The 
onditions in the above theorem are relatively easy to meet, so besides theabove Limiters, one 
an form some new Limiters whi
h will also guarantee the TVD
ondition and se
ond order a

ura
y. Here we want to emphasize that if Q(r) satis�esthe 
onditions in the above theorems, then the fun
tion QM(r) de�ned by Q(r):QM(r) = Q(min(r; 1=r)) (2.18)still satis�es those 
onditions. The proof is as follows:First it is easy to see the QM(r) still satis�es 
ondition (2.4), so we only need toprove:Lemma 2.3. The QM(r) is Lipt
hitz 
ontinuous with the same Lipt
hitz 
onstantL as that of Q(r).Proof. First, for any r1; r2 > 0:(1) when r1 � 1, r2 � 1QM(r1) = Q(r1) QM(r2) = Q(r2): (2.19)So the lemma is obvious in this 
ase.(2) when r1 � 1, r2 � 1, from the L-
ontinuity of Q(r) and jr1 � r2j � 1:jQM(r2)�QM(r1)j =���Q� 1r2��Q� 1r1���� � L � ��� 1r2 � 1r1 ���
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tions 45=L � ���r1 � r2r1 � r2 ��� � L � jr2 � r1j: (2.20)(3) when r1 � 1, r2 � 1 It 
an be similarly proved when r1 � 1, r2 � 1)jQM(r2)�QM(r1)j =���Q� 1r2��Q(r1)����L � ��� 1r2 � r1��� = L � ���1� r1 � r2r2 ���: (2.21)Be
ause jr2 � r1j = j r22�r1�r2r2 j, so we only need to prove j1�r1�r2r2 j � j r22�r1�r2r2 j.When r1 � r2 � 1, from r22 � 1 the above is obvious.When r1 � r2 > 1, then r1 � r2 � 1 � 0, from r1 � r2 
omes r22 � r1 � r2 � 0. therefor:jr22 � r1 � r2j � jr1 � r2 � 1j =r22 � r1 � r2 � r1 � r2 + 1=r22 � 2 � r1r2 + r21 + 1� r21=(r2 � r1)2 + (1� r21) � 0: (2.22)Combine the above inequalities, we have:jQM(r2)�QM(r1)j � L � ���1� r1 � r2r2 ��� � L � ���r22 � r1 � r2r2 ��� = L � jr2 � r1���: (2.23)So in the 
ase of r1; r2 � 0, the lemma is proved. In the 
ases of one or both rs less than0, the 
orresponding QM will be
ome 0, then the prove is very simple, it is ommitedhere.From the above theorems and lemma, we know that if the Limiter QM(r) is usedin (1.5), the s
heme will still be a se
ond order TVD s
heme.Noti
e that this Limiter (whi
h we 
all the Limiter of QM type in the followingdis
ussion) is not the same as the symmetri
 Limiters of H.C. Yee in [11℄.3. The Relation Between the Limiter and the Arti�
ial Vis
osityNumeri
al vis
osity in
luded in almost all of the s
hemes used in CFD. The 
entraldi�eren
e s
hemes usually have an expli
it arti�
ial vis
osity term, while the upwindbiased 
ux spliting s
hemes in
lude an impli
it one sometimes 
alled the s
heme vis-
osity. To in
lude arti�
ial vis
osity is not only for the purpose of sho
k 
apturing butalso in many 
ases for the stably 
onverging of the numeri
al solution. Espe
ially whenthe meshes used in the numeri
al 
al
ulation are not �ne enough to make the physi
alvis
osity play the key role in stabilizing the solution.As mentioned in se
tion 1, the ba
kground problem of this paper is a vis
ous 3-Dstati
 outer 
ow problem, the Re number is in the order of 106 and the angle of atta
kis fairly large. The distribution of pressure is given in Fig.3. When we used 
ux ve
torspliting s
heme plus the Monotoni
 or Minimod Limiter to solve the above problem, thenumeri
al solution is `
owing' up and down, i.e. 
hanging with the advan
e of the timesteps (the dashed line in Fig.3) and not 
onverging to a �xed pla
e. Other resear
hers
arrying out the 
al
ulation for the same problem also found similar phenomena.



