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Abstract
In this paper, a new method of boundary reduction is proposed, which re-
duces the biharmonic boundary value problem to a system of integro-differential
equations on the boundary and preserves the self-adjointness of the original prob-
lem. Moreover, a boundary finite element method based on this integro-differential
equations is presented and the error estimates of the numerical approximations are
given. The numerical examples show that this new method is effective.
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1. Introduction

We consider a homogeneous isotropic and linear elastic Kirchhoff plate under lateral
load distributed over the plate € x [f%, %] The domain Q € R? is bounded with the
smooth boundary I'. In the static equilibrium, we consider the free type boundary

condition on I'. Then the deflection wu satisfies the following problem:

A%y = %, in €,
M(z,n;)u =0, onT, (L.1)
T(z,ng)u=0, onT,
Eoh?® . : .
where D = m, is the bending stiffness of the plate with A being the plate
—v

thickness and Ey and v(0 < v < %) being the modulus and Poisson’s ratio respectively,
g denotes the lateral loading; the boundary differential operators M (z,n,), T(x,n,)
are given by:

M, =M (z,n;) = vA,

2 2 2
#1010 7 + )+ 2m et

1.2
Oxy o3 (1.2)
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+(1—v) 8(; [”1(10)712(5”)(88—; - aa—:;)

~ (m(@)? ~ ()P 5]

T, =T (z,n,) = —

(1.3)

where n, = (nq(z),n2(z))” denotes the unit outer normal vector at z € I' and s, =
(—na(z),n1(x))T is the unit tangential vector at = € I'. For convenience, from now
on we suppose that the bending stiffness D has been normalized to D = 1. Because
the lateral loading ¢g(z) in (1.1) can always be eliminated by substracting a volume
potential, hence the problem (1.1) can be reduced to the following problem:
A%y =0 inQ,
Myu=m onTl, (1.4)
Tou =t on I
for given functions m(z), ¢(x) on the boundary I'. Let Q¢ = R?\(2, then we also consider
the boundary value problem on the unbounded domain €2¢:
(A?u=0 inQ°

Myu=m onl,

T,u=t onT, (1.5)
u(z) satisfies the linear - logarithmic growth condition
L (see [11], p468. (8.165)), when |z| — oc.

The operators M, and T, can be rewritten in the following form:

ok 0

M, =A; —(1—-v) 97 (1— V)w(x,nx)a—nw, (1.6)
0A, ok 0 0
To=-g.5 - (lfy)m—k(lfu)a—%[w(m,nx)a—%}, (1.7)
where w(z,n,) = nl(x)an(:r) - ng(:ﬁ)dnl(m).
ds ds,

T
We will reduce the problem (1.4) to a system of boundary integro-differential equa-
tions by an indirect method.
Let

u) = [ M,B.)fi)ds, + [ 1B fa)ds, +pile), seQ (L8)

be the solution of problem (1.4). Here p;(z) is an arbitrary polynomial of degree one,

1
E(z,y) = —71_7“2 log r, with r = |z —y| is a fundamental solution of biharmonic equation,

f1, fo are two unknown density functions.
For any z ¢ I, and an arbitrary unit vector n,, we have

Myu(@) = [ MoMyB(w.y) fids, + [ M, B(.9) fol0)ds,, €T, (19)
Tyu(z) = /FTwMyE'(:L‘,y)fl (y)ds, + ATwTyE(x,y)fg(y)dsy, z ¢gT. (1.10)
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For z € " and n, is the unit outward normal vector at x € I" for the domain, each
kernel in the integrals (1.10) has a singularity |z — y|~* when z and y are close for
k=2 (or 3, or 4). Thus the integrals in the right-hand side of (1.10) are defined as
a finite part in sense of Hardmard. Before reducing the problem (1.4) to a system of
boundary integro-differential equations, we will study the following two limits

lim {/F MzMyE(Z,y)fl(y)dSy+/FMzTyE(Z,y)fz(y)d8y},

2€Q—zel

zeflzig;er{/FTZMyE(z,y)fl(y)dsy+/F TZTyE(z,y)fg(y)dsy}.

2. Two New Presentations of (1.9) and (1.10)
Let .
B (z,y) = DaE(w,y) = AyE(z,y) = 5—(logr + 1), (2.1)

then E*(z,y) is a fundamental solution of harmonic equation. Suppose that n, =
(n1(z), na ()%, ny = (n1(y), n2(y))? are arbitrary unit vectors and s, = (—ns(z), nq (z))?
sy = (—n2(y),n1(y))" which are perpendicular to n,n, respectively. For the funda-
mental solution £*(x,y) and E(z,y), we have the following lemmas.
Lemma 2.112, For z # vy, the following equality holds
OB (z,y) _ OE*(z,y)

Ong0ny 0545y

il

Lemma 2.2. For z # y, the following equality holds
O*B*(z,y) _ O°E*(z,y)

Ong0sy Ony0s,

Proof. We notice
P E*(v,y)  PE(zy) OPE*(x,y)  PE(z,y)

O0x10y: dx20ys 0110y Oz00y
Then we obtain

P E*(z,y) O°E*(z,y)
o 0x10y1 0x10Yy9 <_n2(y)>
_(nl(x)vnQ(x)) 82E*(.Z',y) 82E*(r,y) nl(y)
8.%283;1 8.@283/2
PE*(z,y) PE(z,y)

—(_ 010y 0110y <n1(y)> _ 82E*($7y)
( n2($)7n1($)) 82E*(r,y) 82E*(r,y) 8nyasm :
8.%283/1 8:1:283;2
Lemma 2.3. For x # y, the following equality holds
O*B(z,y)  9"E(z.y)
Ong0n,, 05,08y

Proof. A computation shows

P E*(z,y)
Ong0s,y

= —E*(z,y) cos(ng, ny).
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P Blay) | FE(y)
Ong0ny 05,08y

E(z,y)  OE(z,y)
:(nl(z)nl(y)+n2(:r)n2(y))( 97,001 + O120ys )
Hence we have
82E(I,y) + 82E(:1:,y)
Ong0n,, 0s40sy

= A E(z,y) cos(ng,ny) = —E*(x,y) cos(ng, ny).

By the lemmas 2.1 2.3 and the formulas (1.6) and (1.7), the two integrals given by
(1.8) can be rewritten in the following:

wle) = [ M, B ) i)y, = [ ) fiods, + (=) [ 0 s,
~ -0 [ 2ty s
=u11(z) +uiz(r) +uiz(z), = € (2.2)
wle) = [ 1,8y, =~ [ D payas, — (1) [ LD fgpas,
-0 [ 2 ity s,
=ug1 () + ugn(z) + ugs(z), z € Q, (2.3)
; dfi i d* fi . .
where f;(y) = ]ctls(j) fily) = C{Téy) for i = 1,2. Hence we obtain
2 3
u(z) = Z Z uij(z). (2.4)
i=1j5=1

For z €T,z € Q, and n, = (n1(z),n2(x))", 5, = (—n2(z),n1(z))", which are the unit
outer normal vector at x € I' and the unit tangential vector at x € I' respectively.
M,u(z), T,u(z) can be reduced to the following forms:

2 3
M,u(z) = Z Z M,ui(z), z € 9, (2.5)
2 3
T,u(z) = Z ZTzuij(z), z € §}, (2.6)
i=17=1
where
d? . OE* (2,y)
Moun(z) =— (1 —-v)—= | E*(z2,9)fi(y)dsy — (1 —v)w(z,n.) | ——=f1(y)dsy,
ds? /r /r on, (2.7)
Mana(2) =~ (1=0) [ Beafids, — 00 [ G i,
— (1 —v)%w(z,n,) Mfl(y)dsy, (2.8)

r On,0sy
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Man(2) =~ (1 =9) [ S0ty m) (),

2 d 82E(Z,y)

+1-v) ds, Jr 0s,0ny wysmy) fi(y)ds,y
2E(z

~ (1= ulen) [ ety i ),

(U vulens) [ B () cos(na,my ol my) fi()ds (29)
A@mﬂ@:(1m£zéa?;2mf(m%

+ (1 —v)w(z,n,)— /E* 2,9) f2(y )dsy, (2.10)