46 J. LI, Z.M. CHEN AND Z.Q. ZHUIn fa
t, for the s
heme (1.5), the sign, size and property of numeri
al vis
osity areall related to the Limiter. Consider the semidis
rete s
heme 
orresponding to (1.5):Ut = �ah � (�Ui�1=2 +Qi+1=2 ��Ui+1=2 �Qi�1=2 ��Ui�1=2): (3.1)From (2.11), we have the expansion similar to (2.12):Ut =� a � U 0i + �a � h(1�Qi+1=2 �Qi�1=2)� (Qi+1=2 �Qi�1=2) � U 0ih2U 00i� (1 +Qi+1=2 �Qi�1=2) � U (3)iU 00i � h3 i � h2U 00i �+O(h3): (3.2)If Limiter Q satis�es (2.13) and (2.14), the three terms in the square bra
ket are allO(h), and the sum of them is in fa
t the 
oeÆ
ient of the numeri
al vis
osity. To ensurethe stability, the 
oeÆ
ient must be positive. (noti
e here a > 0)Now let us analyse this 
oeÆ
ient. From the expansion (2.11), we obtain:U 0i = �Ui+1=2 +�Ui�1=22h +O(h2)U 00i = �Ui+1=2 ��Ui�1=2h2 +O(h2) (3.3)and: U (3)i = �Ui+1=2 � 2�Ui�1=2 +�Ui�3=2h3 +O(h): (3.4)From jQi+1=2 �Qi�1=2j = O(h2), omit the higher order terms:(1�Qi+1=2�Qi�1=2)� (Qi+1=2 �Qi�1=2) � U 0ih2U 00i � (1 +Qi+1=2 �Qi�1=2) � U (3)iU 00i � h3=2 � [(1=2�Qi+1=2)��Ui+1=2�(1=2�Qi�1=2)��Ui�1=2℄�Ui+1=2��Ui�1=2 � 13 � �3Ui�3=2�2Ui�1=2 : (3.5)Here �3Ui�3=2 = �Ui+1=2 � 2�Ui�1=2 +�Ui�3=2, �2Ui�1=2 = �Ui+1=2 ��Ui�1=2.The omitted terms are higher order ones and will not a�e
t the sign of the mainterm, so the right hand side of the above equation should be positive.Now let us see in what 
ases the above 
ondition 
an be violated.(1) When: 0 < �Ui+1=2 < �Ui�1=2 < �Ui�3=2 (3.6)it is obvious that in this 
ase, ri+1=2 > 1 ri�1=2 > 1.If the Limiter Q(r) is linear on the interval (1;max(ri+1=2, ri�1=2)) with the � asthe slop, we have:(1=2 �Qi+1=2) = Q��Ui+1=2�Ui+1=2��Q��Ui�1=2�Ui+1=2� = � � (�Ui+1=2 ��Ui�1=2)�Ui+1=2 (3.7)
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tions 47(1=2 �Qi�1=2) = � � (�Ui�1=2 ��Ui�3=2)�Ui�1=2 : (3.8)Substituting the above two equations into (3.5), the 
oeÆ
ient of numeri
al vis
osityis just: (2� � 13) � �3Ui�3=2�2Ui�1=2 : (3.9)If � > 16 and: �3Ui�3=2�2Ui�1=2 < 0 (3.10)the value of (3.9) is negative.If � < 16 and: �3Ui�3=2�2Ui�1=2 > 0 (3.11)the value of (3.9) is also negative.In fa
t, for the MUSCL Limiter, the (3.7) be
omes true if ri+1=2, ri�1=2 � 3:0 with� = 14 .For the Superbee Limiter, the (3.7) be
omes true if ri+1=2, ri�1=2 � 2:0 with � = 12 .For the Minimod Limiter, the (3.7) is held for any ri+1=2, ri�1=2 � 1:0 with � = 0.Although the Monotoni
 Limiter is not a linear fun
tion, when ri+1=2, ri�1=2 � 1:0it varies in the similar way.Therefore we 
an say that all the above Limiters 
an't ensure the 
oeÆ
ient beingpositive under the 
onditions of both (3.10) and (3.11).The 
ases of (3.6), (3.10), (3.11) are just what happened in our 
al
ulations. Thepressure 
urve at the right neighbour of point x0 in Fig.3 show that here U 0 > 0,U 00 < 0, so 
omes (3.6). The absolute value of U 00 �rst in
rease, then de
rease, i.e.the value of U (3) �rst is negative then positive, thus make the 
ases (3.11) and (3.10)alternately happen in that narrow area. So if the Limiter is not properly designed, the`
u
tuating' phenomenon of the numeri
al solution will o