(5 2E
Main(z) =~ (1-0) [ 8E8;y D i+ 17 i [ G ptwhas,
2 0*E(z,y)

— (1 —v)*w(z,n,) \ 05.05, faly )dsy

— (1 —=v)%w(z,n, /E’ Z,Y) cos(nz,ny)fé(y)dsy, (2.11)
M U23 1—7/ /E* z y yuny)fQ( ))dsy

2 d 32()

05 ) s, w(y, ny) f2(y)ds,
# 0= vutns) [ TP ) s, 212
Similarly we have
Ton(z) = - (1= [ 220 1,
+um£lmmhggéygmﬁ@@w (2.13)
Tana(e) = = (1= [ 25D s,

2 & [ OE(z,y)

S0 [ g s,
+(1- ”)stz (w(z,nz)d—sz) / o hiw)ds, (2.14)
d
Touns(2) =(1 = v)- /E : y)d ((y 1)1 (0))ds,
2 dQ
Bsy Y, ny) f1(y)dsy

(z,y) cos nz,ny) (yany)fl(y)dsy
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— — UV 2 d wliz,n i MUJ n S
(1 ) dSz( (2, Z)dsz)/r ony W2y 11 w)dsy. (2.15)
3 .
T (2) =1~ )1 [ B o) faw)ids,
S (wen o) | %ﬁmwdsy, (2.16)

T u9(z) =(1 — U)d;lz /I“E*(ij) f2 (y)ds,

d> [ 0’E(z,y) ;
— (1 = p)? Z 2\ J)
-0 [ G hws,

2 .
- (1- V)QCZ92 /FE*(z,y) cos(nz, ny) fa(y)ds,
_ (1_V)2di (w(z,nz)disz)/r%:;y)fg(y)dsy, (2.17)
Loin(2) =1~ ) [ Dty ) o),

d? 0°FE , :
s [ #{;j)(w(y,ny)fz(y))dsy

2 d d )/F%;y)w(y,ny)ﬁ(y)dsy-

— (1= ) —(w(z,n.)—
ds, ds, (2.18)
By the properties of the potentials in (2.7) (2.12), we have
2 3
el M) = i M35 ()}
(1-v)
=M, (u11 + 5 w(z, nw)fl(:v)) + Myuy9(x)
1—v 1—v) -
( )w(:n,nx)fl(:n)) + My (uz1 + ( 5 )fg(m))

+ M, (U13 T T
v ]EQ(IL“)) + Myugs(z) = Myu(z).
5 -

+ Mz (U22 —
lim FTzu(z) = T,u(z). Hence if u(z) given by (1.8) is a solution
—x

Similarly, we obtain J
ZE S
of (1.4), then fi, fo satisfying the following system of boundary integro-differential

equations
M | MyB(e.y)fi()ds, + Ms [ T,B(@.9) fa(y)ds, = m(z), 2 €T, (219

Tx/FMyE(:E,y)fl(y)dsy +T$/FTyE($7y)f2(y)d3y =t(z), z €T. 1(2.20)
= {(m,1) € H2(1) x

Before we discuss system (2.19) and (2.20), we define V*(I)
3 0
H 2(T) and / (ma—p -I—tp) ds=0,Vp € Pl(F)}, and recall some results of the original
r n

problems (1.4) and (1.5)1114



The Boundary Integro-Differential Equations of a Biharmonic Boundary Value Problem 65

Theorem 2.1. Suppose that (m,t) € V*(I') then the problem (1.4) exists a weak

solution u(z) € H2(Q), unique up to a linear function p € Py(Q).
Theorem 2.2. Assume the given functions (m,t) € V*(I') then the problem (1.5)

has a weak solution u(z) € HE, (2°) satisfying the linear - logarithmic growth condition,

and u(x) is unique up to a polynomial of degree one.

3. The Variational Formulation of the System of Boundary
Integro-Differential Equations (2.19) and (2.20)

We now discuss the system of boundary integro-differential equations (2.19) and

1 3
(2.20) for given (m,t) € V*(I'). For any (g1,92) € H2(I') x H2(I'), multiplying (2.19)
and (2.20) by g1 and go respectively, then integrating by parts, we obtain

A1(f1,91) + Bo(f2,91) = (m, g1), (3.1)
By (f1,92) + A2(f2, 92) = (t, g2),

where

Ai(fr,91) / (ZM uyj(z )dsI

—fuf»yﬁAE%%wwmmﬁwm@AMﬁ@»@w%

— -0 [ [ {5 g o)1 0)

8E* (z,9)

gy D)@ n)f1()) dsydss

=0 [ [{ZEED om0

OE(z,y)
+ Ony

+ =0 [ [ Bl @) fi)ds,ds,
—u—ﬁ//Emwwm%mu»wm%mwmmwm

(1-v) //E* ) cos(ng,ny)

(w(z, nx)gl( D(w(y, ny) f1(y))dsydsa,

Bo(f2,91) / (ZM g, (z )dsI

1”//8E$y (2) foly)ds,dsa
~ =) [ [ B @) ne @) faly)dsyds,

g1(7)(w(y, ny) f1(y ))}dsydsz



66 H.D. HAN AND W.J. TANG

(1-v //8E faly )dsyds,
OFE(x y
// Ony (y)dsydsa

(- //E:z: ) (@(@12)g1 () fo (4)dsydss
~ (1w //meMMMmM(wMMNﬁhU%ﬂ%

(1-v) //E 2,9)91(z) (W (y. ny) f2(y)) dsyds,

(1-v) //E 2,9)i1(z) (W (. ny) f2(y)) dsyds,
//a%;y ,12)910)) @l my) o)) s

B (f1,92) =Bo(ga, 1),
3
As(f2,92) :/FQZ(x)Tz(;’UQj(LE))dS];

—fﬂ*WAAﬁNLw@ﬂmﬁ@+mwﬂé@M%@x

-0 [ {5 wtwna)inte)) ()

%%?Qmﬁ(@mwﬂ)ﬂﬁﬂ%

(- //’3%;y (@ (& 1) (%)) o (v)

aEa( )g' (@) (w(y, ny) f2(y)) tdsyds,

(=02 [ [ Bawii: @ 1, o

-HM%%wﬂD(@muM)H®M%

-1 -v)? /F/FE'*(:L‘,y) cos(ng, ny)go(x) f2(y)dsyds,.

Let I(f1, fo;91,92) = Ai(f1,91) + Bo(fo, 91) + B{ (f1,92) + Aa(f2, g2)-
It is straightforward to know that I(fq, fo;91,92) is a bounded bilinear form on

1 3
(H2(I') x H2(1))? and I(f1, f2;91,g2) is symmetric.

Suppose u(z) given by (1.8) in domain Q€ satisfies the regularity condition then
(f1, f2) also satisfies the system of boundary integro-differential equations (2.19) and

(2.20).
0
[Tyulr, [Myulr, [au]r’ [u]r are designated for the jumps of the corresponding func-

n

tions on the boundary I'.
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3 )
Lavqr):{@hggeaHU%r)xHaaqamy/(m5§+gﬂ0ds:oxmezaau}
N
For any (91792) € ‘/*(F)u let

ug@) = [ MyB@ ) w)ds, + [ T,B ()2 (y)ds,.

By the properties of the triple layar and quadruple layar potentials!*!l, we know that
ug satisfies the linear - logarithmic growth condition when || — oo, then we have

ug =(ao + a171 + asws) + Alog|z| + o(1) } (3.3)

for some ag,aq,as, A € R, whenz| — oc.

If u, satisfies the linear - logarithmic growth condition with ag = a; = a2 = 0; then we
say u4 satisfies the strongly regular condition, when |z| — oco.

Let wy = uy — (ap + a121 + aszs), where ag, a1, as are given by (3.3).