ur.To make the values of (3.9) be always positive, the Limiter of QM type in the lastse
tion was tried, but no satisfa
tory result has been obtained. Some analysis show thatthe reason is the 
onvexity on [0,1℄ of the basi
 Limiter Q(r), i.e. for any s; t 2 [0; 1℄,s < t, there always be: Q(t) � 1=2 �Q(s)1� s � (t� s) +Q(s): (3.12)This is the 
ommon feature of the Limiters from Minimod to Superbee, the equality ishold only for the Minimod Limiter.Further analysis indi
ate that if Q is 
onvex, the 
oeÆ
ient of arti�
ial vos
osity isde�nitely negative under (3.6), (3.11), but if Q is 
on
ave, the result may be di�erent.Let's see the following example:



48 J. LI, Z.M. CHEN AND Z.Q. ZHUDenote � = min�j1 � 1ri+1=2 j, j1 � 1ri�1=2 j� it is easy to know � = O(h), so we
onstru
t a Limiter as: Q(s) = 12 � e s�1�2 = 12 � 1e1�s�2 (3.13)it is obvious: Q(1) = 1=2, and Q(0) = 1=2 � e�1�2 is a vary small quantity. To makeQ(0) = 0 so that the 
onditions in theorem (2.1) are satis�ed, a small smoothness 
ouldbe made in the neighborhood of 0, but this will not a�e
t the main property of thatLimiter. For simpli
ity, we omitted it here.Thus when ri+1=2, ri�1=2 > 1, the 
orresponding QM Limiter isQMi+1=2 = 1=2 � e1=ri+1=2�1�2 ; QMi�1=2 = 1=2 � e1=ri�1=2�1�2 : (3.14)Substituting this into (3.5), now the 
oeÆ
ient is:1� 2QMi+1=2 + 2 � QMi�1=2 �QMi+1=21ri+1=2 � 1 � 13 � �3Ui�3=2�2Ui�1=2=1� e�(1�1=ri+1=2)�2 � �e� (1�1=ri�1=2)�21� 1=ri+1=2 � e� (1�1=ri+1=2)�21� 1=ri+1=2 �� 13 � �3Ui�3=2�2Ui�1=2 (3.15)By the de�nition of �:e� (1�1=ri�1=2)�21� 1=ri+1=2 < 1� � e� 1� ; e� (1�1=ri+1=2)�21� 1=ri+1=2 < 1� � e� 1� (3.16)From the properties of exponential fun
tion, for any k > 0:1�k+1 � e� 1� !�!0 0: (3.17)Be
ause � = O(h), the se
ond and third terms in (3.15) are less than O(h3), so they arehigher order terms and will not a�e
t the sign of the quantity. Omitting those terms,the quantity in (3.15) be
ome: 1� 13 � �3Ui�3=2�2Ui�1=2 : (3.18)
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h to the Limiter Fun
tions 49The se
ond term is O(h), so when h issmall enough, the 
oeÆ
ient is positive.The above example indi
ate that atleast the 
oeÆ
ient will be positive whenQ is 
on
ave enough. But the Limiter inthe above example is 
on
ave too mu
hand will 
ause too big arti�
ial vis
osity.The Limiter Q(s) 
ould be designedas in the following shape: Fig.1Here Q is linear on [s0; s1℄ with the slop � > 0, when s0 � 1ri+1=2 , 1ri�1=2 � s1, the
oeÆ
ient in (3.5) is:1� 2QMi+1=2 + 2 � QMi�1=2 �QMi+1=21ri+1=2 � 1 � 13 � �3Ui�3=2�2Ui�1=2 if 1ri+1=2 < 1ri�1=21� 2QMi�1=2 + 2 � QMi�1=2 �QMi+1=21� ri+1=2 � 13 � �3Ui�3=2�2Ui�1=2 if 1ri+1=2 > 1ri�1=2 ;(3.19)By the linearity of Q:2 � (QMi�1=2 �QMi+1=2) =2 � �Q� 1ri�1=2��Q� 1ri+1=2��=2� � � 1ri�1=2 � 1ri+1=2�: (3.20)so for the �rst 
ase of (3.19), the third term is:2 � QMi�1=2 �QMi+1=21ri+1=2 � 1 = �2� � ( 1ri�1=2 � 1ri+1=2 )1� 1ri+1=2 > �2�; (3.21)for the se
ond 
ase, this term is positive.By Fig.1 and s0 � 1ri+1=2 , 1ri�1=2 � s1, it is obvious that:1� 2QMi+1=2; 1� 2QMi�1=2 � 2 � l (3.22)
ombine the above analysis, we know that for both 
ases in (3.19), the quantity therewill not be less than: 2 � l� 2� � 13 � �3Ui�3=2�2Ui�1=2 ; (3.23)That means if we 
hoose l � � > 16 � �3Ui�3=2�2Ui�1=2 the 
oeÆ
ient of arti�
ial vis
osity (if his small enough) will be positive.To determine the parameters su
h as l; �; s0; s1 properly, we need some preknowl-edge about the feature and property of the solution U , for example, the range of 1ri+1=2 ,