Then w, is the unique solution of the following problem:

((A’w, =0, in QU Q°,
[wg] = g2, on T,
Owyg
Z90 — T
{Bnh i On (3.4)
[Mywg]. =0, onT,
[Tywy]. =0, onT,
Wy satisfies the strongly regular condition, when |z| — oc.
We now introduce the space U = {u\ ulg € H%(Q), ulge € HE(Q°), A%u = 0, in
QuUQ°, Mu]p =0, [Tu]r = 0, u satisfies the strongly regular condition when |z| — oo,
p _ — —(1 =
and ! 2871 F% 2[ ]rp}ds2— 0, Vp2€ Pl(F)}. Let a(u,v) = /QUQC (AuAv (1
0*u 0°v  0%u 0w 0 0
p(Lu0 | Cudty L, Fu Do)y,
Oxy Oxs ~ Oxs Oz O0x10x9 0z10x2

For any u,w € U,a(u,w) is bounded. It is straightforward to check a(u,w) is an
inner product of U, \/a(u,u) is a norm of U, and U is a Banach space with |||ul|| =
Va(u,u). Hence we obtain a linear operator K:

Vi([) —U,
K(gla 92) =Wgq,

the operator K is one to one correspondence.

By an application of Green formula, we have I(f1, f2;91,92) = a(wy,wy). Then we
know the operator K is bounded. Furthermore from Banach Theorem, K ! is bounded.
Hence there is a constant C, such that

vy = 1K 1w,

(g1, 92) v.(r) < Clllwglll, Y(g1,92) € Vi(T'),
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namely

1
lwglll 2 =gt 92)llv. (-

Furthermore, we have

1
(g1, 92: 91, 92) = a(wy, wy) = [|[wyl[* > 291, 92) V()

Then we have the following lemma.
Lemma 3.1. I(f1, f2;91,92) is a bounded bilinear form on V,(T') x Vi(T'), namely
there is a constant M > 0, such that

‘I(flqu;glagQ)‘ < M||(f17f2) Vi (T)> V(f17f2)7(91792) € V*(F) (35)

Furthermore 1(f1, fo; g1, 92) is a coercive in V,(I'), there exists a constant o > 0, such
that

v.n) (g1, 92)

.y V(g1.g2) € V(D). (3.6)

Finally the original boundary value problem (1.4) is reduced to the following vari-

I(g1,92:91,92) > all(91, 92)

ational problem:

{ Find (f1, f2) inVi(T'), such that (3.7)

I(f1, f2;591,92) = ((m, 1), (91, 92)), Y(91,92) € Va(T),

where ((mut)u (91792)> = <mugl> + <t792>'

By an application of Lax-Milgram theorem [10] [13], we have

Theorem 3.1. For given (m,t) € V*(I'), the variational problem (3.7) has a unique
solution (f1, f2) € Vi(T').

Suppose that S” is a finite dimensional subspace of V,(T'), then we consider the
approximation of (3.7).

{ Find (f, f#) € S", such that (3.8)

I(f1' 291, 92) = ((m,1). (91, 92)), ¥(g1,92) € S
By an application of Lax-Milgram theorem and Cea’s lemma, we obtain:

Theorem 3.2. The problem (3.8) ezists a unique solution (fI', f%) € S" satisfying
the following estimation

M
(1 f2) = (F fD) ey € — inf ([(f1s f2) — (91, 92) v (- (3.9)
@ (91792)65h
4. Numerical Examples
Consider the following problem
A%y = in €Q,
Myu=m onl, (4.1)

Tou =t on I,
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where

Q:{(:vl,:r:g)ERQ‘z——i-b—2<la>0 b>0}.

is an ellipse, the parametric equation of the boundary I' is
{ T1 = acost,

. (4.2)
zo = bsint, (0 <t < 27).

We consider the following two groups of boundary condition (4 (t), 1 (¢)) and (mo(t), t2(t)),
which are given in (4.3) and (4.4) respectively.