50 J. LI, Z.M. CHEN AND Z.Q. ZHU1ri�1=2 , the s
ale of �3Ui�3=2�2Ui�1=2 et
. But at least the above analysis indi
ate that the QMtype plus 
on
ave shape is a right dire
tion to design a Limiter su
h that it 
an maintainadequate arti�
ial vis
osity.With the parameters determined, to implement the program is not diÆ
ult. The Q
an be formed on [0,1℄ as a pie
ewise polynomial and what we have to do is to 
al
ulatethe polynomial 
oeÆ
ients for ea
h pie
e, afterwards the s = r, or s = 1r 
an be usedas the variable to get the value Q(s).4. A Uniform Se
ond Order TVB LimiterFor TVD s
hemes there is a 
ommon defe
t that they will degenerate to �rst ordera

ura
y near the extrema of U . The reason is (2.16) will no longer be 
orre
t at theextrema and be
ome the following form:�Ui+1=2; �Ui�1=2 = O(h2) (4.1)In this se
tion we simply use the above result to modify the Limiter in the vi
inity ofthe extrema to maintain the se
ond order trun
ation error while only lead to O(h2)Total Variation in
rease there. Be
ause there is only �nite number of extrema, theTV in
rease during the whole pro
edure of time evolution is bounded by a 
onstantindependent of step size �t, and �x, i.e. the s
heme is a TVB one.In the following, the (1.4) is still used as the model equation to dis
uss the mod-i�
ation of the Limiter. From (2.12) it is obvious that to make (2.1) se
ond order isequivalent to make:h � U 0i (Qi+1=2 �Qi�1=2) + h22 � U 00i (Qi+1=2 +Qi�1=2 � 1) = O(h3) (4.2)For the s
heme at point xi, we �rst assume that xi�k is an extremum point of U . (Theextremum point is easy to be dete
ted in pra
ti
al 
al
ulation by 
he
king whether�Ui�k+1=2�Ui�k�1=2 < 0.) so we have U 0i�k = 0. From Taylor expansion:U 0i =U 0i�k + k � hU 00i�k + (kh)22 U (3)i�k +O(h3)=kh � (U 00i � kh � U (3)i +O(h2)) + (kh)22 U (3)i�k +O(h3)=kh � U 00i � (kh)2 � U (3)i + (kh)22 U (3)i�k +O(h3)=kh � U 00i +O((kh)2): (4.3)Substituting the above into the left side of (4.2), we have:h � U 0i(Qi+1=2 �Qi�1=2) + h22 � U 00i (Qi+1=2 +Qi�1=2 � 1)=[(1 + 2k) �Qi+1=2 + (1� 2k) �Qi�1=2 � 1℄h22 � U 00i +Ri (4.4)



New Approa
h to the Limiter Fun
tions 51here Ri = (Qi+1=2 �Qi�1=2) �O(h � (kh)2): (4.5)Now let the value of Limiter at i � 1=2, i.e. Qi�1=2 = Q(ri�1=2) be the TVD Limitersatisfying the 
onditions in theorem (2.1), but the value at i+ 1=2 be:Qi+1=2 = (1 + (2k � 1) �Qi�1=2)1 + 2k = 1� 2Qi�1=21 + 2k +Qi�1=2: (4.6)It is easy to verify that if Ri = O(h3), with the above de�nition the (4.2) will besatis�ed.Of 
ourse we 
an 
hoose Qi+1=2 as the normal TVD Limiter but let:Qi�1=2 = (1� (2k + 1) �Qi+1=2)1� 2k = 1� 2Qi+1=21� 2k +Qi+1=2; (4.7)this de�nition 
an also make (4.2) be satis�ed when Ri = O(h3).When xi+k is the extremum point, similar modi�
ation 
an be made either as:Qi+1=2 is the normal TVD Limiter with:Qi�1=2 = (1 + (2k � 1) �Qi+1=2)1 + 2k = 1� 2Qi+1=21 + 2k +Qi+1=2 (4.8)or as:Qi�1=2 is the normal TVD Limiter with:Qi+1=2 = (1� (2k + 1) �Qi1=2)1� 2k = 1� 2Qi�1=21� 2k +Qi�1=2: (4.9)To ensure the s
heme is a TVB one under some 
onditions, the Limiters should bemodi�ed on the following prin