{ mi(t) = 2(1 — v)(ff (1) — f3 (1)), s
tr(t) = 4(1 — ) fo()[fa(t) fo(t) + fr(t) fa(D)], :
(ms(t) = 2v cos(acost)edsin?
+(1 = w)[f2(t) f5(t) + f2(t) fs () + 2f1(2) f2(t) f7 ()],
ta(t) = [2f1(t) sin(a cos t) — 2fo(t) cos(a cos t)]e?sint
+(1 = ) {f1() fo () f3 (&) + [f1 () fa(t) + fo(t) f3(8)] fo (2) (4.4)
\ —[fE) = f3(@®)] fr0(t) = 2[f1(8) f3(t) — fa () fa(®)] f7 ()} fo(t),
where
1
Jolt) = VaZsin?t + b2 cos?t’
bcost
o= VaZsint + b2 cos?t’
asint
hl) = Va2sin?t + b2 cos2t’
a’bsint
fol == (Va2 sin® t + b2 cos? £)3 ’
ab? cos

)= (VaZsin? t + b2 cos? )3’

f5(t) =(2cos(acost) — acostsin(acost))esm?,

f6(t) =a costsin(acost)e’smt,

f2(t) =(sin(acost) + acostcos(acos £))ebsint,

fs(t) =(4asintsin(a cost) + a? sin(2t) cos(a cost)

+ 2bcos t cos(a cost) — 2abcos® tsin(a cos t))e? 5"t
fo(t) =2(cos(acost) — acostsin(acost))e’smt,
a2
fio(t) :( — 2asintcos(acost) + 5 sin(2t) sin(a cos t)

+ beostsin(a cost) + abcos? t cos(a cos t)) ehsint,

Then u;(z) = 2 — 73 is a exact solution of problem (4.1) with boundary condition

(4.3) and wug(z) = z1sin(z1)e* is a exact solution of problem (4.1) with boundary
condition (4.4).
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First of all, the boundary I' is divided into four segmental arcs by four nodes
as, 416, 24, aze as shown in Fig.1, the division is denoted by partition A. Then the par-
tition is refined by dividing every segmental arcs into two parts. We obtain the partition
B consisting of 8 segmental arcs corresponding to the nodes {a;, i = 4,8,12,---,32}.
Refine it again and again, then the partition C consisting of 16 segmental arcs and the
partition D consisting of 32 segmental arcs are obtained as shown in Fig.1. The coor-

. . 127 .12
dinate components of the nodes {a;}, (i = 1,2,---,32) are (a CoS (3—2), bsin (3—2)),
(i=1,2,,32).

As the solution of the equation is unique except a polynomial of degree one, we fix
three nodes so that the approximation values of the solution equal the values of the

solution at these three nodes. The three nodes chosen are ag, aig, a24. We choose two
kinds of parameters (a,b,v) = (2.0,1.0,0.3), and (a,b,v) = (1.5,1.0,0.3).

4
a Ay a
8 5 aq a
(le 4
ag
Q29
Fig. 1. Partition A — D.
4
o
S
—
X
G
3=
s S
2 f;_\—u
v

"o 1 2 3 4 5 6 7

(a=2.0, b=1.0, » = 0.3. Boundary condition (4.3))

Fig. 2. Relative errors.

ug,upg, uc, and up denote the boundary finite-element approximations of the prob-
lem (4.1) corresponding to the partition A, B,C, and D and piecewise spline bound-
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ary elements. wu denotes the exact solution of the problem (4.1). We get the val-
ues of ug,up,uc, up and u on the nodes {a;,i = 1,2,---,32}. The relative errors

u—u
M (k = B, C, D) are given in following Fig.2-Fig.3 corresponding the bound-
max _|u(a;)]
1<i<32

u—u
ary condition (4.3) and the relative errors B kI (k = A,B,C, D) are given in
2, )

<i<@

following Fig.4 Fig.5 corresponding the boundary condition (4.4). These numerical ex-
amples show the Integro-Differential boundary finite-element method is very effective.
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(a=1.5, b=1.0, v = 0.3. Boundary condition (4.3))
Fig. 3. Relative errors.
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(a=2.0, b=1.0, v = 0.3. Boundary condition (4.4))

Fig. 4. Relative errors.
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Fig. 5. Relative errors.
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