iple:Prin
iple 4.1. Between the two Limiters: Qi�1=2, Qi+1=2, the one 
orrespondingto the bigger �U must be the TVD Limiter with the other modi�ed.For example, if j�Ui�1=2j < j�Ui+1=2j, the Qi+1=2 should be the original TVDLimiter and the Qi�1=2 
ould be modi�ed using (4.7), or (4.8).Now we begin to prove that with the above modi�ed Limiter, the s
heme (1.5) isa uniform se
ond order TVB s
heme. In order to avoid 
onfusion, in the following themodi�ed Limiter de�ned in (4.6) to (4.9) is denoted by QB, while the TVD Limiter inse
tion 2 is Q.In this se
tion, we assume the solution U of equation (1.4) has a 
ompa
t support onthe x axis, i.e. there are �; � 2 R su
h that U vanishes outside (�; �). We also assumethe time upper bound T is a �nite number, i.e. we only need to get the solution U(t; x)of (1.4) with t < T . Many pra
ti
al CFD problems satisfy the above assumptions.Under the above assumptions, it is obvious that the number of mesh points at xdire
tion is N1 = B1h , here B1 = ���. The number of time steps is denoted as N2 = T�t .If the CFL number � = �th is bounded, i.e. 0 � �1 � � � �2, then we have:
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al solution of (1:4) has only �nite number of isolateddis
ontinuous points, then the s
heme (1:5) with the modi�ed Limiter QB is a TVBs
heme.Here a point xi is a dis
ontinuous point that means �Ui = O(1), and it is a isolatedone that means there should be �Ui�1;�Ui+1 = O(h)Proof. In this proof, Uni , i = 0; 1; � � � ; N1, n = 0; 1; � � � ; N2, denote the numeri
alsolution of (1.4).The s
heme (1.5) with QB as its Limiter is:Un+1i =Uni � a � �(Uni +QBi+1=2 ��Ui+1=2 � Uni�1 �QBi�1=2 ��Ui�1=2)=UDn+1i + a�(Qi+1=2 �QBi+1=2)��Ui+1=2 � a�(Qi�1=2 �QBi�1=2) ��Ui�1=2 (4.10)here Q is the TVD Limiter from whi
h the QB is formed in (4.6) to (4.9), and UDn+1i =Uni � a � �(Uni +Qi+1=2 ��Ui+1=2 � Uni�1 �Qi�1=2 ��Ui�1=2) is just the value of Ui onn+1 time level when the original TVD Limiter is used.From the TVD property: TV (UDn+1) � TV (UDn):TV (Un+1) = N1Xi=1 jUn+1i � Un+1i�1 j�TV (Un) + 2a� � N1Xi=1 jQi+1=2 �QBi+1=2j � j�Uni+1=2j+ 2a� � N1Xi=1 jQi�1=2 �QBi�1=2j � j�Uni�1=2j: (4.11)The last two term in the above inequality 
an not be 
ombined be
ause the formula usedto 
al
ulate QBi+1=2 at point xi maybe di�erent from the formula for QB(i+1)�1=2 atpoint xi+1. (For simpli
ity, we did not introdu
e di�erent notations for them.) Noti
ethat between the two Limiter values QBi+1=2, QBi�1=2 asso
iated with point xi, thereis only one whi
h is di�erent from Q's value.To estimate the s
ale of last two terms, note that no matter whi
h formula of (4.6)to (4.9) is used, we always have:jQi+1=2 �QBi+1=2j � j2Qi�1=2 � 1j+ jQi+1=2 �Qi�1=2j (4.12)and the above inequality is 
orre
t for any k, (In fa
t, when k = 0, there is a betterestimation.) so from the 
ondition (2.4), there will be:jQi+1=2 �QBi+1=2j � 2: (4.13)First, assume the numeri
al solution Un is smooth enough in the interval [xi�2; xi+2℄whi
h is the `dependent interval' of the value Un+1i , thus all the estimations in se
tion2 are 
orre
t here.



New Approa
h to the Limiter Fun
tions 53From expansion (2.11), no matter whether or not U 0i = 0, there always be:�Ui+1=2 = �Ui�1=2 +O(h2); (4.14)so if �Ui�1=2 = O(h), there must be �Ui+1=2 = O(h) too, thus the (2.13) and jQi�1=2�1=2j = O(h) are 
orre
t, substituting them into (4.12) lead to:jQi+1=2 �QBi+1=2j = O(h) (4.15)Now we have the following 
on
lusion:if: j�Ui+1=2j = O(h)jQi+1=2 �QBi+1=2j � j�Ui+1=2j = O(h2)From (4.13): (4.16)if: j�Ui+1=2j = O(h2) also:jQi+1=2 �QBi+1=2j � j�Ui+1=2j = O(h2)Similarly we 
an prove that:jQi�1=2 �QBi�1=2j � j�Ui�1=2j = O(h2): (4.17)By the derivation above and in se
tion 2, it is easy to know that the 
oeÆ
ients in these
ond order in�nitesimal O(h2) are only dependent on the lo
al values of derivativesof numeri
al solution Un and the Lips
hitz 
onstant L of TVD Limiter Q. In this way,if Un is smooth enough on [xi�2; xi+2℄, there is a �nite number M > 0, su
h that:jQi+1=2 �QBi+1=2j � j�Ui+1=2j �M � h2jQi�1=2 �QBi�1=2j � j�Ui�1=2j �M � h2: (4.18)It is obvious that the number of points in the smooth region of Un is � N1 = B1h , sothe possible in
rease of total variation:Xxi2C jQi+1=2 �QBi+1=2j � j�Ui+1=2j � N1 �Mh2 = B4 � hXxi2C jQi�1=2 �QBi�1=2j � j�Ui�1=2j � N1 �Mh2 = B4 � h (4.19)Here xi 2 C means the point xi is in the smooth region. B4 = B1 �M is independentof h.Now assume the xi is not in the smooth region. From prin
iple (4.1), one of the twovalues: jQi�1=2�QBi�1=2j or jQi+1=2�QBi+1=2j must be 0, the other is 
orrespond tothe less �U and satisfy (4.13). From the assumption that the dis
ontinuous points areisolated, this �U must be O(h), so we have:jQi+1=2 �QBi+1=2j � j�Ui+1=2j = O(h)jQi�1=2 �QBi�1=2j � j�Ui�1=2j = O(h): (4.20)
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ause the number of dis
ontinuous points is �nite, so there must be a B5 independentof h su
h that: Xxi2DC jQi+1=2 �QBi+1=2j � j�Ui+1=2j � B5 � hXxi2DC jQi�1=2 �QBi�1=2j � j�Ui�1=2j � B5 � h: (4.21)Here xi 2 DC means the point xi is a dis
ontinuous point of Un.Substituting (4.19) and (4.21) into (4.11), we have:TV (Un+1) � TV (Un) + 4a � �2 � (B4 +B5) � h = TV (Un) +B6 � h (4.22)here B6 = 4a � �2 � (B4 +B5), so when n+ 1 � N2 = T�t = Th � h�t = Th � 1� , there shouldbe: TV (Un+1) � TV (U0) +N2 � B6 � h = TV (U0) + TB6� � TV (U0) + TB6�1 (4.23)The righthand side of the above inequality is independent of �t; h, i.e. N1; N2:Remark 1. More 
aref toul proof 
ould givejQi+1=2 �QBi+1=2j � j�Ui+1=2j �M � h2kjQi�1=2 �QBi�1=2j � j�Ui�1=2j �M � h2k (4.24)instead of (4.18), so a better TV bound than (4.23) 
ould be found.Theorem 4.2. If the exa
t solution of (1:4) is smooth enough, then the s
heme(1:5) with the modi�ed Limiter QB is unformly se
ond order a

ura
y.Proof. Here the U denote the exa
t solution of (1.4).From (4.2), (4.4), (4.5), the main obsta
le of se
ond order a

ura
y is the Ri dependon k whi
h is the step number from the present point xi to the nearst extremum pointxi�k, and this k 
an varry from 0 to O(N1) = O( 1h), so we 
an not say the s
heme isuniformly se
ond order only from the elimination of the 
oeÆ
ient of O(h2) term in(4.4). That elimination only give the se
ond order a

ura
y if k = 0.Now assume k > 0.When U 0i�k = 0, From (2.11), we have:�Ui+1=2 =h � U 0i + h22 U 00i +O(h3)=h[U 0i�k + khU 00i�k +O((kh)2)℄ + h22 U 00i +O(h3)=kh2 � U 00i�k +O(k2h3)) +O(h2)) = O(kh2): (4.25)From (4.14) and above, it holds:jQi+1=2 � 1=2j � L � ����Ui�1=2 ��Ui+1=2�Ui+1=2 ��� = O�1k� (4.26)
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h to the Limiter Fun
tions 55If the Limiter QBi�1=2 is formed by (4.7), we have:jQBi+1=2 �QBi�1=2j = jQi+1=2 �QBi�1=2j = ���2(Qi+1=2 � 1=2)2k � 1 ��� = O� 1k2�: (4.27)Substituting the above and (4.3) into (2.12):Un+1i =Uni � a � �hh � U 0i + (QBi+1=2 �QBi�1=2) � hU 0i+ (QBi+1=2 +QBi�1=2 � 1)h22 � U 00i +O(h3)i=Uni � a � �hh � U 0i + (QBi+1=2 �QBi�1=2) � kh2 � U 00i + h � (QBi+1=2�QBi�1=2) � O((kh)2) + (QBi+1=2 +QBi�1=2 � 1)h22 � U 00i +O(h3)i=Uni � a � �hh � U 0i + ((2k + 1) �QBi+1=2 + (1� 2k) �QBi�1=2 � 1) � h22 � U 00i+ h � O� 1k2� �O((kh)2) +O(h3)i=Uni � a � �[h � U 0i +O(h3)℄: (4.28)This means the s
heme is se
ond order independent of k, i.e. uniformly se
ond ordera

ura
y. (When k < 0 or used (4.6), (4.8) and (4.9) to form QB, the proof are similar)5. The Numeri
al Examples and the Con
lusionAlthough in the above se
tions we have only dis
ussed the s
heme (1.5) whi
h isfor the s
alar di�erential equation (1.4), this s
heme 
an be generalized by some wellknown methods su
h as that in [1℄ and used for the equation system (1.1).The �rst example (In fa
t, the ba
kground problem) is solving a three dimensionalN-S equation around a blunt revolution body with the symmetri
 se
tion shown inFig.2.Here the angle of atta
k � = 20Æ and theMa
h number of free stream is 0.9. A mesh ofO{O type with the points number 77 � 40 � 45is used for this outer 
ow �eld. Our task is toobtain the distribution of pressure on the body'ssurfa
e. When we use van Leer 
ux ve
tor split-ing plus the Limiters from Minimod to Super-bee, the 
u
tuating phenomenon o

urs and thenumeri
al solutions do not 
onverge even aftermore than 10000 time steps. This phenomenon
an be seen from Fig.3 and Fig.4 whi
h givethe pressure distributions on the lee side of theabove symmetri
 se
tion of that blunt body. Fig.2
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Fig.3 Lee side

The di�erent lines in the same �gure above show the results after di�erent timesteps. It is 
lear that with the limiters above, we 
an't get a 
onvergent solution (TheMinimod Limiter gives a similar result and with the Superbee limiter the solutionvibrated so badly that the result omitted here); so we tried and formed the limiter inse
tion 3. The result is shown in the following �gure:

Fig.4 Lee side
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Fig.5 Lee side
It 
ould be seen that the distributions of pressure remains un
hanged even afterthousands of time steps. The numeri
al 
al
ulation with this limiter indeed gives asu

essfully 
onverging result.
Now we turn to the numeri
al examples for the se
tion 4, i.e. 
omparison betweenthe results obtained using a TVD limiter and those using the `uniform se
ond order'limiter 
onstru
ted from that TVD limiter following the pro
edure in se
tion 4. Forthis purpose, a sho
k tube problem (dis
ontinuous initial value problem with one di-mensional Euler equation as governing equation) is solved. The results are shown inthe following �gures:

Fig.6
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Fig.7Here the solid 
urve represents the exa
t solution.In Fig.6, the Minimod limiter is used while the Fig.7 is the result with the limiterformed from Minimod limiter following the formulas and prin
iple in se
tion 4. Al-though the new limiter makes the dis
ontinuity a little bit of sharper, the vibration onthe pressure 
urve is stronger.The result using the TVD limiter dis
ussed in se
tion 2 and that using the limiter
onstru
ted from that TVD limiter are also 
ompared and show the similar di�eren
eas in Fig.6 and Fig.7.It seems to us that the limiters in se
tion 4 produ
e less numeri
al vis
osity than thelimiters from whi
h they 
onstru
ted. Although they did not make remarkable improve-ment in above numeri
al experiments, it is worth doing some further investigations onthem. Referen
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